MELLIN TRANSFORMS FROM FOURIER TRANSFORMS

bу

Herman Rubin Purdue University

Mimeograph Series #81-14

Department of Statistics Division of Mathematical Sciences

May 1981

 $^{^{1}\}mathrm{This}$ research was supported by Army contract # DA80-K0043.

MELLIN TRANSFORMS FROM FOURIER TRANSFORMS

by

Herman Rubin Purdue University

ABSTRACT

Let F be of bounded variation, \hat{F} its Fourier-Stieltjes transform. Then if $0 < \Re\left(\alpha\right) < 1$, we obtain an explicit formula for $\int\limits_{-\infty}^{\infty} x^{-\alpha} dF$ if that integral exists, and if $\Re\left(\alpha\right) = 0$, $\alpha \neq 0$, we give an explicit limit for the integral with no restrictions.

Let F be of bounded variation, $\hat{\mathsf{F}}$ its Fourier-Stieltjes transform. Then

Theorem 1: If $0 < \lambda = \Re(\alpha) < 1$ and $|x|^{-\lambda}$ is F-integrable,

(I)
$$e^{\frac{1}{2}\pi i\alpha} \int_{0}^{\infty} y^{-\alpha} dF(y) + e^{-\frac{1}{2}\pi i\alpha} \int_{-\infty}^{0} |y|^{-\alpha} dF(y) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} \hat{F}(t) dt.$$

Theorem 2: If $\Re(\alpha) = 0$, $\alpha \neq 0$, and (δ, σ) approaches (0,0) through positive pairs such that $\delta^{-\sigma}$ is bounded, then

(II)
$$e^{\frac{1}{2}\pi i\alpha} \int_{0}^{\infty} y^{-\alpha} dF(y) + e^{-\frac{1}{2}\pi i\alpha} \int_{-\infty}^{0^{-}} |y|^{-\alpha} dF(y)$$
$$= \frac{1}{\Gamma(\alpha)} \lim \left[\int_{0}^{\infty} t^{\sigma+\alpha-1} e^{-\delta t} \hat{F}(t) dt - \delta^{-\sigma-\alpha} F(0) \right].$$

The results of the abstract follow easily, since $e^{\frac{1}{2}\pi i\alpha} \neq e^{-\frac{1}{2}\pi i\alpha}$, and since the argument of $\delta^{-\alpha}$ can be made arbitrary.

We recall the following results from classical analysis: Let $\Re\left(\alpha\right)>0,\ \Re\left(\beta\right)>0,\ \Re(t)>0,\ \mu \text{ not zero or a negative real number.}$ Then without using analytic function theory, we can show that

(A)
$$\Gamma(\alpha)t^{-\alpha} = \int_{0}^{\infty} x^{\alpha-1}e^{-tx}dx$$

and

(B)
$$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)\mu^{\beta}} = \int_{0}^{\infty} \frac{x^{\alpha-1}}{(x+\mu)^{\alpha+\beta}} dx,$$

where the powers are all principal, i.e., if $w=e^V$, v of imaginary part less than π in magnitude, then $w^Y=e^{YV}$.

Let us now demonstrate the theorems. For the first, from (A)

(1)
$$t^{\alpha-1} = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{\infty} x^{-\alpha} e^{-tx} dx ,$$

and hence

(2)
$$\int_{\varepsilon}^{M} t^{\alpha-1} \int_{-\infty}^{\infty} e^{ity} dF(y) dt$$

$$= \int_{\varepsilon}^{M} \int_{0}^{\infty} \frac{1}{\Gamma(1-\alpha)} x^{-\alpha} e^{-tx} \int_{-\infty}^{\infty} e^{ity} dF(y) dx dt$$

$$= \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{x^{-\alpha}}{x-iy} (e^{-\varepsilon(x-iy)} - e^{-M(x-iy)}) dx dF(y),$$

since the right side is absolutely integrable in all variables. Now if $y \neq 0$ and $\Re(\alpha) = \lambda$, the inner integral is bounded by $C_{\lambda}|y|^{-\lambda}$. Thus we can use the bounded convergence theorem and (B) to obtain

(3)
$$\int_{0}^{\infty} t^{\alpha-1} \int_{-\infty}^{\infty} e^{ity} dF(y) dt$$

$$= \Gamma(\alpha) \int_{-\infty}^{\infty} (-iy)^{-\alpha} dF(y)$$

$$= \Gamma(\alpha) (e^{\frac{1}{2}\pi i\alpha} \int_{0}^{\infty} y^{-\alpha} dF(y) + e^{-\frac{1}{2}\pi i\alpha} \int_{-\infty}^{0} |y|^{-\alpha} dF(y)).$$

If $\Re\left(\alpha\right)$ = 0, it can be shown that the inner integral in the last expression of (2) is bounded, but no convergence is possible as $\epsilon \to 0$. However

(4)
$$\int_{0}^{\infty} t^{\sigma+\alpha-1} e^{-\delta t} \int_{-\infty}^{\infty} e^{ity} dF(y) dt$$

$$= \frac{1}{\Gamma(1-\sigma-\alpha)} \int_{0}^{\infty} \int_{0}^{\infty} x^{-\sigma-\alpha} e^{-t(x+\delta)} \int_{-\infty}^{\infty} e^{ity} dF(y) dx dt$$

$$= \frac{1}{\Gamma(1-\sigma-\alpha)} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{x^{-\sigma-\alpha}}{x+\delta-iy} dx dF(y),$$

and the inner integral is equal to $\Gamma(\sigma+\alpha)\Gamma(1-\sigma-\alpha)(\delta-iy)^{-\sigma-\alpha}$. Thus

(5)
$$\frac{1}{\Gamma(\sigma+\alpha)} \left[\int t^{\sigma+\alpha-1} e^{-\delta t} \int e^{ity} dF(y) dt - \delta^{-\sigma-\alpha} F\{0\} \right]$$
$$= \int_{y\neq 0} (\delta - iy)^{-\sigma-\alpha} dF(y).$$

The result then follows from the continuity of the gamma function and the application of the bounded convergence theorem to the right side of (5).