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SUMMARY
EXACT POWER OF GENERALIZED KOLMOGOROV GOODNESS-OF-FIT TESTS

Running Title: EXACT POWER OF KOLMOGOROV TESTS
by
Leon Jay Gleser

Purdue University
Generalized Kolmogorov goodness-of-fit tests of a specified c.d.f.
F*(x) are defined to reject Hg: F = F* when the sample c.d.f. Fn(x)
either strictly exceeds a function G1(x), or is strictly less than a func-
tion Gz(x), for some x. Under the sole condition that the function
inf{G](z): z>x} is right-continuous in x, it is shown that every such test

is equivalent to a test which rejects HO when X(i) <a, or X ) > bi’ some

i (i
i

< o = 1,2,...,N0,

2

i=1,2,...,n, where ays b.

; are constants, -~ < a,, b

i
and X(i) is the ith order statistic, 1T < 1 < n. Conversely, every test of
this Tatter type is equivalent to a generalized Kolmogorov test based on
nondecreasing right-continuous step-functions GT(x),Gz(x). It is shown
that even when the true c.d.f. F(x) is discontinuous, the power functions
of such tests can be obtained from the joint c.d.f. of the order statistics
U(]) < ... j_U(n) from a sample of i.i.d. U[O,]] random variables. Conse-
quently, all one-sided generalized Kolmogorov tests are unbiased tests of HO
versus appropriate one-sided alternatives. Finally, it is shown that no
additional generality is introduced by defining generalized Kolmogorov
tests to reject H, when ¢](Fn(x)) < N1(x) or wz(Fn(x)) > wz(x), some X,
where ¢1(u), wz(u) are arbitrary nondecreasing functions of u, 0 <u <1,

and w](x), w2(x) are arbitrary functions of x.
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1. Introduction and Summary. Let X]’XZ""’Xn be n independent ob-
servations from the population of a random variable X. Let o

#X.'s<x
_ 1 —

(1.1) F(x) = P{X<x}, Fn(X) e

=0 < X < o,
be the population cumulative distribution function (c.d.f.) and sample
c.d.f., respectively, of X. It is desired to test the null hypothesis

(1.2) Hy: F(x) = F*¥(x), all x, =-o < X < o,

where the null c.d.f., F*(x), is completely specified.

A generalized Kolmogorov goodness-of-fit test of HO rejects H0 when-

ever

(1.3) Fn(x) > G](x) or Fn(x) < Gz(x), SOmME X, - < X < ®,

where G](x) and Gz(x) are arbitrary functions. Note that if, say,

Gz(x) = -1, all x, then (1.3) is equivalent to the rejection region

(1.4a) Fn(x) > G1(x), some X, -» < X < «,

while if, say, G](x) = 2, all x, then (1.3) is equivalent to the rejection
region

(1.4b) Fn(x) < Gz(x), some X, - < X < o,

That is, one-sided rejection regions of the form (1.4a) or (1.4b) are
special cases of the general rejection region (1.3).

It is not hard to show that the rejection regions of the one-sided
Kolmogorov tests D+, D™, the (two-sided) Kolmogorov-Smirnov test D, both

the one-sided and two-sided weighted Kolmogorov tests (such as the



Anderson-Darling test), and Pyke's modifications of the tests D+;‘D- and
D are all special cases of the general region (1.3). For example, the

KoTmogorov-Smirnov test has rejection region of the form (1.3) with

6,(x) = (-1)Ta + F¥(x), i=1,2,150,

while the two-sided Anderson-Darling test has -

6;(x) = (-1)TIFF(x)(1-F*(x)) 12 + F*(x), 1 = 1,2, * s 0.

There is an extensive literature which deals with exact (finite
sample) power calculations for weighted and unweighted Kolmogorov tests.
Two useful reviews of this literature are Durbin (1973) and Kendall and
Stuart (1979; Chapter 30). Except for a paper by Conover (1972), methods
for calculating the power of such tests against a c.d.f. F(x) are given
only for problems in which F(x) is a continuous function of x. Conover
(1972) gives a method for calculating the exact power function of the
Kolmogorov tests D+, D~ against possibly discontinuous alternatives F(x),
but does not indicate how to extend his method to apply to other
Kolmogorov-type tests.

Let
(1.5) p(F) = P{Fn(x)> G](x) or Fn(x)< Gz(x), some X, -~o< X< o}

be the power of the test with rejection region (1.3) when the true c.d.f.
for X is F(x). Note that if
inf G](x) <0 or sup Gz(x) > 1,

—0<X <0 —o< X <o
the region (1.3) is the entire sample space, and o(F) = 1, all F. Thus,
to avoid such trivial cases, it is assumed in the remainder of this paper

that the functions G1(x), G2(x) in (1.3) satisfy:



(1.6) inf G1(x) > 0, sup Gz(x) < 1.

=< X <o =< X <00
In consequence, G](x) is bounded below, while G2(x) is bounded above.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that

(1.7) inf Gy(z) = Q](x) is a right-continuous function of x.
X§Z<w

Define the extended real-valued constants

(1.8) a; = inf{x: inf G](z)zr%}, by = sup{x: sup Gz(z)<:%;L},
Z>X Z<X

for i = 1,2,...,n. Then for any c.d.f. F(x), whether continuous or dis-
continuous,

(1.9) p(F) = P{U(i)< F(ai—) or U(i)> F(bi)’ some i=1,2,...,n} ,

where
F(x=-) = Tim F(z) = P{X< x}
Z<X
Z->X
and 0 5_U(]) < e 5-U(n) < 1 are distributed as the order statistics from

a sample of n independent U[O,]] random variables.

In the special case where G](x), Gz(x) are continuous nondecreasing
functions, and F(x) is a continuous c.d.f., the representation (1.9) is
well known. Consequently, a variety of methods for calculating

(1.10) R(s],...?sn;t],...,tn) = P{Sif_U(i)f_ti, 1<i<n}

appear in the literature. Theorem 1.1 says that any one of these methods

can be used to obtain

p(F) =1- R(F(a]')a---aF(an');F(b])a---sF(bn))

even when F(x) is discontinuous and Gl(x), G2(x) are arbitrary functions

restricted only by the conditions (1.6) and (1.7).



Using the equivalence between the one-sided regions (1.4a) and (1.4b)
and the general region (1.3), the following useful consequence of Theorem

1.1 can be straightforwardly obtained.

Theorem 1.2. (i) Any test with rejection region of the form (1.4a),

where G](x) satisfies (1.7), has power function -
o(F) = 1 - R(F(ag-),enoFla-)sTuTueenu 1),

where a5 1 <1 <n, is defined by (1.8). Any such test is unbiased for

testing H0 vs. one-sided alternatives

.

1 F(x) > F*(x), all x.

(ii) Any test with rejection region of the form (1.4b) has power

function

o(F) =1 = R(0,0,...,03F(by) ... ,F (b)),

where b., 1 <1 < n, is defined by (1.8). Any such test is unbiased for

 testing HO vs. one-sided alternatives

Hi: F(x) < F*(x), all x.

Theorem 1.1 is proved in two steps. In Section 2, it is shown
(Theorem 2.5) that, subject to the regularity conditions (1.6), (1.7),
every test of Hy with rejection region of the form (1.3) is equivalent to

a test of HO with rejection region

(1.11) X(i) < a; or X(i) > bi’ some i = 1,2,...,N,

where a],...,an,b1,...,bn are defined by (1.8), and where
- < X(-l) _<_... iX(n) < oo

are the order statistics from the sample X]""’Xn' This equivalence is



well known in the case where G](x),Gz(x) are both continuous nondecreas-
ing functions, but does not seem to have been proved in the generality
given here.

In Section 3, the proof of Theorem 1.1 is completed by showing
(Theorem 3.1) that every test with rejection region (1.11) has power p(F)
given by (1.9). When the c.d.f. F(x) is continuous, this assértion is
known to be a direct consequence of the probability integral transforma-
tion. Interestingly, for general c.d.f.'s, the result (1.9) is a fairly
straightforward consequence of the inverse probability integral transforma-
tion.

Finally, Section 4 demonstrates that no new generality can be intro-
duced by expanding the class of generalized Kolmogorov tests to include

tests which reject HO when
(1.72) ¢1(Fn(x)) > w](x) or ¢2(Fn(x)) < wz(x), SOME X, -» < X < o ,

where wl(u), wz(u) are nondecreasing functions of u, 0 <u < 1, and

w](x), wz(x) are arbitrary functions of x, -» < X < =,

2. Equivalence of Generalized Kolmogorov Tests and Tests Based on

Order Statistics. For any two real-valued functions T](x),TZ(x) on the

real Tline, Tet

(2.1) A(T],Tz) = sup {Ty(x) - T,(x)}.

=00 X <o

In terms of A(T]’TZ)’ the rejection region (1.3) can be equivalently re-

stated in the form: Reject HO if

(2.2) A(Fn,G]) >0 or A(GZ,Fn) > 0.



Lemma 2.1. Let U(x) be any nondecreasing function of x.” For any func-
tion V(x) define

(2.3) V(x) = infV(z) , V= supV(z), - < X < w.

- X<Z<o —0<Z<X
If V(x) is bounded below, V(x) is a real-valued function of x, while if
V(x) is bounded above, V(x) is real-valued. Then -

(2.4) A(U,V) = a(U,V) ,  a(V,U) = a(V,U).

Proof. Note that V(x) < V(x) < V(x). It follows from (2.1) that
(2.5) A(U,V) < a(U,V) , a(V,U) < a(V,U).
On the other hand, since U(x) is nondecreasing in x,

x) -

a(U,V) = sup {U( inf V(z)} = sup  {U(x)-V(z)}

—c0< X< X<Z<e —0< X<Z<o

< sup  {U(z)-V(z)} = a(U,V),

—m<X§;<w
and

a(V,U) = sup { sup V(z)-U(x)y < sup {V(z)-U(z)} = a(V,U).

=00 X <co —w<Z§X -w<2§x<m

From these two inequalities and (2.5), the result (2.4) follows. O

Corollary 2.2. Every generalized Kolmogorov test with rejection region

(1.3) defined by arbitrary functions G1(x),Gz(x) is equivalent to a gen-
eralized Kolmogorov test with the rejection region

(2.6) Fn(x) > @1(x) or Fn(x) < Gz(x), some X, =o» < X < ®,

defined by the nondecreasing, real-valued functions
(2.7) G(x) = inf Gy(z) , G,(x) = sup Gy,(2).
X<Z<w —0<Z<X
Proof. The functions 91(x),G2(x) are real-valued because by (1.6),

G](x) is bounded below and Gz(x) is bounded above. Note that the



rejection region (2.6) is equivalent to

(2.8) A(Fn,g]) > 0 or A(Gz,Fn) > 0.

Since Fn(x) is a nondecreasing function, Lemma 2.1 applies to show that
a(F5Gy) = a(F,264)58(Gy,F ) = a(G,,F ). Thus, (2.2) and (2.8) are equiv-

alent regions, proving that (1.3) and (2.6) are equivalent. .3

Recall that for any (real-valued) nondecreasing function V(x), the

Timits

(2.9) V(x-) = Tim V(z) = sup V(z), V(x+) = Tim V(z) = inf V(z)
Z<X Z<X Z>X Z>X
Z+X Z->X :

are well defined. The function V(x) is right-continuous if V(x+) = V(x),

all x. For any ¢, -» < ¢ < », define
(2.10) v 1(c) = infix: V(x) > c}.

Note that V'](c) = -= if and only if V(x) > c, all x, or, equivalently,
if and only if inf V(x) > c. Also V '(c) = = if and only if
=< X <o
Tim V(x) = sup V(x) < c.
X-»co —0L X <o

Lemma 2.3. For any (real-valued) nondecreasing function V(x), the

inverse function VfT(c), defined for -» < ¢ < » by (2.10), has the fol-

lowing properties:

V_](c) is non-decreasing in c,

)

(ii) V'](c+) = sup{x: V(x-)<c} = inf{x: V(x)>c} ,
) x> V_](c+)‘¢>‘ V(x-) > c,
)

X < V'](c) = V(x) < c=x V_](c),

|A

while if V(x) is right continuous,

(v) x <V'c) & V(x) <c,



and

(vi) V(V'](c)) >Cyall ¢y, =@ < C < o .

Proof. Properties (i) and (i1) follow directly from the definition
(2.10) of V'](c). To prove property (ii), Tet
T](c) = sup{x: V(x-)<c}, T2(c) = inf{x: V(x)>c}.

Since V(x) is nondecreasing in x,

X < T2(c) » V(x-) < V(x) <c= x_g_T](c),

while

X < T1(c)'= V(x-) = sup V(y) < c >y < Tz(c), all y < X = X §_T2(c).
y<X

This shows that T](c) = T2(c). However,

X < T2(c) »V(x) <ceVix) <d, all d > c & x < inf V_](c) = V'](c+),
; d>c

and also
x < V(cH) 2 V(x) < d, all d> ¢ = V(x) < ¢ = x < Tylc).
Thus, V"](c+) = T2(c) = T1(c), proving property (ii). It directly follows
from property (ii) that
X > V'](c+) = T](c) e V(x-) > c,

since

V(T](c)-) = sup V(x) <c
x<T](c)

by definition of T1(c). This verifies property (iii). Finally, property
(v) follows from properties (iv) and (vi), while property (vi) is a con-

sequence of the inequality



VO (e)+) = inf V(x) > ¢
x>V (c)

and the right-continuity of V(x) at x = V_1(c). O

Lemma 2.4. Assume that

Ugs if -0 < X < X1 o
g0 1F Xe < X< X0
if

A
x
A
8

Uy » X <

is a real-valued, right-continuous step function. Then for any real-valued
nondecreasing function V(x)

(2.11) A(U,V) = max{(uo- inf V(x)), max (ui- V(x:))}

—< X< 1<i<k !

(2.12) A(V,U) = max{ max (V(xi+]-)— ui),( sup V(x) - uk)}.
Oi‘if_k-] =00 X <o

Proof. Straightforward, taking the supremum in the definition (2.1) over
the intervals (-m,x]),[x1,xz),...,[xk,w), and using the fact that V(x) is

nondecreasings. O

Theorem 2.5. Consider any rejection region for HO of the form: Reject

HO if

(2.13) Fn(x) > G](x) or Fn(x) < Gz(x), some X, -» < X < ® ,

Assume that G1(x) and Gz(x) satisfy (1.6), and also that
(2.14) 91(x) = inf G](z) is right-continuous in X, -» < X < ® .
X<Z<w
Define
a. = 61 (1) = infix: inf 6,(z)> 1}
i =1 'n ) 1 =n"’
z>X

i

b. = Gé1(j:ﬂ.+) = sup{x: sup G2(z)§_ ;1 }, i =1,2,...,n.

Z<X
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Then the rejection region (2.13) is equivalent to the rejection réegion

(2.16) X(.

i) < a, or X(i) > bi’ some i = 1,2,...,Nn,

where X(]) 5_X(2) < v 5-X(n) are the order statistics based on the

sample X]’X2""’Xn'

Proof. Use the fact that the sample c.d.f. Fn(x) is a nondecreasing,
right-continuous step function with jumps at the order statistics X(i)’
1 < i <n. Apply Corollary 2.2, Lemma 2.4 (with Uy = 0> u = 1) and

(1.6) to show that the region (2.13) is equivalent to the region

(2.17) ]T?ﬁn(%-- 91(X(1))) >0 or ]T?in(éz(x(i)—)--—ﬁ—) > 0.

Next, apply Lemma 2.3 (v) and the definition of a., 1 <1 < n, to show

that

- 61 (X

1))) >0 e X(i) < a;, some i=1,2,...,n,

:|_|-

max (
1<i<n

and then apply (2.14), Lemma 2.3(i1),(iii) and the definition of bi’
1 <1i <n, to show that

= i-1 .
max (G2(X(1)—)- _TT_) >0 e X'.) > bi’ some i = 1,2?...,n.

1<i<n U
Thus, the region (2.16) is equivalent to the region (2.17), which in turn

is equivalent to (2.13). This completes the proof. 0O

Remark 1. It can be shown that (2.14) holds if and only if
(2.18) G](x) 3_G](x+), all X, - < X < » ,

The condition (2.18) holds if G](x) is right-continuous. Of course, if
G](x) is nondecreasing, then g](x) = G](x), and (2.14) and (2.18) hold if

and only if G1(x) is right-continuous.
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Remark 2.  The constants a;, b, defined by (2.15) can equal = or -« .

It is easily shown from Lemma 2.3(i) and (2.15) that

< ™,

(2.19) ~® <A1 <8 < ... 8 <@ <by<by <<

n
It should also be clear that the region (2.16), and thus the region (2.13),
is the entire sample space if

bi < ai, some i =1,2,...,N.

Theorem 2.5 shows that under some very mild conditions, (1.6) and
(2.14), on the functions G1(x) and Gz(x), every generalized Kolmogorov
goodness-of-fit test (1.3) is equivalent to a test based on the order
statistics X(]) < ... 5_X(n) with rejection region of form (2.16). The
converse of this result is also true. Indeed, let a1,a2,...,an,b],b2,...,
bn be any extended real-valued constants satisfying (2.19). [See Remark 2
above.] Define

#as's < x #hi's < x

(2.20) 0 (x) = ——", Q,(x) =

n ’—oo<x<oo_

n
Note that Q](x) and Qz(x) are real-valued, nondecreasing, right-continuous

step-functions for which
a; = 00 (1), by =0 (), 1< i <,

holds. [These results hold even when some of the ai's, or bi's, are

equal, or when some ai's or bi's equal « or -» .] The following converse

to Theorem 2.5 (see also Remark 2) has thus been established.

Theorem 2.6. For every region of the form (2.16), defined by constants
1’bi’] < i < n, satisfying (2.19), there exists a region

Fn(x) > Q](X) or Fn(X) < QZ(X)’ some X, -© < X < o
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of the form (2.13), where Q](x),Qz(x) are nondecreasing, right-continuous

step-functions satisfying (1.6).

3. Representation for the Power Function (1.5). It is clear from

Theorem 2.5 that Theorem 1.1 will be established once the following re-

sult is shown to hold.

Theorem 3.1. Let X(1) < ... 5-X/n) be the order statistics from a sample,

- \

X]""’Xn’ of i.i.d. random variables having a common c.d.f. F(x). Let

O<U(-I)i...f_U(n) <1

be the order statistics from a sample U1,U2,...,Un of independent random
variables uniformly distributed on [0,1]. Then, for any extended real-

valued constants ai’bi"m 5-ai’bi <, <i<n,

(3.1)  Plag<X(jy<bjlcicny = P{F(a;-) <Uyy<Flby)sl<iz<n}

Proof. When F(x) is continuous, (3.1) is a direct consequence of the
probability integral transformation. In general, define the inverse

probability integral transformation:

(3.2) F_1(u) = inf{x: F(x)>u}, 0 <u < 1.

It is well known that the random variables

~ _ _'l .
X; = F(U), 1<i<n,

have the same joint distribution as X]""’Xn' Further, since F—](u) is,
by Lemma 2.3(i), nondecreasing in u,

X,y = F1U,), 1 <4 <n

(1) (i) ==

where X(]) < vee 2 X(n) are the order statistics formed from X]""’Xn'
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Consequently,
(3.3) P{aiiX(i)ib

jol2ls

From Lemma 2.3(v), for every i = 1,2,...,n,

or, equivalently,

(3.4) F'1(u(1)) <bj e Uy < by

By Lemma 2.3(i), 1 (ut) 3_F_1(u), all u. Thus, by Lemma 2.3(iii),

-1 -1
(3.5) ag < 7 (Uggy) = F(UGy*) > ag = Uy 2 Flage)

while by the definitions of F(x-) and F™'(u),

U(i) > F(ai-) = U(i) > F(y), all y < a;

(3.6) =yiF4wﬁﬂ,M1y<%

allt i = 1,2,...,n. From (3.4), (3.5) and (3.6),

(3.7) P{F(ai_)< U(i)iF(b-j)’]f_iin} < P{a1-_<_F_1(U(1-))_<_b1.,'li'i <n}

| A

P{F(aj-) <Ug3)<F(by),1<i<nd,

but since the random variables U(i)’ 1 <1 < n, have a continuous joint
distribution, the left-hand and right-hand sides of (3.7) are equal,

proving (3.1). O

Although the representation provided by (3.1) is clearly useful, it
should be noted that the method of proof of Theorem 3.1 is also of con-
siderable applicability. In many cases, the inverse probability integral

transformation, used in conjunction with Lemma 2.3, can provide
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distributional results (or inequalities) for "nonparametric" procedures
in contexts where the c.d.f. F(x) of the data is discontinuous. In com-
parison to the "projection" method described in Noether (1967; Section
3.3), the method here applies to mixed discrete-continuous cases, as well

as to purely discrete populations.

4, Generalizations. Consider the test of H0 with rejection region:

Reject HO if
. -1 1 . -1 1
(4.1) sin [(Fn(x))z] > sin [(F*(x))=] + A, some X, = < X < = ,

where A > 0. Such a test is appropriate for testing H0 vs. the one-sided
alternatives H? described in Theorem 1.2. Recall that for each x,

Yn(x) = nFn(x) has a binomial distribution with parameters n and p = F(x).
The test defined by (4.1) corresponds to simultaneously testing

Hyo: F(x) = F*(x) for all x, using the large sample tests based on the

0x”
variance-stabilizing transformation of the binomial distribution. The
use of the variance-stabilizing transformation here is an attempt to make

the large-sample null distributions of the test statistics
. -1 3 . -1 1
sin "[(F (x))2 1 - sin "[(F*(x))? ]

equal for all x.
A test which appears to be equivalent to the test defined by (4.1)

is the test with rejection region: Reject H0 if

(4.2) Fn(x) > sinz{x*-sin_1[(F*(x))%]} , SOMe X, = < X < o .

Knott (1970) attributes this last test to J. W. Tukey. However, it is
more likely that Tukey proposed the test based on (4.1). Indeed, using

Corollary 2.2 it can be shown that (4.2) is eguivalent to



15

1
Fn(x) > min{sinz(x+ sin'][(F*(x))z]),sinz(%ﬂ)}, some X.

Since for A > 0, sin®(3x+1) <1, while F (x) » 1, as x » =, it is ap-
parent that the region (4.2) is the entire sample space, and thus does
not define a reasonable rejection region for HO’

There is a test with rejection region of the form (1.4a)-which is
equivalent to the test based on (4.1). However, the equivé]ent test 1is
not that based on (4.2), but instead is based on the rejection region:

Reject H0 if
- 1
(4.3) Fn(x) > sin?{A+ sin 1[(F*(x))2]}, some X, - < X < X*,

where x* = F*'](sinz(%n+x)).'

‘The equivalence between the rejection regions (4.1) and (4.3) is a

special case of the following general result.

Theorem 4.1. let wl(u),wz(u) be nondecreasing functions of u, 0 <u <1,
and let W1(x),w2(x) be arbitrary functions of x, -» < x < «. For every

test of HO with rejection region
(4.4) wq(F (x)) > Wy(x) or o(F (X)) < Wy(x), some x, == < X <,

there is an equivalent test with rejection region of the form (1.3).

Proof. A constructive proof will be given. First, observe that since
the only possible values of Fn(x) are the rational fractions i/n, i = 0,1,
2,...,n, the values of wj(u), j=1,2, foru # i/n, some i = 0,1,...,n,
do not affect the occurrence or non-occurrence of the event (4.4). Hence,

without loss of generality, replace wj(u), j=1,2, in (4.4) by the
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unique continuous, piecewise-Tinear functions ij(u) having the property

that

() = () 0<d <, =12,

Since the wj(u)'s are nondecreasing functions, so are the ﬁj(u)'s.
Next, note that unless -

(4.5) inf W (x) > 91(0), sup Wy(x) <w,(1),

—o0<X <o —o0<X <00
the region (4.4) is the entire sample space (and is thus equivalent to

any region (1.3) for which the functions G](x),Gz(x) fail to satisfy (1.6)).
Consequently, it can be assumed without loss of generality that (4.5) holds.

Then, letting the functions ﬁ](x),ﬁz(x) be defined by
(4.6)  Hy(x) = minLyy(1),H7 ()1, #y(x) = max[y,(0),H,(x)1,

jt is easily seen that (4.4) is equivalent to

(4.7) ﬁ](Fn(x)) > w](x) or &Z(Fn(x)) < ﬁz(x), some X, -» < X < o ,

However, since the range of ﬁi(x) is included in the range of ﬁi(u),
i =1,2, the following functions are well defined.
6, (x) = 71 (i (x)*) = influz 0<u<1,i;(w)> i (x)3,

~ ~1,r ~

Gy(x) = vy (Wy(x)) = inf{u: 0<u<T,9,(u) > Wy(x)} .

It now follows from (4.8), from the fact that @1(u),@2(u) are nondecreasing,
continuous functions (so that %2 is right-continuous, while ﬁ](x-) = @](x),
all x), and from Lemma 2.3, properties (iii).and (v), that (4.7) and

(4.9) Fn(x) > 61(x) or Fn(x) < éz(x), SOme X, =© < X < o

are equivalent regions. Thus, (4.9) is equivalent to (4.4). Since (4.9)

is of the form (1.3), the proof is complete. O
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