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1. INTRODUCTION

Let A, B be matrices of order mxn with elements from a field 3.
The vectorspace spanned by such matricés is denoted by g™ matrix
Des ™M is said to be diagonal if (D)ij’ the element in the (i,j)th posi-

tion of D = 0 whenever i # j. We ask ourselves the following question:

mxn . .
does there exist nonsingular

'"Given a pair of matrices A,B€ 3
matrices S€ 3 ™M and Ted nn such. that

SAT = Da » SBT = Db (1.1)

where Da and Db are diagonal matrices in 3 ™ N7t

If A and B represent linear transformatioﬁs froman n dimensional vec-
torspace Vn(3 ) to an m-dimensional vectorspace Vm(3 ) with reference to
chosen bases 1in Vm(E ) and Vn(3 ) we are thus essentially seeking changes
in bases so that the transformations could be described in simpler terms
through diagonal matrices.

Theorem 3.1 provides necessary and sufficient conditions for (1.1)

to hold. Simultaneous diagonability of a set {Ae} of matrices in & ™"

is studied in Theorem 4.1. We note here that since the vectorspace & mxn

(1)Research partly supported by National Science Foundation Grant No.
MCS 76-00951 at Indiana University.



is finitedimensional one may without any loss of generality assumé that
set {Ae} so studied consists of only a fjnite number of such matrices.

Williamson [12] showed that complex matrices A and B can be simulta-
neously diagonalized as in (1.1) through unitary matrices S and T iff AB*
is ndrma],where * on a matrix indicates its complex conjugate transpose.
Necessary and sufficient conditions for the existence of unitary matrices
S and T such that

SAeT = De

is diagonal for each Ae in a set {Ae} of complex matrices are given by
Gibson [3]. The reader is referred to Gibson [3] for a bibliography on

other related work in this area.

2. SOME OTHER NOTATIONS AND PRELIMINARY RESULTS

3™ denotes the vector space of m-tuples with elements in & . Lower
case letters a, b indicate column vector representations of such m-tuples
For a matrix A,7% (A) denotes its column span and % (A) its null space. A~
denotes the transpose of A. A, a generalized inverse (g-inverse) of A,
is a matrix A" satisfying the equation AA"A = A [11]. The class of all
possible g-inverses of A is denoted by {A"}. Two subspaces of a vector
space are said to be virtually disjoint if they have only the null vector

in common.

Definition 2.1: Given a matrix A€ 3 ™M and subspaces Sc&m,g‘c '&'n, the

n

shorted matrix S(A]$,J) is a matrix cez ™M such that

7 (e s, m(C)es (2.1)

and if E is any matrix € 3 M<N that satisfies (2.1) then

Rank (A-E) > Rank (A-C) (2.2)



This definition extends the notion of a shorted positive operator studied
by Krein [6], Anderson and Trapp [1] and Mitra and Puri [8]. Shorted
matrices are studied in greater detail elsewhere [9].

Let X €3 ™P.y €3 ¥ be such that

§=m(X), 7=m(Y)

and 0 be the null matrix in 3 qu. We consider the bordered matrix

A X
F = < > (2.3)
Y 0

G . ]
€(F} (2.4)
Cs g

and Tet

[ep]
1]

where C; €3 nxm ¢ €3 "xq,c363p"m, and c4ezfpxq.

2
Theorem 2.1 gives a set of necessary and sufficient conditions for
the existence of an unique shorted matrix S(A|S, J) and provides an explic-

it expression for the same.

Theorem 2.1, (a) The shorted matrix S(A|S,s) exists and is unique iff

the matrix F satisfies the rank addivity cohditions
Rank F = Rank (AiX) + Rank Y = Rank (§) + Rank X. (2.5)
(b) When (2.5) is satisfied,
(1) Cye {Y },C5€(X 1,
(i1) ACZY,XC3A and XC4Y are invariant under the choice

of G in (2.4) and further
AC,Y = XC4A = XC,Y = A-AC,A (say). (2.6)

(i1i1) The matrix C in (2.6) is the unique shorted matrix

S(Als,J).



Proof. The 'if' part of (a) and the (b) part of Theorem 2.1 are proved
for complex matrices in [7]. (See Theorems 1 and 2 and Remark 1 following
Theorem 2 in [7]. The transition from the complex field to arbitrary
field & presents no special difficulties. Theorem 1 in [7] is a general-
ization of similar theorems due to Khatri [5] and Rao [10].) To prove the
‘only if' part of (a) assume now that Ay = S(A|8,7) is the unique shorted
matrix. Write A = A0 + A] and observe that the uniqueness of the shorted

matrix S(A|S,s) implies that Wz(A1) is virtually disjoint with 8 and
7 (A]) with 7. Ifiﬁa(A]) is not virtually disjoint with 8, Tet 2, be

a nonnull m-tuple in Wz(Ai) ns. Let Ay be of rank s. Consider a rank

factorization of A]

A, = LR

.
where L = (2]3225...525), R = (r]Erzfrs). For any nonnull n-tuple t, in

J , the matrix E = AO + l]t{ satisfies condition (2.1) and further A - E

has the same rank as A - A0 = A]' This contradicts the uniqueness of the
shorted matrix S(A|8§,J ). A similar argument shows that Wz(A{) is virtual-
ly disjoint with 5. If Wz(e) is not virtually disjoint with Wz(é), Tet

vectors a € 3" , be 3™ be such that
Aa = Xb # 0,

Ya=0. (2.7)
(2.7) = Aja = Xb # 0 which contradicts the assumption that Wz(A1) is vir-

tually disjoint with 8. The other part of (2.5) is similarly established.

Q.E.D.

We also need an explicit representation of a g-inverse of F,given in

Theorem 2.2. The proof is by direct computation. The compiex version of
Theorem 2.2 appears as Theorem 3 in [7]. This generalizes a theorem of

Hall and Meyer [4].



Theorem 2.2. For any choice of the g-inverses of X, Y and EXAFY,

( 0 Y I Q (I -AY")
- - _> + < - ) (2.8)
X -X AY -X A

is a g-inverse of F, where Q = FY(EXAFY)'EX,EX = 1 - XX~ and Fy =1 - YTy,

3. SIMULTANEOUS DIAGONALIZATION OF A PAIR OF MATRICES

Theorem 3.1. Let A,B€3 ™" There exists a pair of nonsingular matrices
satisfying (1.1) iff.

(a) Rank <E\ g)= Rank (A:B) + Rank B = Rank (é) + Rank B (3.1)

and

(b) AC,BC, 1s semisimple (or equivalently C3BC3A is semisimple) (3.2)

G % A B
where is any g-inverse of F = .
B 0

Proof. ('only if' part) We assume here that nonsingular S and T exist

such that

SAT=D_, SBT =D
a b

where Da and Db are diagonal matrices. It is easily seen that

Da Db Da
RaM<< > = Rank (D be) + Rank D = Rank(/ ) + Rank D,
D 0 a D
b b

Hence (3.1) follows.

C C

1 2
Further the matrix < 17 TC]S,
C -C

> is a g-inverse of F iff C
3 4



C2
2 255 _ ) 1s a g-inverse of

C, = TC,S C3 = TC3S, C4 = TC4S where (
C3 C4

D D
‘ .a b
We now show that there exists a choice of a g-inverse of ( >
D 0
b

such that CZ and C3 are both diagonal. For this we use formula (2.8) and

substitute for DB and Q the matrices defined as follows:

(Bp)ys = 1/(0y)y5 if (Dy)s; # 0, (Dy);; = 0, otherwise, (3.3)
(Q)ii - ]/(Da)ii if (Da)ii # 0 and <Db)ii =0
(3.4)
(Q);; = 0, otherwise.
Since D and Q are diagonal matrices
C, = 0 - oD}
is diagonal and
AC,BC, = sT'p_ T711¢,ss™1p. T 11¢.s = s~ 1p. s
272 a 2> Fpt 1 15

where D, = DaCZDbCZETH ™M and is diagonal. This establishes the fact that
ACZBC2 is semisimple. We now show that if (3.1) holds the semisimplicity
of AC,BC, is equivalent to semisimplicity of ACZBB' for any choice of B™.
This follows from the fact that if x is an eigenvector of A02802 for a

nonnull eigenvalue 2,
ACZBCZX = AX = ACZX = AX, (3.5)
since x €y (ACZB) = 7 (BC3A)c 7 (B) and C, € {B"}. For the same reason
ACZBB X = AC2x = AX. (3.6)

This shows that x is an eigenvector of ACZBB' for the same.eigenvalue )



and vice versa. Since Rank (ACZBCZ) = Rank (AC BB™) = Rank(AC B), the-

'equ1va1ence of the two Statements follows.

)

Since ACZB s invariant under choice of a g-inverse of F,if ACZBC2

is semisimple for one choice of this g-inverse it is so for every other

choice. 7

(*if' part): Let B be of rank r. Consider a rank factorization of B,
B = UV,

mxr

where Ue¢ 3 NET r<n

Since o (ACZB)C m (B), % (B‘CéA’)c?fz (B)

ACZB = UKV

for some K(;E ™T_ " Choose and fix a g-inverse of B, B™ = V&]U[] where
UE] and V&] are respectively left and right inverses of U and V. Semi-
simplicity of ACZBC2 implies semisimplicity of AC BB™ = UKUL] which 1in
turn implies semisimplicity of K. Put K = WOW™ -1 where w,D€s3 PXT and D

is diagonal. Then

= - -y -
ACZB = UKV = UWDW 'V = S]DT]

-1

where S] = UW, T] = W V. Check that B = S]T]. Also, let S,T., be a rank

22
factorization of A - ACZB. o WZ(AfACZB>rTZ?(B) = {0} and
Wz(A’-B’CéA‘) N7 (B”) = {0} follows from (3.1) and the proof of Theorem 2
of [7]. " Hence Wz(SZ) is virtually disjoint with Wz(S])
and 7 (T;) with 7 (T]).  Let S and T, be so chosen that (S]:S :S 3) and
.. - - -1

(T{iT5iT3) are nonsingular. Put S™1 = (s5,is)is,), (1)1 = (17iT5iT)
and check that

SAT = Da and SBT = Db
where Da = diag(D,I,0), Dy = diag(I,0,0) are clearly diagonal matrices.

This completes the proof of the 'if' part and of Theorem 3.1. Q.E.D.



4. SIMULTANEOUS DIAGONALIZATION OF SEVERAL MATRICES
Without any loss of generality let us assume here that m <n. HWe
shall further assume here that the field ¥ contains more than m distinct

nonnuil elements.

We need the following result.

Lemma 4.1§2) If matrices A and B satisfy condition (3.1) there exists a

nonnuli scalar k such that

m (A)c 7/7}(A+kB), m (A*)c 7 (A-+kB~) (4.1a)
or equivalently

n (B)c 7 (A+kB), 7 (B')c;_ 7 (A-+kB~) (4.1b)
nd * Rank{B(AKB)'B} = Rank B. (4.1¢c)

Conversely (4.1a) or (4.1b) and (4.1c) imply (3.1).
Proof. Assume now that (3.1) holds and let
C] C3 A B
€
C2 -C4 B 0
Let k be so chosen that k # 0 and

det(BC4+kI) # 0.

Clearly

P )

7 (BC4B) <7 (B) = M (BCyB+kB), 7 (B’C&B')c% (B”) = 7 (B C,B™+kB"). (4.2)

S1nce 7 (A-BC 4B) N7 (B) = {0} and 7% (A"-B~ CzB~ )IWW‘(B ) = {0} follows from
(3.1) and the proof of Theorem 2 of [7]. Hence

7 (A) = W((A-BC4B+BC4B) = Wz(A-BC4B) + WZ(BC4B)
c:Wz(A—BC4B) + W;(BC4B+kB)

= W((A-BC4B+BC4B+kB) = m (A+kB)



and similarly 7 (A°) c 7 (A“+kB~ ). This establishes (4.1a). (4.1b) is

trivial.

AtkB B

0 ) can be reduced to (A+kB 0

If (4. 1a) holds, the matrix ( 0 B(A+kB)'B)

through sweep out operations on its rows and co]umns

Hence

A B
Rank
B O

A+kB B
Rank = Rank(A+kB) + Rank B(A+kB) B
B 0

A
Rank(B > + Rank B(A+kB)™B = Rank(A:B) + Rank B(A+kB) B,

and (3.1) implies (4.1c). Conversely the same argument shows that (4.1c)
imply (3.1). Q.E.D.

Theorem 4.1. Let Ai,A,,...,A ¢ g ™n,

1°P20 0 The following two statements are

equivalent.
(a) There exists nonsingular matrices S ex™M Te 3 PN such that

SAiT = D;>» i=1,2,...5P (4.3)

. . . . mx
where each Di is a diagonal matrix in & n.

(b) There exists nonnull scalars kZ""’kp in 3 such that if
Ag = Ayt kP + oo ¥ kpAp, (4.4)

then for i = 1,2,...5p3 J = 1,2,...5P>

('i) m (A'i )C 7 (Ao) s M (A{)C /A (Aé), (4-5)
(i) A1A6 is semisimple, (4.6) )
(ii1) AiAaA A. ABA (4.7)

2 . . . .
( )%emma 4.1 is false if the field contains only m distinct nonnull elements
on less.
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Proof. (a) = (b): Since A] and A2 are simultaneously reducible to diag-
onal matrices using Theorem 3.1 and then Lemma 4.1, a nonnull scalar k2

can be determined so that if

then

n (AZ)C n (A(z)),m (Aé)C n (AZZ))

Since A(Z) and A3 are simultaneously reducible to diagonal matrices, the

same argument can be repeated and the nonnull scalars k2,k3,...,kp can be
recursively determined so as to satisfy (4.5).

Let Do = D] + k2D2 + ... 1 kap' Then D0 is diagonal and

SAQT = D -

As in the proof of Theorem 3.1 it is seen that if AiAB is semisimple for

0 the

some choice of Aa it is so for every other choice. Choose for D

following diagonal matrix in 3 ™M

0)11

(D 1/(D0)11 if (DO)ii #0

(Da)ij = 0, otherwise.

0
and (4.7) are easily verified. We note that on account of (4.5), AR

It is seen that TDBS E{Aa} and with this choice of A, the truth of (4.6)

05

is invariant under choice of AO'
(b) = (a): Consider a rank factorization of AO’

AO = UV,

where Ue g ™T yeg ™N

and r = Rank A,. Choose and fix a g-inverse AO

0
where



11

- _ y- 1yl
Ag = Vg U
and U1 and V3! i i i
L p are respectively Teft and right inverses of U and V (4.5) 5
Ai = UBiv
for some matrix B]. ez ™
AAT = UB.U!
i"0 il ”

Since on account of (4.6) and (4.7) the matrices AiAa commute and are

semisimple, it follows that the matrices Bi commute and are semisimple.

rxr

Hence there exists a nonsingular matrix We 3 such that

-1

W "BW = D,

g0 17 1,25...5p
where D1,D2,...,Dp are diagonal matrices. The rest of the proof of
Theorem 4.1 can be completed on the same Tines as in the proof of the

'if' part of Theorem 3.1. Q.E.D.
Theorem 4.2 is an extension of Theorem 6 of Bhimasankaram [2].

Theorem 4.2. Let A1,A2,...,Ap be complex hermitian matrices of order nxn.
Then there exists a nonsingular matrix T such that T*AiT is diagonal for

each i iff there exists nonnull real scalars k2,k3,...,kp such that if

A

A, + k,A, + ... + kA

0 1 22 pp

then for i = 1,2,...,p5 J = 1,2,...,p
(a) 7 (A;)e 7 (Ag)

(b) AA]

is semisimple with real eigenvalues for some g-inverse

AO of AO'

(c) AiAOAj = AjAOAi'
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Proof: The 'only if' part follows from the corresponding part of Theorem
4.1 since here without any loss of generality one can restrict the scalar
ki to be real. The 'if' part follows from Theorem 6 of Bhimasankaram [2].

Q.E.D.
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