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ABSTRACT

The estimation problem of a permutation parameter on the
basis of a random sample of increasing size is considered. Necessary
and sufficient condition for the existgnce of an estimator asymptotically
fully efficient for two different distributions families is derived.
We also study the application of this result to cyclic groups of order

two and three.
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I. Introduction

Let S be a finite set consisting of m elements, say S={1,...,.m},
and let P be a probability measure on S,P(k) = P> k=1,...,m,
Pyt - +p, = 1. We assume that a finite group G of transformations
acts on the set S. Let Yyo---9¥p be a sequence of independent. random
variables taking values in S and with common distribution P. Suppbse"
that the statistician observes a transformed sample XqyaeeesXps X5 = qys

J J
j =1,...,n, where g is unknown transformation from G. In

this paper the statistical estimation problem of the permutation parameter
g on the basis of random sample x = (x],...,xn) is considered. Let

C = {c: c€a@G, PC=P} where P
Py(k) = Pg”"

in this problem with the cosets space G/C, @ ='{eo,e],...,ez}, 8g = C-

g denotes the shift of measure P by g, i.e.,

), k = 1,...,m. The parametric space @ can be identified

Thus an estimator §(x) taking values in @ is desired, or more generally
a randomized procedure, which is a probability distribution.on @ , has
to be constructed.

This problem has been studied by Maksimov (1975) who constructed es-
timators which are equivariant with respect to every automorphism of G.
The author (Rukhin (1975)) considered the situation when G is a cyclic
group of a prime order. In more general situation (see Rukhin (1977))
the asymptotical efficiency e = —1imn—] 1ogPe{6(x)#e} was evaluated for
the class of minimum contrast estimators. It was shown that (unlike the
real location parameter problem) there exist probability distributions P
and Q such that the maximum 1ikelihood estimator based on Q has the same
asymptotical efficiency as the maximum 1ikelihood estimator based on P

when the observations have the latter distribution.
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The estimation of a-finite permutation parameter is motivated- by
deciphering problem of cryptoanalysis. In this application the sequence
of y's represents the plain sequence (message), which must be transmitted,
and x's correspond to the cipher sequence. Exactly this estimation
problem is discussed informally by Sinkov (1966), Sec. 1.5, 1.7 for
monoalphabetic ciphers in the case of cyclic group and Ga]ois*fie1d.
In a version of the same problem one observes two sequences XqsenesXy
and xi,...,x& each belonging to a transformation parameter family with
C=G and unknown parameters g and g' respectively. The shift f'lg;
between these two samples must be determined. This setting arises in
the situation when two (or more) alphabets are used in the enciphering
(see Sinkov (1966), Sec. 3.6) and is reduced to our original formulation
Nyt, j=1,...,n as the observed sequence. Efficient

J J
deciphering methods have been developed in cryptoanalysis to estimate

by treating x

the "key" g when the language of the message is known (i.e., when the
distribution P is given). Assume however that the communication can
be written in one of, say, two different languages which use the same
alphabet. In other terms there are two probabf]ity distributions P
and Q over S, and x's have a distribution which is a member of one of

the two permutation parameter families.



In this paper we obtain a hecessary and sufficient condition on
two measures P and Q for the existence of one estimator fully asymp-
totically efficient under both P and Q which can be considered as
adaptive deciphering scheme. It turns out that the natural overall
maximum 1ikelihood deciphering scheme may fail to be adaptive»whi]e
adaptive procedures exist. The case of a cyclic group of order two

or three is considered in detail.

II. Asymptotically Efficient Equivariant Estimators
The vector v = (v],...,vm) of relative frequencies of different values
from S forms a sufficient statistic for the permutation parameter g. This

fact follows immediately from the factorization theorem since

m
mTp _, =1 pkgk )
1 1
Therefore every estimator ¢ can be taken to be a function of v only,
§ = §(v).

In this paper we assume that the risk function of an estimator § is
just the probability of incorrect decision Pe(a(v)#e). In other terms
zero-one loss function is used. A non-randomized estimator is equivari-
,v_), and the extension of this

gl>" "> "gm
definition to randomized procedures is clear. It is well known that equi-

ant if s(gv) = gs(v), where gv = (v

variant estimators have constant risk, and that the best equivariant esti-
mator, which minimizes this risk, coincides with the maximum 1ikelihood
estimator and is minimax. If the latter is not defined uniquely, i.e.,

when ties occur, we shall use for concreteness sake the symmetric version



of randomized procedure (see Rukhin (1977)). However the-prdgabilfty of
this event is negligible in the asymptotic analysis.

We associate with an equivariant estimator & the subset N = N@ =
{v: 6(v)=eo} of the unit simplex » in the m-dimensional Euclidean space.

The maximum 1ikelihood estimator is randomized on the boundary.of the set

N (which is an open convex polyhedron) and its consistency just means
that (p],...,pm) is an inner point of N. The group G acts on g,

gv = (v ,W_), and if g = 90 (such g always exists), then

12 *Vam
{v: 5(v?=e} = gﬁ. The maximum Tikelihood estimator is nonrandomized on
the union of all sets gN, g€G, the closure of which coincides with .

It follows from Krafft and Puri (1974) or Rukhin (1977) that the risk
of the maximum likelihood estimator & tends to zero exponentially fast

when the sample size n increases. More precisely

& = —11mrf4 109Pe{3(v)#e} = -max min Tog( E 1-t t),

Par P

ok Tk
efeo t

Therefore for any other estimator &

—1imn-1 logmax Pe{a(v)#e} < ey-
0

If Q is another distribution with probabilities > then it is of interest
to find out if there exists an equivariant estimator 84 which is asymptoti-

cally efficient both under {Pg} and {Qg}, i.e., for which

. o=~] _
-Timn 1ogPe{6a#e} =e;

and

~linn™! Tog Qgts #6} =e., ,

where

e, = -Max min Tog( ) g;;tgt).
e#eo t k
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We call such 84 adaptive estimator. The next result gives a necessary con-
dition and a sufficient condition for the existence of adaptive procedures.

Before formulating it we introduce the following notation. Let, for real d

. t 1-s
e, (d) = -max inf [Tog( ps p, q, ) td],
1 6#0, S,t>0 E ok "k 7k
621(d) = -max inf [log( E q:ktp; qu )+sd],
676y S,»t>0
e22(d) = -max inf [Tog( Z pek pkS l t)+sd],
676y S,>t>0
. t -s_1-t
e,,(d) = -max inf [Tog( } pS+ p, q, ~)-td].
12 of6, S-t>0 ok Tk Tk

Clearly all these functions are continuous on the intervals where they are
finite; e11, e]2 are monotonically increasing and €,1s €,y are monotonical-

ly decreasing. Also e]](d) > € and ezz(d)_z &, for all d.

Theorem 1. Assume that P and Q are two distributions over S with positive
probabilities Py and 9y k=1,...,m. If an adaptive estimator aa exists
then for all real d

min{e;,e,~d} < min{ey;(d),eyq(d),e,,(d)-d,e ,(d)-d}. (1)

If for some real d

e; = min{ey;(d), e, (d)},
82 = min{ezz(d):e]z(d)}g

then an adaptive estimator exists.

Proof Assume that an adapt1ve estimator 6 exists. Define & as the
maximum 11ke11hood es1mator based on the log-Tikelihood function

nmax{ ) v , Tlogp,zv _, loggq +d}, i.e.,
K g ]k k g 1k k

max{ } v, logpx,,zv, 10g gy +d} = max{. ) v, logp_,,zv, logq  r+d}.
£k sk VK 3K Tg kKT ek gk



Then 3 is the best equivariant estimator for the distributionA

nv nv
_ k _nd k
rn(v) = Cnmax{ E P »€ E S
and
o~ d. .~
C_max{P{s(v)#61, e" Qs(v)#0,1} < . T (v) < Yy - (v)
n 0 0 v:d(v)#e0 n v:és(v)#e0 n

¢ [P (s(v)feg} + e"Qts(v)fogi].

| A

Therefore

“limn™! 1ogP{3(v)#eo}

< mint-Timn™! TogP{s(v)#ey3, -Timn™! TogQes(v)fogi-d)

= min{e],ez-d}
and analogously

~d -1imn"! Tog Q{8 (v)#e,} < min{e,e,-d}.
We deduce the necessary condition of Theorem 1 by evaluating.
Timn™! TogP{3(v)#e,) and Timn™! 1og Q{8 (v)#ey}-
Let Ag denote the following event,
Ag = {max{zvk1og pk,zvk1og qk+d} < max{zvklog pgk,zvklog qgk+d}};

then for any fixed g€e , g # 9,

P(A) < P{8(v)fogr < PL U Aj} < & max P{A}.
J gfe, g#o

Thus

! log max P{A

n”! Tog PLE(v)feg) ~ n”
g#eo

g} )



Also

max{P{max{ka1og pk,zvklog qk+d}5zvklog pgk},
P{max{zvklog pk,zvklog qk+d}5;vk1og qgk+d}}3i P(Ag)
E_P{max{zvklog P2V Tog g, +d}< v, Tog pgk}ﬂ _
+ P{max{zvklogpk,zvkloqu+d15 vk1ogqgk+d}.

The asymptotical behavior of the latter probabilities can be obtained
by means of the multivariate version of Chernoff's Theorem (see Steinebach
(1978), Groeneboom et al (1979))or Sanov's Theorem (Bahadur (1971) p.18
formula (5.35)). .According to these theorems

1imn_]]ogP{nmx{zvklogpk,zvk]oqu+d}5;vk1ogpgk}

1

= limn™" logP{zv, log (pgk/pk)zo,kaﬂog(pgk/qk)-d)zo}
AL o P Sapt)-td]
and
Timn™! 1ogF>{max{zvk1og PysZv) 10g q +d}<zv, Tog qqk+d}
= Timn~! TogP{z v, Tog (qgk/qk)zp,ka(log(qgk/pk)+d)39}
= 53220[109( E q;ztpl'sq;t)+sd].
Therefore

-1 10g P(3(v)teg) - mingey; (d).eyy (d)). (3)
Similar argument establishes the formula

-n'llog Q{S(v)#eo} ~ min{ezz(d),e12(d)}. (4)



Thus if an adaptive estimator exists, (1) holds. Also if (2) is true,

then because of (3) and (4) the estimator § is adaptive.

Remark. It follows from the proof of Theorem 1 that for all d

e z_min{en(d),ez](d)},e2 z_min{ezz(d),e12(d)}. o (5)

Define

d2] = sup{d: e21(d)3p]},
dyo = infld: ey,(d)>e,}.

Since e;,(d) » +» as d » +» and e;,(d) is continuous from the right,

e]2(d12) = e, If e21(d21-) < «,then also e21(d21) = ey.

Theorem 2. Under assumptions of Theorem 1 adaptive estimator exists if
and only if

dyp < dyy- (6)

Proof. From the definition of numbers d]2 and d2] it follows that
e51(d) > e; for d < d,; and eq,(d) > e, for d > dy,. Therefore of
dyy < doy then for all d from the closed interval [d]2,d21]

min{e;;(d),e,;(d)} > eq,

i.e., because of (5)

4]
—
[H]

min{e]](d),e21(d)}
and similarly
e, = min{ezz(d),e]z(d)}.

Theorem 1 implies the existence of an adaptive estimator.
Assume now that (6) does not hold. Then for d belonging to the open

interval (d2],d12),e21(d) < e and e12(d) < e, For such d



min{e],ez-d} > min{eZ](d),e]z(d)-d}
bl m-in{e-l-l (d) sez'l (d) :ezz(d)"dse]z(d)’d}s
and because of (1) adaptive estimator cannot exist.

Corollary 1. If condition (6) holds then for all d,d;, < d < d,; the

estimator Ga’

v v v v
k d k k d k
{v: aa(v)=eo} = {v: max{npk ,e g, } = mgXIﬂaX{ﬁ pkg ,e qug }}

is adaptive.

This fact easily follows from the proof of Theorem 1, It is also
easy to see that if the interval [d12’d2]] is nonempty and does not con-
tain zero, then the usual maximum 1ikelihood procedure which corresponds
to d = 0 is not adaptive, while adaptive procedures do exist.

Corojlary 2. Adaptive estimator exits if

ey < eppldyy)
or if

ey < eppldyp).
If an adaptive estimator exists, then

&) < eqp(dyy).

If an adaptive estimator exists and e21(d]2-) < « then
ey < ey(dpp).
Proof. If e, < e12(d2]), then for all d greater than d12,e]2(d)> €55

which implies that d]2 < dyy. Analogously the inequality ey < e21(d12) im-

plies d]2_5 d21, so that in these cases adaptive estimator exists.



Assume now that an adaptive procedure exists, i.e., that.d,, < d,-.

12 = 721
If di, < dyy then ey (dy,) > ey (dy;) and e;,(dy,) < eq,(dyy). Since
e]Z(dlz)-i e, it follows that e < e12(d2]). Because of the condition
e2](d]2-) < =, the function e, is continuous at dy,, so that e21(d2]) =
e and e, < epy{dyy).

If dip = dyys then e, 5_e]2(d]2) = e]z(dz]),and also e, = é2](d21) =
eZ](d]Z). It follows from this argument that if e, (or e12) is strictly

monotone function then adaptive estimator exists if and only if -

ey < ep1(dyp) (or ey < eqy(dyy)).

Corollary 3. Adaptive estimator exists in each of the following cases:

(i) e21(0) Z_ei,e]z(o)_z ey

(i) d21

|v

ez;

(i11) d]2 < -eq.

Proof. In the case (i) dj, < 0 < dyy, so that adaptive estimator exists.
One proves (ii) and (iii) by noticing that e2](d) > -d and e]z(d) > d,

so that e, > dy, and ey > -doq. .

III. Adaptive Estimators of Permutation Parameter for Cyclic Groups

In this section we illustrate Theorem 2 by considering adaptive es-
timators of permutation parameter for cyclic groups of order two and
three.

If G =S = {0,1} with the group operation being addition modulo two,
and P and Q are two probability distributions over S, with positive prob-
abilities, Po # Pys 9 # q],then

. -t t, 1-t ty _ _
e, = _OTlgl Tog(py "py*py Pg) = -log(2/pgpy),



e, = —]og(2/q0q]).

We assume that 91 > 9> i.e. q] > 1/2. Then

- 3 stt 1-s -t s+t 1-s -t
ey (d) = -512fo[109(q] Py "9g *dp Py "9y )¥sd]

= - min{ inf [og(a3py S+agpl~S)+sdl,
..5.1-s_s 1-s
S:41Pg 2GRy

]inf ] [109(2(q0q])5/2(p0p1)(1's)/2)+sd]}.
$:03Pg <GgPy

. S 1-s_ s 1-s, _ - '
If py > py» then Pgdg < P19y and {s: 4Py 2agPy } = [so, ) where the

' o So 1-50 Sy 1-50
o s found from the formula 9P =Gy Py s Sy < 1. There-
fore eZ](d) =

w if log(qoq]/(pop])) + 2d < 0, which implies that

number s

2d2] 2_109(q0q1/(p0p]))-
Also if Tog(qyq,/(pgp;)) + 2d > 0,
. 1- 1-
e,y (d) = - min [1og(aypy S+agp;~*)+sdl;
0<s<s

and
62](]09(P0p]/(qu]))/2)

- sg/2 (1-s9)/2
= -109(2(q49;) = (pgpy) ) = 5109 (pyp/(apa;))/2 = e, .

One concludes that if Py > po, then

dyy = Tog(pypq/(agaq))/2.
Analogously

e, (d) = -min{ inf [1og(ptq]'t+ptq]'t)-td],
12 0 10 "Po9y
_<_tit0

inf [10g(2(pgpy) ¥ 2(aga; ) 17/2) a1y,
7t

10
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tO ]-to ty 1-t

. . .. 0 0
where tO is defined by the formula P71 99 = Py 94
Thus
e1,(d) = - min [Tog(piql teptql t)-ta],
12 0 170 01
jﬁfﬁo

if ]og(p0p1/(q0q])) - 2d > 0; and e]Z(d) = +o , otherwise. -Therefore
dyp < Tog(pgpy/(agay))/2 = d,y.

According to Theorem 2 adaptive estimator exists when P1 > Pgs 97 > Qp-
It is easy to see that in this situation the estimator 8y

{v: 6](v)=0}={v0=m;nvk} is adaptive. In the case when Py < P> 9y < 9y

{(which can be treated quite similarly to the previous one) the adaptive
estimator 8g also exists. This estimator has the form

{v: do(v)=0}={v0=mzka} .

We show now that if 9 > qq and P1 < P then there is no adaptive

procedure. If PoP1 > 9g97> which means 9oPp < QyPy or q]'> Po then

dq, = Tog(pgpy/(qpaq))/2.

Also
: s 1- 1-
ey (d) = -min[Tog(q;py~S+qgp; %) +sd] = 0,
s>0
if d + pg log(ay/py) + py Tog(gy/pq) > 0.
But

109(pgpy/(agay))/2 + py log(ay/pg) + py Tog(qy/py) > O

Indeed for fixed Py > 1/2, Py = 1 - Po> the function
H(r) = log(pgpy/(r(1-r)))/2 + py log(r/py) + py Tog((1-r)/p;)

is increasing for r, 0 < r < 1, and H(p,) = 0. Therefore H(r) > 0 for

Po
r> pgs> SO that
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dip *+ Pg T09(a;/py) + py Tog(qy/pq) > 0,
and e21(d12) =0 < e-
Thus because of Corollary 2 adaptive estimators cannot exist.
If PoP1 < 9g97> then similarly
d,q = Tog((pgpy)/{aga;))/2
and
eyp(dyy) = 0 < ey,
so that again necessary condition for the existence of adaptive procedures

is violated.

We formulate these results as

Theorem 3. Adaptive estimator of the permutation parameter from a cyclic
group of order two exists for two probability distributions P and Q if
and only if either Po > Py> 9 > 9y Or Py < Pys 9 < dp-

Now let us consider the case of cyclic group of order three,
G=S-={0,1,2}. Assume that both distributions P and Q are symmetric,
i.e. Pp = Pp > 0, 9 = a9, > 0 and non-uniform, Py #1/3, 9 #1/3. As
in the previous problem adaptive estimator exists if Pg > P7» Gy > aq OF
if Pg < P1» 9p < 93- Indeed estimators 60(v) and 6](v) are adaptive in
the first and in the second case respectively. This fact can be obtained
with the help of Theorem 2, but also easily follows by noticing that 8,
(6]) is the maximum 1ikelihood estimator of the permutation parameter for
any symmetric distribution P such that Po > Py (pO < p]). Figures 1 and
2 show the form of the corresponding subset N of the unit simplex. It is
clear from the form of these sets that, for instance, 8o is consistent
(although not asymptotically fully efficient) for all (not necessarily

symmetric) distributions P such that Po > maxp -
k#0
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One has

. 1-t t, 1-t t
- min 1og(p0 P1*Py tp0+P]) = -109(P1+2 PoP1 )s
0<t<]

o

e, = -log(q;+2 /a5a; )-
The adaptiveness of 8 and 81 constitutes a part of the following

result.

Theorem 4. Adaptive estimator of the permutation parameter from a cyclic
group of order three exists for two symmetric probability distributions P
and Q if and only if one of the following conditions holds:
(i) pO > p]a qO > q1
(11) pO < p]a qO < q]
(ii1) po > p]s qO < q]s

o elesss l-ses ol-s
min log(py %a5+p; %45+, %471 < 0, (7)
0<s<1

where 51 = p;exple;l}, 51 = g;exple,}, 1=0,1,

(iv) Pg < P1s 9p > 9y and (7) is satisfied.

Proof. It suffices to consider the case (iii). Assume that pyq; > pydy-

(The case P197 < Pl is treated analogously.)

We have
o 1-s s, 1T-s s, 1-s s
eyq(d) = —;25[1og(p0 a7+py dgtPy 9q)*+sdl
so that eZ](d) =0 if -K2 +d > 0, where

K, = pyl0og (p1/aq) + pglog (pg/aq) + pylog (py/aq).

Also €1 is strictly decreasing for d < K2, and hence

d,. < K,.

21 2



If
d > -[q; Tog (q,/pg)+aq Tog (ay/py)+ay Tog (ay/py)] = -K;,

which means that the derivative at s = 1 of a (convex) function

1og(pé'sq]s+p}'Sq8+p}'sq?) + sd is nonnegative, then o

. . 1-s s, 1-s s 1-s s
e, (d) = —OT;21[109(p0 a7*Py T9p*py ay, +sdl.

and
€1 (K1) = K.
An easy calculation shows that

e; = - min [r‘109(r/p0)+(1-Zr)109((1-2r)/p])+r109 (r/pq)]1.
1/2>r>1/3

Since 1/3 < qq < 1/2,

It follows that

and
Ky < dyy < K, (8)
Now let us turn to the function XK
B . . t1-t, t 1-t_t 1-t
ey,(d) = -m1n{01nf [Tog(pyay “+pyag” +pgay ")-tdl,
_<_t_<_t]
inf [109(pfq}'t+2(p0p])t/z(q0q1)(]'t)/2)-td]},
t>t] _
' ‘ t] ]—t] t.l ]-t]
where t] is Qef1ned by the formula Po 9 =Py a9y > t] > 1.
Thus ‘

- i t 1-t, t 1-t, t 1-t
ey,(d) = " min [Tog(pya;™"+pyag +pga; ™ ~)-td]
fﬁfﬁ]

14
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if
ty 1-t t, 1-t

_ 1,71
d<dy={ ; Pi Q41 109(ps/a:, ) 1/1 ; pi1q1+1]]'

Indeed for d < d]

inf [1og(p¥q}'t+2(p0p])

t>t]

.t/2( )(]_t)/z)-td] _

qu]

t] 1—t]

t,/2 (1-t;)/2
Tog(py'ay  "+2(pgpy)

(ag94) ) - tyd

t] ]—t] t, 1-t t] 1—t]
]Og(p] q'l +p‘| qo +p0 q'| )" t'ld v

]

inf [1og(p%q}”t+p$qé‘t+p8q}'t)—td]-
Ofﬁfﬁ]

| v

It is easy to see that the point of minimum t = t(d) of the function

109(P}_tq$+p¥qé't+p8q}_t) - td is an increasing function of d. Since
t(KZ) = 1 and t(d]) =ty > 1 one concludes that K, f_d].

Because of (8)

_ ~ . 1-s s, 1-s s, 1-s s
e = ey (dyy) = 'OT;Q][1°9(po a1*Py T9g*Py ay)+sdyy]

. - - 1-
-Om%n][1og(pgq} t+p$q8 t+p§q1 )+(1-)dy, ]
<i<

-d

o1+ eypldyy).
We know that an adaptive estimator exists if and only if
e1p(dpy) 2 €y
which means that
e, - & 5_d2]. . (9)

It is easy to check that

e, = min [r 1og(r/q0) + (1-2r)109((1¥2r)/q]) +r 1og(r/q])]

0<r<1/3
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which implies the inequality

so that
-K]<_-e]<e2—e]<e2<K2.

Because of this relation, (9) is equivalent to the following inequality
ey = ey {dyy) < ey (ep-eq)

that is,

-Om1n1[1og(p(])'sq?+p}'sq3+p}'sq?)+s(ez-e])] > ey.
<S<

The Tatter formula is clearly equivalent to (7),which proves Theorem 4.
The quantity in (7) was evaluated numerically for different distribu-
tions P and Q. In Figure 3 the subset of the square

{(P] ’q])90<p]<]/290<q]<]/2}3

where (7) holds, is shaded. One can interpret Figure 3 by stating that
an adaptive procedure exists unless distributions P and Q are quite dis-
similar.

In the case when (7) is satisfied an adaptive estimator can be obtain-
ed as the maximum likelihood estimator from the proof of Theorem 1 with
d = e, - ei. In Figure 4 and Figure 5 the corresponding subsets N of the
unit simplex are shown for Py = 0.1, qy = 0.35, d = -0.41 and Py = 0.3,
9y = 0.49, d = 0.37.

Since there is no adpative procedure for any pair of symmetric dis-
tributions it is of interest to find a reasonable estimator of the permu-
tation parameter, which can be used with no information about Po- The
natural choice seems to be the overall maximum likelihood estimator 80

with respect to all symmetric distributions.
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This estimator is defined in the following way

NO = {v: SO(V)=O}
Vo 1-vO Vi 1-vk
= {vi max p, [(1-p0)/2] =max max pg [(1—p0)/2] }
0<p <1 k 0<py<l .

{v: vglog v0+(1-v0)1og((1-v0)/2)=mﬁx[vk1og vk+(1-vk)1dg((1—vk)/2)}.

The form of this set N0 is given in Figure 6.



Table 1
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The Asymptotic Efficiency € of the Overall Maximum Likelihood Estimator

and the Asymptotic Efficiency e of the Maximum Likelihood Estimator

p eo e p eO e
0.001 0.147 0.608 0.51 0.017 0.049
0.002 0.141 0.576 0.52 0.019 0.055
0.005 0.132 0.515 0.53 0.021 0.061
0.01 0.117 0.453 0.54 0.022 0.067
0.02 0.103 0.374 0.55 0.024 0.074
0.03 0.090 0.320 0.56 0.027 0.081
0.04 0.081 0.278 0.57 0.030 0.089
0.05 0.071 0.244 0.58 0.033  0.097
0.06 0.064 0.215 0.59 0.036 0.105
0.07 0.058 0.191 0.60 0.039 0.113
0.08 0.052 0.170 0.61 0.042 0.129
0.09 0.047 0.151 0.62 0.045 0.132
0.10 0.041 0.134 0.63 0.048 0.142
0.11 0.038 0.119 0.64 0.051 0.152
0.12 0.033 0.106 0.65 0.054 0.163
0.13 0.029 0.094 0.66 0.058 0.174
0.14 0.025 0.083 0.67 0.062 0.186
0.15 0.022 0.073 0.68 0.066 0.199
0.16 0.020 0.064 0.69 0.070 0.212
0.17 0.018 0.055 0.70 0.074 0.266
0.18 0.016 0.048 0.71 0.078 0.240
0.19 0.014 0.041 0.72 0.082 0.255
0.20 0.011 0.035 0.73 0.087 0.271
0.21 0.009 0.030 0.74 0.093 0.287
0.22 0.008 0.024 0.75 0.099 0.305
0.23 0.007 0.020 0.76 0.105 0.323
0.24 0.006 0.016 0.77 0.111 0.342
0.25 0.005 0.013 0.78 0.117 0.363
0.26 0.004 0.010 0.79 0.123 0.384
0.27 0.003 0.007 0.80 0.130 0.407
0.28 0.002 0.005 0.81 0.137 0.431
0.29 0.001 0.003 0.82 0.145 0.457
0.30 0.001 0.002 0.83 0.153 0.484
0.31 0.000 0.001 0.84 0.162 0.514
0.32 0.000 0.000 0.85 0.171 0.544
0.35 0.000 0.000 0.86 0.180 0.578
0.36 0.000 0.001 0.87 0.189 0.615
0.37 0.001 0.002 0.88 0.199 0.654
0.38 0.001 0.004 0.89 0.209 0.698
0.39 0.002 0.005 0.90 0.222 0.746
0.40 0.003 0.007 0.91 0.239 0.799
0.41 0.003 0.009 0.92 0.260 0.857
0.42 0.004 0.012 0.93 0.282 0.927
0.43 0.005 0.015 0.94 0.308 1.006
0.44 0.006 0.018 0.95 0.342 1.099
0.45 0.007 0.022 0.96 0.384 1.214
0.46 0.008 0.022 0.97 0.442 1.362
0.47 0.009 0.026 0.98 0.526 1.570
0.48 0.001 0.034 0.99 0.675 1.926
0.49 0.013 0.039 0.995 0.829 2.280
0.50 0.015 0.044 0.998 1.035 2.746

0.999 1.192 3.097
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In Table 1 the asymptotic efficiency of the estimator 30:

= “Timn”|

& Tog P {5 o(v)7e),

and the asymptotic efficiency e = -1og(p1+2 PoP1 ) of the maximum 1ikeli-
hood estimator & are evaluated as functions of p = Po> 0<p<1. The
relatively worst behavior of 30 happens when Pg 1/3. In th%é-case both
estimators have vanishing efficiencies, and ep ~ e/3. If Po 0, then

e > log2 and ey ~ 0.773e; if Po ~.1, then ey - 0.454e, € » =.



_ ‘Estimator §,.



Figure 2. The Shaded Area Represents the Set N Corresponding to the

Estimator 61.
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- Figure 3. The Shaded Area Represents the Set of Probabilities (p],q])

for which an Adaptive Estimator Exists.
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