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ABSTRACT

A class of Bayes rules is constructed for the comparison of all
pairs of means resulting from combinations of treatment levels in a

balanced two-factor design. For each pair of means uij’ ui’j” it is

decided whether n = u.., - is positive, negative, or zero; losses

i " Ui-z-
for incorrect decision are linear in |n|. When considered jointly, de-
cisions made in the component pairwise comparison problems must be con-
sistent with one another in the sense that they produce non-circular
rankings of the cell means. The loss for incorrect decision in the
overall problem is taken to be the sum of the component Tosses. Final-
ly, the usual assumptions of independent normally distributed observa-

. . . 2 .
tions Xijk with means u.. = E(X ) and common error variance T I<i<r,

ij ijk
1<j<c, 1<k<K, are made. The prior distributions selected for this prob-

lem have the useful conjugate property that prior information about the

magnitudes of contrasts for main effects and interactions in the uij's,

and for the magnitude of the variance og, are pooled with similar infor-

mation obtained from the data when forming the joint posterior density

2
of the means Us 5 and Tg-
Each Bayes rule for the overall multiple comparisons problem is

shown to result from the simultaneous applicatians of the corresponding

*This research was partially supported by the National Science Foundation
under grant MCS 79-05815.
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Bayes rules fér all component pairwise comparison problems. A computer
program for simultaneously implementing the component Bayes rules.is
constructed. An important feature of this program is the use of bohnds
on the posterior Bayes risk function which in many cases enable the
action with minimum posterior risk to be chosen without having to explic-
itly calculate these posterior risks. Since exact calculation of the
posterior risks requires numerical evaluation of complicated double
and/or triple integrals, computer time is drastically reduced by use of
these bounds. Nevertheless, the exact Bayes rules are expensive in terms
of computer time. For this reason, é large-sample approximation to the
Bayes rule is proposed which is much easier (and cheaper) to apply, and
which performs similarly to the exact Bayes rule on a diversity of ex-
amples of data of moderate sample size (error d.f.=15,30) taken from

standard statistical textbooks.
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CHAPTER I
INTRODUCTION

The purpose of this research is to develop and present a Bayes
rule for the symmetric multiple comparisons problem in balanced two-
factor designs. The model and solution developed here are a generaliza-
tion of the model and solution of Duncan and Waller (1974) for one-
factor designs. The proposed Bayesian procedure is presented in five
chapters.

The three objectives of the present chapter are the following:

(i) to give a summary of previous approaches to the multiple com~
parisons problem in one-factor designs;

(1) to discuss the one available approach to the multiple com-
parisons problem in two-factor designs, and to indicate the weaknesses
of that approach;

(iii) to indicate the potential usefulness of the proposed Bayes

rule.

1.1. Pairwise Multiple Comparisons in One-Factor Designs

The data for a multiple comparisons problem in balanced one-factor

designs consists of independent observations Kiso T2izn, T<j<m,

j’
with

=y. + e.

X33 ; ij0  1<izng 1<i<m. (1.1.1)

Assuming that the errors eij are independent, identically distributed



N(O,og) random variables, a reduction of the data by sufficiency yields

the sufficient statistic

(%,52) = (R1,%00....%.,5

~ 12722 n ’ (].].2)

where the sample means X],Xz,...,in from the n "cells" of the design are
independent, normally distributed variables with common variance og/m,

and with means

I<i<n (1.1.3)

equal to the true cell means. Also, the sample variance S2 is indepen-
dent of (X],XZ,...,Xn) and has distribution

2

2 . e 2
w17 *agn-1) (a-1.4)

where xs has the chi-square distribution with v degrees of freedom.
Given this data, the multiple comparisons problem is to make all

N =2 n(n-1) pairwise comparisons between the true cell means Ugslnsesss

.) of means, i< j, one of the following

J
three decisions is to be made:

Up s where for each pair (“1’“

di.: say "u. > u

igt S H T Yy

0 . n = 1
dij' say "u; uj

(1.1.5)
or ”ui and uj are not significantly different",
- . u n
dij' say "uy < “j .

The multiple comparisons problem is symmetric if all component compari-

sons between means us and uj, leading to one of the decisions (1.1.5),

are regarded as being equally important.



Using concepts borrowed from hypothesis testing, the classical ap-
proaches to the multiple comparisons problem derive and compare proce-

dures on the basis of their comparisonwise Type I and Type II error

rates:
%5 = comparisonwise Type I error rate for u, v.s. uj
. + - _
and
Bij = comparisonwise Type II error rate for uj Vv.S. uj

I

_ ) 0
P{taking dijlui#uj} . (1.1.7)

However, since the individual comparisons are part of an overall summa-
ry of the given experiment, experimentwise error rates are also consid-
ered. For example,

ap = experimentwise Type-I error rate

- 3 + X - AP <On 1. ; 1. Y=y .= =
= P{taking dij-or dﬁj for some palny(ui,uj)ju1 Up=. .=l J. (1.1.8)

If the experiment has only n=2 treatments (cells), the comparison-
wise and experimentwise Type I error rates are equal (i.e., a]2=aE). In
general, it follows from the Bonferroni inequality that

ap < ) Qss s (1.1.9)
E i<d 1‘1
although the right-hand side of (1.1.9) is typically a very crude bound
for oAp.

If n>2, some true cell means can be equal and others can be un-
equal, leading to the need to evaluate experimentwise "Type I" error
rates which give the probability of falsely saying d:j or d;j for at

‘Teast one pair (ui’u')’ i#j, for which Uj = uy- Such "Type I" error

J



rates are midway, both in value and in the restrictiveness of their as-
sumptions, between the comparisonwise (1.1.6) and experimentwise (1.1.8)
extremes.

Classical multiple comparisons procedures are designed to control
one (and sometimes more than one) of the above Type I error rates.
Choosing a procedure to control the experimentwise Type I error rate ap
results in a procedure which has low (conservative) comparisonwise Type
I error rates a5 and which also tends to have high comparisonwise Type
IT error rates whenever the true cell means us and uj are not widely
separated. On the other hand, controlling the comparisonwise Type I
error rates o 5 at a fixed value (say .05) results in an experimentwise
Type I error rate ap which increases rapidly with the number n of means
to be compared. However, procedures which control the aijls typically
have comparatively lower comparisonwise Type II error rates Bij' The
decision as to which type of Type I error rate to control, and the com-
parison of resulting procedures in terms of the other Type I (or "Type
I") and Type II error rates, requires that one have fairly detailed
knowledge of the types of patterns of the true cell means UgsUpsessslp
anticipated to occur for the given problem. Since such detailed infor-
mation is usually not available, some procedures have been suggested
which attempt to use the data to arrive at an insight into the pattern
of true cell -means: Upse-
approach will be discussed in Section 1.2.

U which has actually occurred. One such

Examples of the various types of classical multiple-comparison pro-

cedures are given in the following.



The Least Significant Difference (LSD) Procedure. The LSD procedure is

a purely comparisonwise procedure, in that only the comparisonwise Type

I error rates are controlled at a fixed value o(typically .01, .05, or

.10). For each pair of sample means, the LSD procedure decides:

+ . ﬁﬁ(Xi—Xj)

di; if ——g—> Zt(an(m-1)) ,

. J|%.-X. |
di; if —<—1 < Zt(wn(m1)), (1.1.10)
) (T, -X.)
di; if ——g— < -2 t(an(m-1)) ,

where t(a,y) is the 100(1- $)* percentile of the t-distribution with v

degrees of freedom.

Tukey's Honestly Significant Difference (HSD) Procedure. The HSD pro-

cedure controls the experimentwise Type I error ar at a. The procedure
has the form (1.1.10) except that in place of vZ2 t (a,n{m-1)), the quan-

)th

tity q(a,n,n(m-1)) is used, where q(a,p,y) is the 100(1-a percen-

tile of the studentized range for p means and v degrees of freedom.

Scheffe Method (SSD). The Scheffe procedure also controls the experi-

mentwise Type I error rate aps but is typically more conservative than
the HSD procedure since the SSD method is intended to apply to all con-
trasts (not just pairwise contrasts) of means. The SSD procedure has
the form (1.1.10) except that [2(n—1)F(a,n-1,n(m—1))]% is used in place
of /2 t(a,n(m-1)), where F(a,v;,v,) is the 100(1-a)t" percentile of the
F-distribution with 2 and Vo degrees of freedom. The SSD method also
can be applied to unbalanced designs, correlated sample means, and gen-

eral Tinear contrasts.



Fisher's Protected Least Significant Difference Procedure. In this

procedure, the usual F test for HO: Ugp=uo= == =u atva“specified

level of significance a” is used as a pre]iminary screening device.

If the F test fails to reject HO’ the decision d?j is made for all
pairs of means (ui,uj), i<Jj. Otherwise, the LSD procedure is used at
a controlled comparisonwise Type I error rate of %5 =a, all i # j.

As a consequence of the preliminary F-test, it is quaranteed that o <a’

thus o” bounds the experimentwise Type I error rate ap. Fisher's pro-

tected LSD is an example of an adaptive procedure.

Newman-Keuls Multiple Range Test (NKT). The NKT procedure has the

form of the HSD procedure, with q(a,nij(ﬁ),n(m—1)) replacing
qla,n,n(m=1)), where nij(X) is the number of means between (and in-
cluding) Xi and Xj’ when the sample means Xk’ 1< k<n, are arranged in
ascending order. In addition, whenever the difference between Xi and
Xj for some i,j is declared insignificant, all cell pairs of means Xk
and Xz which appear between Xi and Xj in the ascending order of sample
means are also declared to have insignificant differences. The NKT pro-
cedure, 1ike the Fisher protected LSD procedure, is an adaptive pro-
cedure having the property that ap< a. It differs from the Fisher pro-
cedure in attempting to control the experimentwise "Type I" error rates
(where Up= Ugeee SU is possibly false, but yet groups of means are
equal), rather than merely trying to bound ap-
Another adaptive procedure similar to the NKT, and with similar
goals, is Duncan's Multiple Range Test (Duncan 1947, 1951, 1955).

Other multiple comparisons procedures, and the classical theory for com-

paring such procedures, can be found in the textbooks of Federer (1955),



Scheffé (1959), Miller (1966, 1977) and Lindman (1974), and also in
review papers of Gill (1973), 0'Neill and Wetherill (1971) and Thomas

(1973). The last two papers provide extensive bibliographies.

1.2. Duncan and Waller's Bayesian Decision-Theoretic Approach.

The classical procedures described in Section 1.1 have in common
the attempt to apply hypothesis testing (2 decision) concepts to what
is clearly a multiple decision problem. It is not surprising, there-
fore; that in attempting to compare such procedures, one gets lost in
a multitude of types (and rates) of error. Indeed, because the various
procedures do not even fix the same . kind of Type I.error rates
comparingfthem on the basis of an assumed common rate of error is mis-
Teading, and has resulted in confusion in the 7literature.

Duncan (1961, 1965), building upon earlier theoretical work of
Lehmann (1957) concerning multiple decision problems, attempts to formu-
Tate the multiple comparisons problem as a multiple decision problem.
In a multiple decision formulation, all component decisions for pairs
of means (ui,U-) are viewed as a whole, and losses are assigned which

J
evaluate how well the decision vector:

d = (d12’d]3’°"’d]n’d23""’dZn""’dn-1,n) R (1.2.1)

composed of decisions dij’ i<j of (1.1.5) conforms to the true state of
affairs as described by the vector

2)

o (1.2.2)

2
9 = [(u]a"'5un)’oe] = (_l;l,O'

of true cell means and random error og. To keep the flavor of the mul-

tiple comparisons context, in which individual comparison decisions dij

have importance in their own right, the formulation of the multiple



comparisons problem must clearly indicate how the overall Toss due to

the combined decision vector d depends upon the component decisions dij

To this end, Duncan uses an additive-loss model:

L(e.d) = L..(0,d;.) , 1.2.3
(5:0) = T Lysloadyy) (1.2.3)

in which the overall Toss for the decision d is expressed as the sum of

Tosses for the n(n-1)/2 component decisions dij which compare u, to uj-

Note that in (1.2.3), the component loss Lij(e’dij)

the decision vector d through the decision dij actually made for that

only depends upon

component problem. These properties (additivity and dependence of
Lij(a,-) only on dij) provide the clear indication of the contribution
of the component decisions to the overall performance of 'd that is
desired.

Further, note that each of the classical multiple comparisons
procedures discussed in Section 1.1 has the property that the form of
the component decision rule is independent of the indices i and j of
the means being compared. This symmetry, or exchangeability, with
respect to the indices implies that the component problems themselves
are viewed as being symmetric with respect to the indices. Without
any prior opinion concerning the nature (cost, value, importance) of
the treatment levels being compared in the design, such an assumption
of symmetry is reasonable.

Indeed, the likelihood function p(g,Szlg,og) is symmetric in the

cell indices. Let

Np(glg,z) = [(Zw)plzl]%exp{-%-(g-g)’z'1(g-g)} (1.2.4)



be the density function of a p-variate normally distributed random vec-

tor z with mean vector n and covariance matrix . Let

v-1

ojR

W exp{-w/21}

r(3v)(2c)%Y

fw|v,t) w>0, (1.2.5)

be the density function of a random variable w ~ Txi . Then, from the
Section 1.1,

2

2
v <2, 2 g1 e 2 %
p(%,s IE’Oe) = Nn(Kly, ir'In)f(S ]n(m—]), ETH:TT ). (].2.6)
Interchanging the indices is equivalent to transforming X, u to QX, Qu,
where Q is an nxn permutation matrix. It now follows from (1.2.4) and

(1.2.6), and the fact that Q°Q = Ln’ that

p(QX,SZIQg,og) = p(X,Szlgsoi)
for all permutation matrices Q.
If the decision problem is to be symmetric in the indices, then the
loss function L(g,g) must be symmetric in the indices. The loss func-

tion (1.2.3) with

0 ’ u. > W, ,
1 J
2y o+ _
Lij((y’ce)’dij) =
Kj]ui-ujl, Ip 5-uj ,
2 = A - 1.2.7
Ly (o) adys) = Ko lug-us] s ( )

A\
<
-

Rj]uiaujl, u,

2. -
Lij((y’ce)’dij) =

0 R u; < “j s

with X > Kgo is Duncan's choice for such a symmetric loss function.
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Finally, in Section 1.1, it was also mentioned that evaluation of
competing multiple comparisons procedures would require some knowledge
of the configuration of the means Us in n-dimensional space, and that
an investigator might hope to obtain such knowledge from the data. A
Bayesian formulation of the decision problem, expressing prior informa-
tion on u in the form of a prior distribution p(g), and incorporating
information about u from the data in terms of the posterior distribution
p(glg,sz,cg), is one intuitively appealing way to quantitatively provide

the desired input. Duncan chooses the {conjugate) prior density
p(ulm »02) = N_(ulm 1,021 ), (1.2.8)
~1utu n‘~"u~n>"un
where m, is the "grand mean" of the population of ui's and cﬁ is the
variance of that population. Here, 1t}represents the t-dimensional col-

umn vector, all of whose elements are equal to T. It is easy to

see that for any permutation matrix Q,
2\ _ 2
p(Qulm so,) = p(ufm ,o ),

so that p(y[mu,cﬁ) defined by (1.2.8) has the necessary property of be-
ing symmetric in the indices. Also note that the marginal distribution
of X is
p(RImysoas00) = No(KImylo s ( 2 o2+ 1), (1.2.9)

which is the familiar Model II ANOVA distribution for X.

Having formulated the multiple comparisons problem as a symmetric,
multiple decision problem with additive loss, and having chosen a sym-
metric conjugate prior for u, Duncan uses the additive loss theorem of

Lehmann (1957), specialized to his particular problem, to show that the

Bayes rule
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6(X,5%) = (87,(%.5%) (%,5°)) (1.2.10)

for the problem is that rule whose components ¢ij(X’52) are the Bayes

rules for the component decision problems having data (X,SZ), actions
+ 0
i3’

glmu,cﬁ). In so doing, Duncan assumes that cﬁ, 02 are known. If .-

{df;.d75.d743, Toss L;;((us02hd; ;) defined by (1.2.7), and prior

these parameters are unknown, Duncan suggests estimating them in the
usual way from an ANOVA table - thus defining an Empirical Bayes proce-
dure. Waller (1967) and Waller and Duncan (1969, 1974) generalize this

2 .
o) as a mixture

result by defining the prior p(y, o

2y5(62, 62 2
p(u, 0 = [[plufmy,0,)p(050,)p(m, )do) dm, (1.2.11)

of priors of the form (1.2.8), with the mixing distribution being the
product p(oﬁ,og)p(mu) of a certain truncated conjugate joint inverse chi-
2

02) for g, 02, and an arbitrary (not neces-

e

squared distribution p(oﬁ, o

sarily proper) distribution p(mu) for m, .
A11 of the Bayes (or Empirical Bayes) rules resulting from this ap-

proach have the form of (1.1.10), with 52 replaced by a posterior esti-

mate Sé of'cg, and with v2 t(a,n(m-1)) replaced by the critical value

/Zt(?f,?*,v] v,) (1.2.12)

This critical value depends on four arguments. The first is

which can be interpreted as reflecting the relative seriousness of com-
parisonwise Type I to comparisonwise Type II errors, The second is a

posterior estimate
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of the ratio

2 2
mou+ Oq
2
o

F* (1.2.13)

of the expected mean squares (EMS) of the between mean square and with-
in mean square in the ANOVA table. The Tast two-are the numerator and denom-
inator degrees of freedom vy and Vo which are, respectively, pooled from

the degrees of freedom appropriate for the data and from prior degrees of
2

freedom for estimates of mwﬁ + 02 and 02 given by the prior. If ¢, and
2
o, are known,
e
Fr(1,5%) = P, ViT V=, (1.2.14)
In the case of the prior of indifferenceronycﬁ and UZ,

?*(X,Sz) =F  vy=n-1, v,=n(m-1) , (1.2.15)
where F is the usual F-statistic for testing HO: Uy=uy=eee = u - In
the former case (1.2.14),

n 1
VZE(KF¥vq5v,) = t (%) [F*/ (F*-1)]% (1.2.16)

where t (%) is taken from tables in Duncan (1965). In general, the crit-
ical value (1.2.12) is found from tables in Waller and Duncan (1969).

As was anticipated, the Waller-Duncan Bayes rules are (except when
02 and og are known) adaptive, in that the critical value (1.2.12) de-

u
2

pends upon the data. Indeed, when ﬁ*(X,S is large (indicating hetero-
geneous treatment means u],uz,---,un), the critical value is reduced ,
converging,as. IE*—»%tO the critical valueof the Léb-pro-cedure— for:some a.
In other words, a large value of Fx allows the investigator to concen-

trate on controlling the comparisonwise Type I error rates, thereby
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decreasing comparisonwise Type II error rates and increasing the power
of the individual comparisons. When E* is small (indicating homogene-
ous treatment means), the critical value is increased, thereby allow-
ing the procedure to control the experimentwise Type I error rate. The
fact that the data is used to select the type of Type I error rate to
be controlled, and the fact that the critical value is a function of all
the data rather than only- the number n of treatments compared(in contrast
with the HSD and SSD procedures) makes the Waller-Duncan Bayesian pro-
cedure intuitively attractive. Indeed, of the procedures discussed in
Section 1.1; only the Fisher protected LSD procedure has the compar-
able property of incorporating the observed F-value into the decision
process.However, in contrast to the Fisher protected LSD,which useé

the observed F value only in a 0-1 "go, no go" fashion, the Waller-
Duncan procedure uses the F value in a smooth fashion to choose the
critical Tevel.

There have been many simulation studies comparing the properties
of multiple comparison procedures; for example, Chen (1960), Balaam
(1963), Broadman and Moffitt (1971), Thomas (1974), Ury and Wiggins
(1976), Keselman and Rogan (1978, 1979). However, only the simulation
studies of Carmer and Swanson (1971, 1973), have included the Waller-
Duncan procedures in the list of procedures to be compared. Although
these studies are done from a classical perspective, using rates of
error, and suffer from a failure to put all procedures on a common
ground (e.g., fix a common kind of Type I error rate for all), they do
have the merit of attempting to compare procedures in terms of their

overall (over component pairwise comparisons) ability to make correct
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decisions. Consequently, it is of interest to note that in the Carmer-
Swanson (1973) study, the two types of adaptive procedure based on the
sample F-statistic (namely, Fisher's protected LSD and the Waller-
Duncan procedures) are said to exhibit the best overall performance.
Relative to Fisher's LSD, the Waller-Duncan procedures are slightly
more sensitive when the F statistic is large, and somewhat more conser-
vative when the F-statistic is small. Although Carmer and Swanson sug-
gest that the Fisher LSD procedure would be preferred because of its
simplicity, they fail to note one disadvantage of this procedure. This
disadvantage is that it is difficult to generalize the Fisher procedure
in a meaningful way to designs more complex than single-factor designs.
In contrast, it will be seen in the present study that the Waller-

Duncan approach can be usefully generalized to two-factor designs.

1.3. Multiple Comparisons in Balanced Two-Factor Designs.

Suppose that data Xijk" T<i<r, T<j<c, T<k<K, are obtained
from a balanced two-factor ANOVA design. Here, the index i, T<i<r,
indicates the Tevel of the row factor (A); the index j, 1<j<c, indi-

cates the level of the column factor (B), and k is the index of repli-

cation. It is assumed that

Xijk = uij + eijk . (1.3.1)

Here, the u;j; are the true cell means resulting from the treatment com-

J
bination of level i of factor A and level j of factor B. The errors
eijk are assumed to be 1i.i.d. N(O,oi) random variables.

By sufficiency, the data can be reduced to the sufficient statis-
tic

(%,52) = [((%;;)),52] (1.3.2)
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where the Xijls are the sample cell means, and Sg is the pooled sampie

variance defined by

rc(K-])S2 = E E E (X, -X..)z .
S E S IS IR
Let
U= ({( 1.J.)) rxc (1.3.3)

be the matrix of true cell means. For any pxq matrix A with columns
a(]),a(z),---,a(q): px1, define

(1)
(2)

a

vec(A)=] a

:pgx1 . (1.3.4)
2a)
Then it is well known that the Tikelihood of (X,Sg) is given by

2 2
p(X,seIU,Ge)

2
- N (vec(X) [vec(U) K 12T ) #(S2 re(K-1) s ). (1.3.5)
rc > erc e *re(K-T) /- T

In the form (1.3.1), the multiple comparisons problem is identical
to that for the one-factor problem discussed in Sections 1.1 and 1.2.
For each pair of cell means U 5 and ui’j” one of the following three

decisions is to be made:

+ . 1] 1}
dij,i'j" say u1J > ui,J,
dQ. cs.t say "u.. =u.Lcu" or "u,. and U, Ll
1j,173- iJ 1737 N LY (1.3.6)
are not significantly different"
- . 1 n
dij,i’j" say u1J < ui,J,

The choice of one of these three decisions defines the action space for
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any component problem of the multiple decision problem.
However the two-factor nature of the design introduces the possi-

bility of a simpler model than (1.3.1) - namely, the additive or no-

interaction model

X. .

igk T Bt oyt Byt ey, T<i<r, T<j<c, 1<k<K. (1.3.7)

Comparing (1.3.1) and (1.3.7), it is seen that

u.ij_u.i‘j;=(l_i —U..i,+8j_8j»- (].3.8)

Thus, under the model (1.3.7), comparing true cell means u; and

J
for j=j- is the same as comparing the main_effects a; and q,.- for

U.i,j,
factor A. Similarly, when i=i”, comparing U{j andrui,j, is the same .-

as comparing main effects Bj and*sj, for factor B.  In general, when

i#i°, J# j-, comparison of us and ui’j‘ involves comparison of both

J
types of main effects.

In the model (1.3.7), the differences a; - a;. are estimated by

X; - Xi._ , and the differences Bj = Bj. are estimated by X.j - X

1. i <3
th

where Xi- and X-j are, respectively, the i row mean and jth column

mean of X. Hence under the model (1.3.7), more accurate estimates of
uij " Ujeje can be made, thereby Tessening the possibility of error when
deciding among the actions (1.3.6).

In the literature, the following two¥stage process for making mul-
tiple comparisons among the means,uijwhas been recommended See Anderson
and McLean (1974), Hicks (1973) :

Stage 1. Test the model (1.3.7) versus the model (1.3.1) using

the usual ANOVA F-test for no interaction.

Stage 2. If the model (1.3.7) cannot be rejected by the data,

perform separate (and independent) multiple comparisons among
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the ui's (equivalently among the means Gi.) and amohg

the Bj's,(equivalently among ‘the means 6;3). Otherwise,

compare the means uij‘direct1yfby means of the usual

one-factor approaches.
Anderson and MclLean, and Hicks, specifically advocate use of the Newman-
Keuls (NKT) approach in Stage 2, but actually each of the procedures in
Section 1.1 (and also the Waller-Duncan procedures in Section 1.2) is
applicable. If the ai's and Bj's are to be compared [Model (1.3.7) is
not rejected by the data], these procedures apply since Xi-’ T<i<r,
and X.j, 1<j<c, satisfy the assumptions of Section 1.1, where in the
former case n=r, m=cK, and in the latter case n=c, m=rK.

Unfortunately, this recommended approach has two major flaws. The
first, and most obvious, flaw is that comparison of U s and u; ... in-

J LN

volves both the difference @i - o and the difference Bj - Bj‘ when

i#1i”, j # j°, and conclusions about the relative values of a; Vs.

oy - and Sj VS. Bj‘ do not clearly combine to yield conclusions about
the relative values of uij
one decides that a; > 0. and Bj < Bj" any of the decisions d

j
0

and Uj.j- [See (1.3.8)]. For example, if
+
iJ,1737°

dij,i'j" d;j,i'j' is still possible for Ujj VS Ujaga!
G = Gi. = 5, Bj - Bj’ = —3:= Ujj > Ujeg-
aj = O3. = 5, sj - Bj' = —5;= Usj = Uj-5- »
a; = a;. =5, By = B = -7 = Ujj < Ujog- -

It is possible to use the method to compare uij to ui'j or uij to uij”

but if the cell means to be compared do not lie in the same column, or

in the same row, no conclusions about u.. v$+ u

ij SN can be reached by

this method.
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It should be noted that the two-stage procedure described above

usually 1is used to choose the best combination of factor levels.

However, if the best combination is (i*,j*) and § # i*, j # j*,it

may still not be possible to decide whether to take the action

+

0 . .
di*j*,ij or d. for comparing Usx g to u,.. Thus a minimal sub-

i*j*,1] i
class of treatment combinations (i,j) not significantly different
from (i*,j*) may not be identifiable.

The second objection to the above proposed method is that the
initial test of no interaction can reach the wrong conclusion. This is
particularly serious if the F-test makes a Type II error [fails to re-
ject model (1.3.7) when model (1.3.1) is correct]. If interactions
among the factors levels are present, the uij's cannot possibly be com-

pared by comparing row means 61. and column means G.j, as the follow-

ing 2x2 example indicates:

B
1 2
1 2 3
A
2 5 2

Here, u;, > uyy» but G-Z < 5_1. If, contrary to the interaction among
the factors exhibited in this table, the F-test falsely declared no
interaction, and if the multiple comparison procedure on the column
means of the uij's correctly decided that 6.2 < G,], the false con-
clusion d;],]z would result. As a consequence, the component compari-

son of Uiy and Uyo would result in a very serious Type III error

+ - . :
(deciding d when d~ is correct, or vice versa).
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The comparison of cell means under the additive model (1.3.7) has
been relatively unexplored in the Titerature. It can be shown that
this problem is equivalent to a problem in which the cell means Xij are
replaced by the dependent mean-like quantities

T _ _

11+0L-i+5j

it
><I
+
><
}
><
-
p—
A
-l
A
=
-
—_
A
(]
A
(9]
-

(1.3.9)

where
I
.= v Z X;. =

For this problem, the Scheffe (SSD) procedure is directly appli-
cable. However, the Scheffe procedure is very conservative, and it
should be possible to improve upon it. One could also use a LSD proce-
dure, since the test for [see (1.3.8)]

HO: OL_i"OL_i,'l'BJ--Bj,:O

is still a t-test. This LSD procedure could be protected by a prelimi-
nary simultaneous F-test of
Hyp: o = ay = ==+ =a = 0; By =By = ++ =B = 0.

However, because of the dependence among the quantities (1.3.9), the
properties of the LSD and protected LSD procedures would not be easy to
derive, and would likely be qualitatively different than the correspond-
ing properties of the LSD and protected LSD procedures in the one-
factor model.

Even if a satisfactory classical multiple comparisons proce-
dure for the additive model (1.3.7) is available ,the objections
raised against the use of the preliminary F-test in Stage I would still

give compelling reasons against using the two-stage procedure. In -
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addition, it is doubtful whether the model (1.3.7) ever precisely
describes real data. The real question that an investigator should
be asking is whether the true configuration of the means uij is close

enough to the model (1.3.7) that information from the row means Xi.

-9

X and column means X_j, X_;~ will provide useful information to

-I‘. .J'
help in comparing uij and ui’j" This Tast point strongly argues
for a Bayesian approach (see Section 1.2), and motivates the exten-
sion of Waller and Duncan's Bayesian approach to the two-factor case.
This extension will be the subject of the remaining four chapters of

this study.
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CHAPTER II
GENERALIZATION OF THE WALLER-DUNCAN FORMULATION
TO TWO-FACTOR DESIGNS

In this chapter, Waller and Duncan's (1969, 1974) Bayesian deci-
sion theoretic formulation of the multiple comparisons problem in one-
factor designs is generalized to two-factor designs. Two basic changes
are made in the structure of the decision problem to take account of
the multi-factorial nature of the design. First, symmetry is now defin-
ed by invariance of the decision problem over permutations of row in-
dices and column indices. Second, the prior distribution is generaliz-
ed to include prior opinion about the magnitudes of possible interac-
tions between the row factor (A) and column factor (B). The new
Bayesian decision structure is described in Section 2.1. In Section
2.2, it is shown that the Bayes decision rules can be given by simul-
taneous application of Bayes rules for the component pairwise compari-
son problems, and that such component Bayes rules have one of three
basic forms, depending upon whether the means compared come from the
same row (Type I), the same column (Type II) or from different rows and
columns (Type III) of the design. An initial representation for these

Bayes rules is also given in Section 2.2.
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2.1. The Decision Structure and Prior Distribution

As remarked in Section 1.3, the data of a balanced two-factor de-
sign with normally distributed errors can be reduced by sufficiency to
(X,Si), or equivalently to (X,SSE), where X = ((Xij)) is the matrix of

sample means Xij for the cells, 1 <1 <r, 1< J<c, and where

2

SSE = rc(K-])Se

is the error sum of squares obtained from the usual ANOVA table. Here,
K = the number of replications per cell.

The Tikelihood function for (U,og) obtained from (X,SSE) is

12

2y - : wa 2
P(X,SSEIU,oe) = Nrc(vec(X)lvec(U),K oeIrc)f(SSE[rc(K 1),oe), (2.1.1)

where U = ((uij)) is the matrix of true cell means, and the functions

Nn(-l-,-hf(-|-,-) are defined by (1.2.4) and (1.2.5) respectively.

It sometimes will be notationally convenient to index the cell

means X u;: by the index t of the location of these means in vec(X),

i3 71

vec(U), respectively. Thus, for example, u..

i3 will be alternatively de-

noted by Uy s where

t=(G-Nr+i, l<i<r 1<jc<c. (2.1.2)
Conversely,the t-th coordinate u, of vec(U) is the (i,j)th coordinate

of U, where
1'=t-r[13;—], j= g+, te1,2,....n, (2.1.3)

n = rc, and [v] is the greatest integer < v. Note from (2.1.3) that Uy
1

and u, correspond to cell means u, in the same row of U (i.e.

T P
2 T Tody

i, =i,) if and only if ty(mod r) = t,(mod r), while u, and u
1 2 1 2 t]

t

ty
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correspond to cell means in the same column of U if and only if

)

Under the above notational conventions, the action space for the

problem of comparing all pairs of means (ut SUy )s t # t, from vec(U)
1 2
consists of vectors

d = (d]2,d13,...,d

~

£, o1 n) (2.1.4)

whose components dt too | <ty <ty <n, can be any one of the following

172
component actions:

d: go0osay Mug o> ug
172 1 2
dg L 0osay "ut = Uy " or “ut and Uy (2.1.5)
172 1 2 1 2
are not significantly different,
dE]tZ' say "ut] < utz"

The possible component actions are identical to those considered in
Equation (1.3.6) in Section 1.3.

One aspect of the action space not emphasized in Section 1.2 is
that action vectors d with inconsistent component actions are to be ex-

cluded from the action space. An action vector d has inconsistent com-

ponents if there exist indices t1,t2,t3 for which any one of the follow-

ing assertions is true:

+ + +
(i) d = d , d = , d 7 d ,
t]tz t]t2 t2t3 t2t3 t1t3 t]t3

(ii) d =d, ., ,d = d d K
tit, Tyt Ttots t t tt

tht3” Ttyts 143
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+ 0 -
(iii) d =d , d =d , d =d R
ity Tty Thhty o Ttots® Tty Tyt
. - _,0 _ 1

1ty Htpt Tty Thtyt Tty Tty
The above definition of inconsistency is motivated by the transitivity
property of the orderings < and < for real numbers.

Paralleling Section 1.2, the loss for taking action vector d when

the true state of nature is 6 = (U,og) is defined to be the sum

Le,d) = ¥ L, (6.d, . ) (2.1.6)
S PR e e A b

of the losses for the component actions dt defined in (2.1.5), where

t

172

+
Ly g (6sdy ¢ )

172 172 .
Xylue -ug |, ifF u. o <u. o,
L ¢ (e,dg £ )= Kglug -ug |, (2.1.7)
172 172 1 2
X, |u, -u, |, if u, >u,_,
1 t] tZ t] t2
Lt1t2(e’dt1t2> )
0 , if Up S Uy -
1 2

The decision structure for the multiple comparisons problem for the
two-factor design is now complete. Because all component loss functions
(2.1.7) have identical form, it is apparent from (2.1.6) that the Toss
function L(e,d) is invariant (symmetric) under permutation of either the
row indices i or column indices j of the design. To demonstrate that
the likelihood function (2.1.1) is similarly symmetric under permutation

of row and column indices, it is sufficient to show that
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2 2 2 2
P(Q;XQy,S,1Q;UQp50,) = p(X,S,[Us0,) (2.1.8)
for all X, U, and all permutation matrices 01: rxr, Q2: cxc., It is well

known that
vec(Q;AQ,) = (Q;®0Qy)vec(A) (2.1.9)

for any matrix A: rxc, where "®" is the Kronecker product. Using the
fact that Q5 ®0Q; is an nxn orthogonal matrix, the result (2.1.8) now
follows directly from (2.1.1), (2.1.9) and Theorem 1.3.2 of Bickel and
Doksum (1977).

Attention can now be turned to finding a prior distribution for
9 = (U,cg) which is symmetric under row and column permutations, and
which incorporates prior opinions about the magnitudes of the interac-
tions (if any) between the row and column factors.

We will use prior distributions for (U,ci)-that are conjugate
to the model (2.1.1). This will allow prior opinion about the magni-
tudes of main effects, interactions and error to be pooled with sample
information (taken from the usual ANOVA table) in forming a posterior
distribution for (U,cg). ATthough the model (2.1.1) is intended to be
a Model I ANOVA representation, where the uij's are regarded as fixed
unknown constants, the fact that the u,

1J
given a joint (prior) distribution allows us to utilize Model II

's in a Bayesian approach are

theory in constructing and analyzing such a prior model. In Model II
ANOVA, the elements uij of U are assumed to have the joint density

defined by
vec(U) ~ Nn(“Jn’Zu)’

where u is any constant,
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5, = oall11-®1 1+ o2[1 @1 171 + o2.[1 ®I ] (2.1.10)
u  CAticic®ip OgLic@lply pBLic @ lpde -1

and ci,cg,ch are nonnegative constants. In such a case, it is known

that the marginal distribution of X is given by

vec(X) ~ N(ul ), (2.1.11)

n’zx
where

G2

e

= + =
Zx Zu K In'

Define Hg to be any x2 orthogonal matrix whose first row is

L (1,-1,0,...,0)
V2
and whose 2-th row is 2'%1i. Using (2.1.10), the definition of Hz’ and
known facts about qunecker produets, it is strajghtforward to show that
the matrix (HEQQH;) is an nxn orthogonal matrix whose columns are eigen-
vectors of Z

Also, the distinct eigenvalues of sz afe

2 2 2
EA CKoA + KGAB + qe .

m
1]

PKOS + chB + cg s (2.1.12)

Eng = Kong *+ o2

having respective multiplicities r- I, ¢-1, and (r-1)(c-1); plus one
additional eigenvalue EA + EB - EAB of multiplicity 1. The quantities
EA’ EB’ EAB are recognizable as the expected values of the mean squares

MSA, MSB, MSAB for A, B and AB, respectively, that would appear in the
usual ANOVA table fbr the:tonfactor design under model II assumptions.
The columns of HEQQH; are also eigenvectors for Zy The distinct

2 2 2

2
E o, EAB = Oa» and EA*'EB- EAB- Tg

eigenvalues of Kzu are EA - Ogs Ep - o
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Since H669H; is a constant (known) matrix, z, depends functionally only
upon EA’ EB, EAB and 02; that is,

2).

Iy < Zu(EA’EB’EAB’Oe

For Model II ANOVA, Box and Tiao (1973) define a class of conju-

. . . R 2
gate prior distributions for EA’ EB’ EAB and g

1
()% expt-2 )
e+ lp ()25

g(E|S,f) = E>0. (2.1.13)

The functions (2.1.13) define density functions when S > 0, f > 0. In-
deed, g(E|S,f) is a member of the family of inverse chi-squared densi-
ties. These densities form a class of conjUgate prior densities for
the family of chi-squared densities (1.2.5). The constant S may be
thought of as being a sample sum of squares from a previous experiment
which yielded an estimate of E. The constant f can be regarded as the
degrees of freedom for S in this prior experiment - that is, as a mea-
sure of the strength of our prior belief. If a prior estimate S of E

is not available, then the Jeffreys' prior of indifference
g(E[0,0) = £, E> 0 (2.1.14)

for scale parameters can be used. The function g(E|0,0) is not a den-
sity function, but can be regarded as the limiting function of (2.1.13)

as S and f approach 0.
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Define

2
g(EA’EB’EAB’GeISﬁp’f)

= 2
g(EAlSSAp,fp)g(EB[SSBp,fB)g(EAB|SSABp,fAB)g(oe[SSEp,fp)

(2.1.15)

where
$S_ = (SSA_,SSB_, , A f = -
55, = (SSA,SSB_,SSAB LSS ), £ = (. faufagsfy)” -
Let |
E = (EnoFosEroso2)”s &= [E: O<g2<E, <E.,E (2.1.1
7 atpetppeoe! s €7 {TF Usogshppshpstgl. 1-16)

By (2.1.12), any density for E can be positive only when E ¢ &. Thus,
the prior density for E is defined to be the truncation of the joint

density g(§|$§p,f) of (2.1.15) to the region e . That is,

Dg(§|§5p,f), if Ecég,

,f) = (2.1.17)
0 . otherwise,

where

. L
[ég(g[Sﬁp,f)dg] . Af fpufpafagsfy > 0,

D = D(sS.f) =
T s if fA or fB or fAB or fe = (.
If fA’ fB, fAB’ fe > 0, the function (2.1.17) is a prior joint den-
sity function for E. Otherwise, (2.1.17) is a formal (diffuse, improper)
prior. Box and Tiao (1973) note that under Model II ANOVA assumptions,
the family of distributions (2.1.17) is conjugate to the family of joint

distributions of the sums of squares SSA, SSB, SSAB, SSE in the usual
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ANOVA table obtained from (X,SSE). Thus, the posterior density of E
given (X,SSE) 1is

P(E|X,SSE) = n(E[SS*,f*) (2.1.18)
where

SS* = (SSA*,SSB*,SSAB*,SSE*)” = (SSAp+SSA,SSBp+SSB,SSABp+SSAB,SSEp+SSE)7,

f*

~

(F5, 75, T, T4)°

[}

(fA+r—],fB+c-1,fAB+(r—1)(c-1),fe+rc(K-1))’. (2.1.19)

It is obvious that when K=1, the prior density of cg should be of
the form (2.1.13). In this problem, 6 = (U,og) is the parameter of
interest, and EpsEpsEnp (and also u) serve as variables of integration

(hyper-parameters) by which to define the family of prior distributions

for 6 as

2
A(e]§5p,f) A(U,ce|§5p,f)

[o0] o©

- j; [ j; N, (vec(U)]ul 2 (E))

+w(E[SS»F)h () dudE, dEgdE, g (2.1.20)

for (U,cg). In (2.1.20), h{(u) is permitted to be any probability den-
sity function on (;w,m), or even the indifference prior h(n) = 1,
-o < u < o, The matrix ZU(E) is defined by (2.1.10) and (2.1.12).

To show that the family of prior distributions (2.1.20) is symmet-
ric under row and column permutations of U, it is enough [see (2.1.1)]

to demonstrate that

Nn(vec(U)Iuln,Zu) = Nn(vec(Q]UQz)Iuln,Zu). (2.1.21)
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Note that for any integer 2 > 0, and any 2x% permutation matrix Q,
a, = 1,.Q0,Q7 = I, .

The equality (2.1.21) now follows from (2.1.9), (2.1.10) and (1.2.4).

Having defined the data (X,SSE), parameter o = (U,og), likeTihood
function p(X,SSE[U,oi), actions d, loss function L(e,d), and prior dis-
tribution A(e]§§p,f), we have completed our formulation of the multiple
comparisons problem for the means in a balanced two-factor design as a
Bayesian multiple decision problem. Further, this Bayesian decision
problem has been shown to be symmetric under permutation of row and
column indices of X and U, a fact that is exploited in Section

2.2.

2.2. Component Bayes Rules

Any component problem of the multiple decision problem described
in Section 2.1 can be formally defined as follows:
Data: (X,SSE);
Parameter Space: @ = {8 = (U,cg): U a real rxc matrix, 02 > 0};

Likelihood Function: p(X,SSE|e) = p(X,SSElU,og) defined by (2.1.1);

. + 0 - .
Actions: d , d , d defined by (2.1.5);
Gt 4T ThY,
Loss Function: Lt]tz(e’dt]tz) defined by (2.1.7);

Prior Density: a(e) = A(e[ﬁsp,f) defined by (2.1.20).
Except where it is necessary to identify a particular component problem,
we will omit the subscripts t], t2 on the actions and Tloss function.
Thus, respectively,

0 + 0

»d N
£ttty

+ -_ -
d,d,d =d L{e,d) = Lt t ).

(e,d
T,

]
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The component Bayes Rule w(x) (X,SSE) = @(@)t
172

scribed as a 3-dimensional vector of probabilities,

(X,SSE) can be de-

(¢ M), 0 (o), 0 Wy,

0

for taking actions d+, d”, d” when (X,SSE) is observed. It follows

from the theory of Bayes decision procedures that
(1,0,0, if rMd) < v()d0), 1A gy,
o Mxsse) = { (01,00, if rM (@) < M@y My, 2.2.7)
0,0,1), if M a7y < v(M)(g¥),n (140,
where

rM(d) =+ (d)x,SSE) = [ L(o,d)r(e|X,SSE)de (2.2.2)
G)

is the posterior Bayes risk for the component problem. Here

p(X,SSE[6)a(s) _ p(X,SSE,b (2.2.3)
[ p(X,SSE|0)r(s)de P(X,SSE)
@

S

r(e|R,SSE) =

is the posterior density of 6. If two or more actions yield the same
minimum posterior Bayes risk, ¢ (A)(X,SSE) randomizes among these ac~-
tions. However, it is shown in Chapter 3 that such ties have probabil-
ity zero [over the distribution of (X,SSE) given 6] for all 8. Hence,
¢ (A)(X,SSE) can be described as a nonrandomized decision rule.

Our motivation for deriving the component Bayes rules comes from

the following theorem.

Theorem 2.2.1. Simultaneous application of the component Bayes rules

P éx)t (X,SSE) in all component problems, 1 < t; < t, < n, yields the
1°-2

Bayes rule for the multiple comparisons decision problem of Section 2.1.
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Proof In Section 3.3 of Chapter 3, it will be shown that simultaneous
application of the component. Bayes rules yields consistent action vec-
tors d (see Section 2.1 for the definition of consistent action vectors)
with probabi]ity one, for all e €@ . [Here, the probability referred to
is taken over the conditional distribution of (X,SSE) given 6.] The as-
sertion of the theorem is now an immediate consequence of the additive
structure (2.1.6) of the experimentWise loss function L(e,d) and Duncan's
(1965) Additive Loss Theorem. 0O

We now seek to simplify the form of the posterior Bayes risk func-

tion (2.2.2). Recall that

M) = [ f [ p(UlwE)h(n(E)dudE e g
cg EAB AB %
where
m(E) = w(E[SS»f)s P(U[w,E) = Ny (vec(U)[ul >z (E)). (2.2.4)

Thus, in a formal sense (since neither n(E) nor h(u) need to be proper

densities), p(X,SSE,s) in Equation (2.2.3) is the marginal density of

X,SSE,6 obtained from the joint density
p(XaSSEsU9U9E) = P(X,SSE|U,Gé)P(UIU,E)h(U)ﬂ(E)-

However, using an obvious notation, it is also true that
P(X,SSE,U,u,E) = p(U|X,SSE,u,E)p(u]X,SSE,E)p(E|X,SSE)p(X,SSE). (2.2.5)
Recall from Section 2.1, Equation (2.1.18), that
p(E[X,SSE) = W(E|§$*sf*),
where SS* and f* are defined by (2.1.19). Also, from (2.1.1) and
(2.2.4),

- -12
p(X,U|SSE,u,E) = N (vec(X)[vec(U)K "ol IN (vec(U)|ul .z (E)),
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from which standard results about the multivariate normal distribution

yield
p(U|X,SSE,u,E)
= N, (vec(U) [up(E)T, + (I -w(E))vec(X),w(E)z,(E)), (2.2.6)
where
0'2 O'2
WE) = & (B 1) (220
From (2.1.5), the component loss function Lt1t2(e’dt]t2) for any
component problem depends upon 6 only through
n = “t] - ut2 . (2.2.8)

Further, it is apparent from (2.2.6) that the conditional dis-
tribution of n given X,SSE,u,E is a normal distribution, independent of
SSE, determined by its conditional mean m(X,u,E) and conditional vari-
ance cz(g). [That the conditional variance of n is independent of X and

v is obvious from (2.2.6).] Thus, from (2.2.2), (2.2.3), (2.2.5), and

(2.2.6),
r()(a) = ? L{n,d)r(n|X,SSE)dn, (2.2.9)
A(n|X,SSE)
- J [y (nIm(XeaE) 02 (E))p(u X SSELEDm(E[SS*%, F¥)dndE,  (2.2.10)

In (2.2.9), we have now modified our notation for the component Toss
function to reflect the fact that it depends on 6 only through n.
One last reduction is possible. In Section 2.1, it was noted that

the columns of HE®HY‘, are eigenvectors of
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2

%
ZX(E) = ZU(E) te L, -

Since ln is proportional to the Tast column of HEQDH;, it follows that

2
o

(5, (E)+ & 1)1

u n’n - Y(g)ln’

where y(E) is the eigenvalue of zx(g) corresponding to 1 . Thus, from

(2.2.7),
2
LSPN
wiB)1n = ey e (2.2.11)
Since
2 2
uo uoe

it follows from (2.2.6) and (2.2.11) that the conditional mean m(X,u,E)
of n does not depend upon pn; that is,
m(X:UaE) = m(xag)'

Consequently, the integral over u can be taken in (2.2.10), yielding

(2.2.12)

.
~

A(n|X,SSE) = [ Ny (n]m(X,E),0? (E) Jm(E| SS*,F*)dE
/ 5%, f

The component Bayes rule can now be determined from (2.2.1), (2.2.9) and

(2.2.12), once we have identified the functional form of m(X,E) and

2(E). This is not an easy exercise, so that it is fortunate that we

~

g
need only make this calculation for three component problems, as shown
by the following argument.

Recall that the decision probiem in Section 2.1 was shown to be sym-
metric (invariant) in the row and column indices. If the cells (1],j1),

(iz,jz) whose means are to be compared come from the same row (11=12=1),

choose a permutation p of the row indices such that p(i) = 1, and a
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permutation ¢ of the column indices such that r(j]) =1, T(jz) = 2.

Choose the rxr permutation matrix Q] and the cxc permutation matrix 02
such that these matrices act to permute the rows and columns of X (and
U) in the manner specified by p and t respectively. Then, by symmetry

of the problem,

#1100 (1,3 0558 = 9 (11 (1,2) (@)10550).

Similarly, if the cells (1],j]), (12,j2) come from the same column

(j]=j2=j), appropriate choice of p, T and the corresponding permutation

matrices Q], Q2 shows that

(}\) 3 ()\)
P (11,3)1(1,.3) FSSE) = ¥ (10, 2,1) (0 *Qp55E).

Finally, if the cells come neither from the same row nor from the same

column (i] # 12, j] a jz),

G300, (1 3) BoSSE) = # (11, (2,2 (@10 SSE):

Thus, all Type I component Bayes rules @ (x)(X,SSE), corresponding to

cells (1],j]),(12,j2) in the same row (1]=12=1) can be obtained from

[0 g%)]) (1 2)(X,SSE). Similarly, all Type II component Bayes rules, cor-
responding to cells in the same column (j]=j2=j) can be obtained from

¢ E%)]) (2 ])(X,SSE). Finally, all Type III component Bayes rules, cor-

responding to cells neither in the same column nor in the same row, can
be obtained from ¢ g?zl),(z,z)(X’SSE)' Since the above three classes of
component Bayes rules partition the class of all component Bayes rules,
we can confine our derivation of component Bayes rules to the three

prototype cases:
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S PRt PRI S Bl Dt IR 3 S L Y 2 (2.2.13)
For the comparisons specified by the n's in (2.2.13), we now pro-

ceed to find the conditional mean m(X,E) and conditional variance oZ(E).
In finding m(X,E) and cz(g), we can assume without loss of generality

(for reasons given above) that pu=0 in (2.2.6). Thus, conditional upon

X,E, vec(U) has mean vector (In-w(g))vec(X) and covariance matrix

2 2
WE)(E) = <& (2 () =& 1) %5 ()
o
= 2 (1-4(E))
Define
iz % %% % %
a](g) =1 - E;gy az(g) = EXE-- _E , a3(§) = —;E-- i& . (2.2.14)

Theorem 2.2.2. If the random matrix U: rxc in vector form as vec(U) has

mean vector (In-w(g))vec(x) and covariance matrix K_]oi(In—w(E)), where

$(E) is given by (2.2.7), then:

Type I: np = Uy T Upo has mean and variance:

m(GE) = ag(E)(Ry7-%p,) + a,(E) (R ;X ),

-~

202

oH(E) = =& [ag(E)+r oy (E)T;

Type II: npp = Up1 - Ung has mean and variance:

mII(X’E) = 61(5)()—(”-)—(2]) + 63(5)()_(],-)(2,),
202
o5 (E) = & [aq(E)rc Tag(E)];
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Type III: nrpp T U T Yoo has mean and variance:
mppp(GE) = ag(E)(Xyq-Xop) + ap(E)(X 4-X ) + ag(E)(Xq -X,))

2 20, -1 1
OIII(X’E) = T[a‘l(g)'}'r az(g)"'c a3(§)]-

Proof. We have previously noted that the columns of the nxn orthogonal

matrix H = HE®H; are eigenvectors of

2 2
o o, _
5 (E) = 5, (E) + £ 1 = £ v (E).

X' u'~ n
Indeed,
ZX(E)H = HD(E)

where D(E) is a diagonal matrix with diagonal elements dtt(g) defined by

/(EA+EB-EAB), if t=n-=rc,

En » if n-r+l<t<n-1,
Kd,,.(E) = J
ttl- Eg . if ot =r,2r,...,(c-1)r,

\ EAB » Ootherwise.

Thus
I - $(E) = HD*(E)H~, (2.2.15)

where D*(E) is a diagonal matrix with diagonal elements

2
Kdy 1 (E)-og

dx, (E) = o 1<t<n.

~

Let s )= (0,0,...,0,1)7: e2x1. Then it can easily be shown that

D4(E) = 2y (E)(I @1 )+, (E)(1®s . 57)+a5(E)(s 5 ¢®T,) . (2.2.16)

C
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Let v, T (1,0,0,...,0)": 2x1 and bg = (1,-1,0,0,...,0)": ax1.

Notice that since h£ is v2 times the first row of Hz?

I
Hphy = V2 vy, viH, = 7 hy-
Also
- _L' ;‘ _L - — -
5 = - o YHese = 7 Yt T 0.

The following results now follow by direct multiplication with Kronecker

products; using the representations (2.2.15) and (2.2.16),

(hz@v) (I -9(E)) = ay (E)(hz@v2) + & a,(E) (hi@17),

(vz@h2)(I-9(E)) = a;(E)(v;@h:) + T ag(E)(1z@hs), (2.2.17)
(hz@h ) (1,-p(E)) = a(E)(h:@h2).
Now note that

Upq - Ugp = y;Uhc = (béqpy;)vec(u). (2.2.18)

so that, using (2.2.17),

(h¢®@vy) (I, -w(E))vec(X)

mI(X,E)

a,(E) (h; @v7)vec(X) + ¢ a,(E) (h: ®1)vec(X)

aq (E)(Kyp-Xy2) + 2p(E) (X 4-X 5)-
Similarly, since

Upp = Uy © b;uyc’ Upg ~ U = YrUhc * erVc - erb

the asserted results for mII(X,g) and mIII(X,g) follow from (2.2.17).

From (2.2.17) and (2.2.18), the variance of Upp = U0 is

Vo) (Tw(E)) (h ®Y,.)
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Q
7<‘rb N

[a, (E) (h;@v;) + 3 3,(E) (h;®17)1(h ®Y,)

202

—& [ag(E) + 1 a,(E)].

The formula for c?I(g) is established in a corresponding fashion.

Finally, since

Uy - Upy = [(hZ@y)+(y®hr)-(hi@hy)lvec(U),

1k

w’vec(U),

it follows from (2.2.17) that

2
2 . (¢
o7y (E) = w ¢ (I-v(E)w
2
Ge

= & [a  (E)ww + - ay(E) (hg@ 1;)w + ¢ ag(E) (1g@hyw]

s

- S8 [ (B) + L ay(B) + L ag(B)],
as asserted. [
Up to this point, we have not used the explicit form of the compo-
nent loss function L(e,d). Only the fact that L(e,d) is a function of 6

only through n has been used. However, using the explicit form (2.1.7)

of L(e,d) as a function of n, together with (2.2.9) and (2.2.12),

0
ARICRRESV AN [Ny (nlm(X,E) 2o (E) dnJn (E|SS*,£%)<E,
OV = 5 [T 1 Inlny (aln(,£),52(8) ) anTn (El s+, F4)eE,
& o

and

o]

POV@) = sy [ T L oty (ol E) o (8 )anTn(El 55, )
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Define

A = A(X,55%,F%) = [ m(X,E)n(E[SS*,F*)dE, (2.2.19)
|

r= r(GSS*F) = [ [ [ [nlNy(nlm(6E) .o (E))dnTn (E|SS*,£%)dE. (2.2.20)
[ -0
Note that

)= [ L] Ay (nm(X,E) 0% (E) )dnTn (E| SS*, £%)dE

= Xq 4
while
fO @y - e () = 2P (@ )-e P (@ ) year P @) M@ty (M) ()
RS X12Xg
- 7 [A+ ( K_l - )P] [
(X)) 40y (A), 4t X _ x-2%g
M) - M) - e
It now follows from (2.2.1) that
. *1-2K
( (1,0,0), if A > ( e )T,
| -2
o) (x,ssE) = { (01,0, if  [a] < ( kik,Kb )T, (2.2.21)
1
-2
\ (0,0,1), if A <- { - ).
4

Remark 1. The notation in (2.2.19) and (2.2.20) is somewhat imprecise,
since we know from Theorem 2.2.2 that in the component problem where

is compared to Us 5 5 A and T depend upon X only through SS* and

u. .
111 232

the quantities:
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Ty(X) = Xy 5 =X 5 5 To(X) = X.j1-X_j2, T5(X) = Xi].-XiZ.. (2.2.22)
However, in different component problems, T](X), T2(X), and T3(X) depend
upon different elements of X. Thus, at the level of generality here,
where a general form for the Bayes rule is being described, the notation

(2.2.19) and (2.2.20) suffices.

Remark 2. Since © > 0, as is apparent from (2.2.20), we see.that
0] (X)(X,SSE) can never take action dO if X 5-2K1)' Hence, in the fol-

Towing chapters it is assumed that

0<2K0<7(-|a
or, equivalently, that
Xy~ 2
0<p= —— <1 (2.2.23)
X

Remark 3. A = a(X,S$8*,f*) is the posterior mean E(n|X,SSE) of n. Note

from (2.2.21), (2.2.23) and the fact that r > 0, that when A > 0, our

0

choice of action lies between d+ and d°, while when A < 0, the choice

lies between d and do. Thus, the value of A can be used to eliminate
one action (d+ or d”) from consideration. It follows from Theorem 2.2.2

that

A(X,SS*,f*) =

I T~1 0

T. (0L [ a,(E)n(E|SS*,F*)dE], (2.2.24)
Jj=1 & -

where the ai(E)'s are defined by (2.2.14) and the Ti(X)'s are defined by
(2.2.22). An algorithm for computing A = A(X,$5*,f*) is given in Chap-

ter 4.
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Having simplified the form of component Bayes rules to (2.2.21),
our basic goal in this section has been achieved. In Chapter 3, Sec-
tion 3.1, we briefly indicate, in the special context where
E= (EA,EB,EAB,og)’is assumed known, how the component Bayes rules (and

thus the experimentwise Bayes rule defined in Theorem 2.2.1) make use

of information about main effects and interactions.
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CHAPTER III
PROPERTIES OF THE COMPONENT BAYES RULES

This chapter is divided into three sections. Section 3.1 shows how
the component Bayes rules explicitly depend upon information about ex-
pected patterns of cell means ujj in the simplest case where this informa-
tion is expressed in terms of known measures of interaction (ciB), main
effects for row and column (ci,og) and error (02)‘ This special case
can be interpreted as the limiting case of the general model of Chapter
11, when all pooled degrees of freedom fK,fE,fKB,f; [see (2.1.19)] be-
come infinitely large. Study of this special case thus gives insight
into the adaptive characteristic of the overall Bayes rule of Theorem
2.2.1 viewed as a multiple comparisons procedure.

Returning to the general model of Chapter II, Section 3.2 estab-
1ishes some usefu]rproperties of the functions A(X,SS*,f*) and
r(X,§§*,f*) which define the component Bayes rules. Bounds are found
for r(X,§§*,f*), leading to a screening algorithm which serves to reduce
the number of component problems in which this function must be calculat-
ed. Further, it is shown that with probability one under P(X,SSE\e) for
all s c@ , the component Bayes rules are nonrandomized, verifying an as- -
sertion made earlier in Chapter II. Finally, in Section 3.3, a proof of
the fact that simultaneous application of the component Bayes rules

yields consistent action vectors d with probability one Lunder
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p(X,SSE|e), all 6 €@ ] is given. This proof thus completes the verifi-

cation of Theorem 2.2.1.

3.1. The Nature of the Component Bayes Rules when oi,cg,oiB ggg_ci are
Known
Suppose that in place of the prior distribution A(8) defined in
Equation (2.1.20) of Chapter II, the prior density
P(UJE) = Ny (vec(U) [ul 3 (E))

is assigned to U, and it is assumed that g = (EA,EB,EAB,cg)’is known.
The resulting prior distribution Ao(e) = Ao(elg) is then the product of
P(U|E) and a mass function placing probability one on the known valye of
cg. Such a prior Ao(e) can be viewed as the limit of the prior distri-
bution x(e[gsp,f ) when each element of f= (fA,fB,fAB,fe)’tends to in-

finity, and

SSA SSB SSAB SSE
—P L , —P L F , —P L F , > g%,
fA A fB B fAB AB fe e

Alternatively, the posterior distribution obtained from Ao(e) can be
viewed as the Timit of the posterior distribution derived from
A(e[SSp,f) when each element of the "pooled" degrees of freedom vector

f* tends to infinity, and

SSA* SSB* SSAB* SSEX 2
R S S g~ AB> TF %

In either case, the known quantities EA’EB’EAB’Gé correspond to the
"mean squares" that would appear in an ANOVA table derived from "data"
pooled from prior information and (X,SSE). Assuming that Ec&, so

that
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2
0 <oy < Epg < EpsEp <
the variance components
E,-E E-E -
2 _ A AB 2 _ "B "AB 2 _ “AB e 2
oA ck * °B rK * °AB K > %

are known constants.

Repeating the steps that led to the component Bayes rules
¢ (A)(X,SSE), in Section 2.2 (except that now no integration over E€ €
is necessary) it can be shown that the component Bayes rule |

@ (2) (X) for comparing us to

(1],j]),(12,j2) . uizjz is the following:

() -
F (7037 (15030 ) 7

(1,0,0) if  a(T(X),a(E)) > or(T(X),

¢
R
~ 5V

(0,1,0) if  [a(T(X),
(03091) if A(I(X)sg E ) < 'DT(I(X)sQ E )s

where 1 - o = 2?(09({‘,

T(X) = (T, (K, Ty (X),To(0) 7= (K <Xy 5 LK X5 WK <X )7, (3.1.2)

" T Tl vy Ty T
0’2 0'2 0'2 0’2 O'2
E)= (ag(E),ay(E)sag(E)) = (- = go - g po - g ) (313
a(E) = (a;(E),a,(E),a3(E)) "= ( vl SO L - ) )
a(T(X),a(E)) = a~(E)T(X), (3.1.4)
PI(0.(E)) = | Inlly (n]a(T(X),a(E)),0?(E)Jdn, (3.1.5)
and
2" ‘202
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Here 6st is the Kronecker delta function:

1 if s=1t,

Stolo i sttt
Note that:
(i) In Type I problems (1]=12): 1 - 51]12 = 0, T3(X) =0
(ii) 1In Type II problems (j]=j2): 1-6.. =0, T2(X) = 0.

When A = pr,@<k)(x) would randomize between d' and do, while when
0

A = -pF,¢(A)(X) randomizes between d~ and d”.
Observe that @-(A)(X) = ¢(A)(I(X)). That is, the component Bayes
rule depends upon X only through the elements of T(X). The

first element, T{(X) = X, : - X. . of T(X) is the con-
! 1137 Uil -

trast- .in the cell means that would be used to make comparisons be-

tween u., . and u; . 1if the two-factor design were treated as a one-
1 1232

factor design. 'Under“tHE“tWsttage.aﬁproach”mentidned
in Section 1.3, this approach would be used if it were believed that

OﬁB > 0, or equivalently if

E

=
w

> 1.

g

D N

The second and third elements of T(X) are column main effect (TZ) and

row-main effect (T3) contrasts which the two-stage approach

would use if it were believed that OiB = 0, or equivalently if
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Note that with o = a(T(X),a(E)), 02 = oz(E),

~ -~

P(T00,2(E) = f Inlty (n]a,02)en

o:; VN (V] £ ,1)dv, (3.1.7)

where we have made the change of variables v = o']n. Thus, letting

o

Qo) = f IVIN](vlw,l)dv, (3.1.8)

-0

it is easily seen from (3.1.1) and the fact that o = o(E) > 0, that

4
(1,0,0) if 2-00() >0

¢ ) =€ (0,1,0) it L-cad) <0, Leoad) >0, (3.1.9)

(¢

((0,0,1) if 2 +00(2) < 0.

Lemma 3.1.1. If |c| < 1,0 + cQ(w)is a strictly increasing function of w.

Proof. It is easily seen that

w+ cQw) = f g(v)N](v]w,l)dv,

where

g(v) = = v+ clv],
(1-c)v if v <0

is (since |c| < 1) a strictly increasing function of v. Since N](vlw,1)
has strict monotone likelihood in v, the assertion follows by modifying
the proof of Lemma 2, page 74, of Lehmann (1959) to account for strict

inequalities. [J
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Lemma 3.1.2. If |c| < T, + cQ(w) is continuous in w, and

Tim [wtcQ(w)] = tw. (3.1.10)

w->too

Thus, there exists a unique Wes™® < W, < @, such that
wo * cQ(wc) = 0. : (3.1.11)

Since Q(w) > 0, it follows that cw, < 0.

Proof. Continuity of w + cQ(w) will follow from continuity of Q(w).

However, for any W] sWps~® < Wyswy < X

lQ(w])-Q(wz)l = f IVIN-I(VIw-I,1)dV- f |V|N1(\llw2,,'l)dv
< J | 1z+eq]-|z+u, | 1N (z]0,1)d2 (3.1.12)
§_|w1'w2|’

from which the continuity of Q(w) follows. Letting Wy = Wy wy = 0 1in
(3.1.12),

L1
2

OiQW)iM|+?IHMUWJMz=MI+é)

Using this result, it is straightforward to show that (3.1.1Q) holds for
[c| < 1. The existence of w, Now follows from Lemma 3.1.1, the continu-

ity of w + cQ(w), and (3.1.70). [

Lemma 3.1.3. For all w,~» < w < =, all ¢, [c] <1,

~w + ¢Q(-w) = -(w-cQ(w)). (3.1.13)

Proof. It is easily shown that Q(-w) = Q(w). The result (3.1.13) now

directly follows. [O
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From (3.1.13) it follows that W, = mw_oo where W, and 6, are defin-
ed by (3.1.11) withc = p, C = =05 respectively. Thus, from Lemma 3.1.1
and (3.1.11), the component Bayes rule ¢ (X)(I(X)) has equivalent form:
(1,0,0), if A(T(X),a(E)) > t*o(E).
S 100) - | @10, AF L [T @)] < toE, (114
(0,0,1), if a(T(X),a(E)) < -t*a(E),
where t* is the unique solution of the equation
t* - pQ(t*) = 0. (3.1.15)
For a given p = 1 - Z(KX)/K]), a computer program has been written
to find t*. A Tisting of this program, together with a table of t* for

selected values of

N2
X 1-p °
is provided in Appendix A.
Note that if
A(T(X),a(E)) = #t*o(E), (3.1.16)
the component Bayes rule should randomize over d" and do, or over d and

do, respectively. However, since A(I(X),g(g)) is a linear combination

of the continuous variables Ti(X), 1 <i<3, the event defined by
(3.1.16) has probability O under the density p(X,SSElU,ci) for all
(U,og). Thus, ¢-(A)(I(X)) can be written as a nonrandomized rule as in
(3.1.14).

The decision made by the component Bayes rule @v(x)(I(X)) depends

entirely upon the value of the statistic

A(T(X),a(E)) - i
=S YoOTi(X) 1

o(E i=1 o
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The meaning of the functions T](X),TZ(X),T3(X) has already been discuss-

ed. From (3.1.3) and (3.1.6) we see that as the ratio (og)—]EAB in-

creases to infinity

a(E) z  a;(E)
__1(17 NS 1 50, i=2,3
o E 02 > O(E) s sV
e
and the decision made by the Bayes rule depends entirely upon the com-
parison statistic T,(X) = X; . - X. . for the cell means. Hence,
1 T3y ol

strong evidence of interaction places the burden of the comparison of

u to u; . on cell data. On the other hand, as GiB -+ 0, so that

1134 i5p

2,-1
(Ge) EAB > 1,

and information from the cell means is ignored. In Type I problems

(i; = 1,), when (02)_]EAB > 1,

so that with strong evidence of column effects (EA& B~ »), information

from the column comparison T2(X) = X - X . determines the decision,

.j] 'J2
1

while with no evidence of column effects (EABEB > 1),0'1

A - 0 and the

decision d0 is taken. Type II problems act similarly, except that the

values of EAEEA and T3(X) = Xi]- - Xiz' determine the decision. In Type
ITI problems with (02)']EAB + 1, the decision depends upon both row and

column effects, with row effects T3(X) being ignored when EA%EA -1,
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column effects T2(X) being ignored when EAéEB - 1, and d0

being taken
always when main effects are not believed to exist. Remember that
the specialized prior of this section yields a posterior distribution
which approximates the posterior resulting from the more general model
of Section 2.1 and a large amount of information pooled from the prior

and the data:

SSA*  SSB*  SSAB*  SSE* )
= )

fx » fF R, 0 f

f* > w, E = Tim(
- A B AB e

We see that the component Bayes rules use information (from prior and

data) to adaptively choose, in a continuous fashion, among the alterna-

tive procedures advocated in the two-stage classical multipie compar-

isons precedure described in Section 1.3.

3.2. Properties of the Component Bayes Rules in the General Model

In Section 2.2, it was noted that the component Bayes rule for com-
paring u; . to u. .

1 292

as defined in (2.1.19), and

depends upon the data (X,SSE) only thorough SS¥*,

T = (TaTpuTa) = (Ko s Ko R Ko LR =X, )%
- e 1737 Mpdp 0y T

It will be notationally convenient  not to continually exhibit the de-
pendence of the component Bayes rule on SS*, and its pooled degrees of
freedom (vector) f*. To this end, let

n*(E) = n(E[SS*,f*).

Also define

a;(E)T., (3.2.1)
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Jap(E) + ¢ (1=6; 5 Jag(E)ls  (3.2.2)

8.
) 1'2

where a.(E), T <1 <3, are defined in (2.2.14) and &, is the Kronecker

delta function. From (2.2.21), the component Bayes rule is then defined

by
(1,0,0), if a(T) > or(T),
o V) = o MIx,ssE) = | (0,1,0),  if  [a(T)] < or(T), (3.2.3)
(0,0,1), if a(T) < -pr(T),
where

A(T) = [ m(T,E)w*(E)dE,
N = [ n(IE

fD) = L1 L nlialn(T6)," (€D dnlE)E,

and o = (%, -2%y)/Xy» 0 <o < 1. In (3.2.3), if A(T) = or(T), 0 (1)
0 while if a(T) = -pr(T),¢ M)(T)

~ ~ ~

randomizes between the actions'd+, d
randomizes between dO and d .
For any constant ¢, -1 <¢c < 1, let

(1) = a(T) + cr(T). (3.2.4)

It follows from (3.1.7) and (3.1.8) that

q.(T) = ér[w(I,E)+CQ(w(I,E))]O(E)ﬁ*(E)dE, (3.2.5)

where

((E
: —ETEj-Ti. (3.2.6)

Hence, from (3.2.3),
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(1,0,0), if a_ (1) >0
o Vm = 1 (0,1.0), i 0 (1) <0 q,(D >0 (3.2.7)
(0,0,1), if q (T) <0
Since T(T) > 0 and p > 0, it 1s clear from (3.2.4) that
qp(I) z_q_p(I). (3.2.8)
Some useful properties of the function qC(I) follow directly from

(3.2.5) and the results of Section 3.1.

Lemma 3.2.1. For all c, -1 < ¢ < 1,qC(T1,T2,T3) js a strictly increas-

ing function in each of its arguments T],TZ,T3.

Proof. Since ai(g) >0, 1<i<3, and o(E) > 0, it follows from

(3.2.6) that m(I,g) is strictly increasing in T],TZ,T The assertion

3
of the lemma now follows from (3.2.5) and Lemma 3.1.1. O

~

Lemma 3.2.2. For allc, -1 <c¢C< 1,qc(-I) = —q_C(T).

proof. The result is a direct consequence of (3.2.5), (3.2.6) and Lemma
3.1.3. O
Lemma 3.2.3. For allc, -1 <c< 1, all fixed T2,T3,

(i) qC(I) = qC(T],Tz,T3) is continuous in T1,

(ii) Tim qc(I) = 4o,

T1+tw

Proof. For any T],T?,—w < T],TT < w, it follows from (3.2.5), (3.2.6)
and (3.1.12) that



IqC(T]’TZ’TS) - qC(T?sT25T3)'

| A

(+[eDIT-THL ] 2y (E)r(E)eE],

a, (E) :
l £[01E~ (T-I-T-I*)+CQ(00(T-I,TZ,T3,E)-CQ(w(T-I*,TZ,T3,E))]0(E)ﬂ*(g)dg
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Since the integral of a](g) is finite, assertion (i) follows directly.

To verify (ii) when T] ~ », apply Fatou's Temma and (3.1.10) to (3.2.5),

noting from (3.2.6) that 1im w(T,E) = ». Thus

T]+m
Tim q (T) > [ _Tim [w(T,E)+cQ(w(T,E))Jo(E)n*(E)dE
T-I->oo e T-l—>oo

= oo,

For the case T] -+ - , apply Lemma 3,2.2 and the above result:

o = Tim
—>-00

q_ (T a'T :'T ) = l__
T ct'1? 22 '3 T

12 - qc(_T]sT21T3)
1 1

- Tim q_(T,T,,T,).
Tosee € 1772773

1

From these two results, assertion (ii) follows. [J

Theorem 3.2.4. For fixed T2,T3, there exist unique constants
u

T%(TZ,T3),T](T2,T3) satisfying

2:T3)5T5,T3)

L P U
qp(T]<T2sT3)aT29T3) - O - q p(T](T T )9T
and

L U
Ti{(T,.T5) < T{(T,,T,).

(3.2.9)
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Hence

. u
(1,0,0), i T > T(T,,T,),

< T

~

¢ V= 01,0, ir T1L(T2,T3) <T ?(TZ,T ), (3.2.10)

1

: L
(0,0,1), if Ty < T7(T,.T,).

1

Proof. The existence of T%(T],TZ),Tg(T],TZ) follows directly from Lem-

2’
follows directly from (3.2.8), Lemma 3.2.71, and (3.2.9). Finally,

mas 3.2.1 and 3.2.3. The inequality between T%(T T3) and T?(TZ,T3)

(3.2.10) follows directly from (3.2.7), Lemma 3.2.1, and (3.2.9). O
From (3.2.10) it is easily seen that ¢ (A)(I) is almost surely
(with respect to p(X,SSE|e), all 6 €@ ) a nonrandomized rule. Indeed,

@ (A)(I) will randomize between two actions if and only if

T T,sT

_ U
T —T(2a3)-

L
= T(T,.T,), Ty = Ty

1 (3.2.11)

Since the conditional distribution of T] given T2,T3, as obtained from
p(X,SSE]e), is a continuous (indeed, normal) distribution for all ¢ c@,
the conditional probability of one of the equalities (3.2.11) holding is
zero for all e €@. Hence, unconditionally the equalities (3.2.11) have
probability zero_ to occur, all 6€@. This proves the assertion made in.
Section'2.2 that the component Bayes rules are nonrandomized with prob-
ability one.

Having demonstrated the monotonicity of the component Bayes rules

in the cell mean contrast T1(X) = X - X , it would be very useful

iy Ty,
to determine the explicit functional forms of T%(TZ,T3),T$(T2,T3) as
functions of T2,T3 (and also of SS*). Unfortunately, this has proven to

be unfeasible, largely due to the extremely complicated nature of r(T)
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as a function of T. Consequently, our implementation of the component
Bayes rule proceeds through (3.2.7). This necessitates computation of
r(T), as can be seen from (3.2.4) and (3.2.7). Since such computation
can be costly in terms of computer time, we seek a way to avoid this
computation wherever possible. To do so, certain bounds on qC(I) are
developed in the remainder of this section.

Define

a; = [ a;(E)r*(E)dE, i=1,2,3 (3.2.12)
J, 8 (D L)e

and let a = (a],az,a3)’. Note that
3
AMT) = [ m(T,E)n*(E) = ] a.T. =a-T (3.2.13)
e i=
is a linear function of T. Define

= [ o(E)m(E)dE < o.

Lemma 3.2.5. For all T,

Proof. Recall that

o]

Qw) = f [n|N;(n]w,T)dn. (3.2.14)

Since the density N](nlw,1) is of Polya Type III, and |n|is a convex
function of n, it follows from Proposition 3.2, p.23 of Karlin (1968)
that Q(w) is.a convex function of w. Hence w + cQ(w) is convex in w
when ¢ > 0, concave in w when c < 0. Applying Jensen's Inequality to

U(E)ﬂ*(g) )d

E,
%

oy a,(T) = [ LolT-ENeQlu(T-ENI(
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noting thatcalo(g)n*(g) is a density, and that the expected value of

]A(T), yields the stated inequalities.

~

w(I,E) under that density is 06
Let t* be the unique solution of
t* - pQ(t*) = 0,
guaranteed by Lemma 3.1.2. It follows from Lemmas 3.1.1, 3.1.2 and

3.2.5, and also Equations (3.2.7) and (3.2.13) ;’that

< ogt* = <P(”(I) = (0,1,0). (3.2.15)

3
121 ol

Thus if a;T;| < ogt*, we can make the decision d® without having

1 11

NI~

;
to compute P(T),q_p(I) or qp(T).

~ ~

On the other hand, note from (3.2.14) that

® 0
Qw) = é Ny (nfw,1)dn + [ (0N (nfw,T)dn
S (2N (2]0,1)dz - [ (2N (2]0.1)ez

w[1-2 [ Ny(20,1)dz] + 2N, (-u]0,1)

where we have let z=n - w, and used the fact that for all t,
. ’ t
f zN](ZIO,l)dz =- f ZN](ZIO,])dZ = N](t]0,1).
t —w

Since it is also true that Q(w) = Q(-w), it can straightforwardly be

shown that
Q) = |w|[1-2,l°f°l Ny (2]0,1)dz] + 2ny (fu] [0.1).

Lemma 2, p. 175 in Feller (1968) can now be applied to yield the follow-

ing inequality:
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2
2 exp{- 5}
o] < Q) < fof + ——2 (3.2.16)
V2T w
Define
1 ¢ expl- 202 (TLE)
1) = — | S—=2510 o (E)n*(E)dE. (3.2.17)
: 2r & w(T,E)
Lemma 3.2.6. If T],TZ,T3.i 0, then
-20v(T) = q_(T) - (1-p)a(T) < 0. (3.2.18)
If T;,T,,T5 < 0, then
0 <q (1) - (1-0)a(T) < 20v(T). (3.2.19)

Proof. If T], 2,T all have the same sign, then since a; (E) > 0,
1 <i <3, and o(E) > 0, it follows from (3.2.6) that
ool - & ey il
~7~ o(E i
The inequalities (3.2.18) and (3.2.19) now are obtained from (3.2.5),
(3.2.6), (3.2.16) and the definition of AMT). O

Lemma 3.2.6 is used as a screening device in the following fashion.

If T,,T,,T, > 0, then

1272273

and, as remarked in Section 2.2, choice can be restricted to the actions

0

d+ and d°. The lower bound

Aa_,(T) > (T-p)a(T) - 20v(T)

to q_p(j) is now calculated. If this Tower bound is positive, the action



59

d* can be taken [see (3.2.7)]. Otherwise, the sign of q_p(I) must be de-
termined by calculating the entire expression (3.2.5), ¢ = -p, in order
to decide between the actions d" and do. Similarly, if T],TZ,T < 0,
then A(T) < 0, and choice can be restricted to the actions do,d". If the
upper bound (1-p)A(T) + 2oy(T) is negative, the action d” can be taken.
Otherwise, the entire function qp(I) must be calculated to decide between

0 and d .

d
Since 20v(T) > 0 serves as a correction factor to A(T) in this
screening procedure, it is worth noting that when T],TZ,T3 have the same

sign,
Tim v(T) = 0,

max T, |

1<i<3
as can be easily shown. This fact leads us to expect that when all of
the Ti's are of the same sign, and at least one Ti is large in magnitude,
the screening algorithm described above will allow us to make a decision
(d+ when Ti >0, all i, d” when Ti < 0, all i) without the need to calcu-
late the entire function q_p(I) or qp(I). Use of both screening devices
[(3.2.15) and Lemma 3.2.6] thus offers the hope of avoiding expensive
calculations in all but marginal cases.

Algorithms for calculating 21585583504 and y(T) are given in Chap-

ter 4.

3.3. Mutual Consistency of the Component Bayes Rules

The purpose of this section is to show that the component Bayes
rules ¢ ék)t (X,SSE), 1 f_t] < t2 < n, when applied simultaneously, yield
1272
consistent action vectors d (see Section 2.1) with probability one. Our

proof follows from the following fundamental result.
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Llemma 3.3.1. Let X;s85s 1 <1 < 3, be any real numbers. For a real

number t define
s(t) = Jap=xqt] + |ay-xot| - |ag-xst, (3.3.1)
and
q(t) = s(t) + s(-t). (3.3.2)

If Ixq| *+ Ixy] 2 [x3]-]aq] + |a,| > [ag], then q(t) > 0 for all t.

Proof. It is straightforward to show that for any real numbers u and v,
lu-v| + Jutv| = Ju| + |v| + [[u] - [v|[ = Zmax{u|,]v]}.
Thus

q(t) = 2[max {|aj|s[x{t[} + max{|a,[,|x,t|} - max{|as|,|x5t|}].

If Jag| > [xgt|, then since max{|a,|,|x;t|} > |a;[, i=1,2, it follows

from the assumption that |a;| + [a,| > |ag| that
a(t) > 2[]ay| + [a,] - |ag]] > .

On the other hand, if |x;t| > jas|, then since max{{a;[,|x;t|} > [x;t],

i=1,2, and from the assumption that |x]| + |x2| 3_|x3|,
q(t) Z.ZEIX]tI + ngtl - [x t[]= 2|t[[|x]| * lle - IX3!] > 0.

This completes the proof that q(t) > 0 for all t. [

Lemma 3.3.2. If w(t) is a density function symmetric about t=0 [i.e.,

w(t) = w(-t)], then under the conditions of Lemma 3.3.1,

? s(t)w(t)dt > 0,

where s(t) is defined by (3.3.1).
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Proof. Using the change of variables t » -t,

0
s(t)w(t)dt + [ s(t)w(t)dt

-0

[ s(tm(t)dt =

O 8

[s(t)+s(-t)Jw(t)dt

{]
O 8

q(t)w(t) > 0,

{
oO— 8

since q(t) > 0, all t, by Lemma 3.3.1. O

Lemma 3.3.3. Let Q(w) be defined by (3.2.14). Then for any real num-

bers Xisa55 1 <1 <3, satisfying the conditions of Lemma 3.3.1,
a, a, as
IX]IQ( ;;‘) + lleQ( ;E‘) i_lX3IQ( 25')- (3.3.3)

Proof. Note that

Qw) = 7 |2+w|N; (20,1)dz = ? |-t+o| N, (£]0,1)dt.

Also, recall that the standard normal density is symmetric about 0.

Since

o]

xjQ( £) = f |a-xt|N, (t]0,1)dt, (3.3.4)

- 00

the result (3.3.3) follows from (3.3.1), (3.3.4) and Lemma 3.3.2. [

Let o be the component problem.which compares u., . to u. . , let
191 T2d2

B be the component problem which compares u. . to , and let y be

U. =
292 '3l
the component problem which compares ui]j] to u13j3. Let Ia’IB’Iy be

the respective T(X) = (T1(X);T2(X),T3(X))‘ statistics for these
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problems, defined by (3.1.2). Note that SS*, f* [and thus =*(E) =
m(E|SS*,f*) ] remain the same for all three component problems.

It is easily seen from (3.1.2) that

Thus, it follows from (3.2.1) that
m(IY,E) =m(T ,E) +m(T

T,k E) (3.3.5)
for all Eg¢€& . Combining (3.3.5) with (2.2.19), it is easily seen that

M(I,) = 8(T,) + a(T,)- (3.3.6)
It also follows from (3.3.5) that
IM(T B < Im(T,.E)] + Im(Tg,E) . (3.3.7)

Let ci(g),oé(g),oi(g) be the quantities defined for component prob-
lems o,B,y by (3.2.2). Since

1] # 13 = 1] # 12 or 12 # 13,

j] 7 J3 = jT 7 J, or j2 a Jg»

it is easily seen from (3.2.2) that

2 2 2
GY(E) < 0 (E) + og(E),
and thus that
o (E) <o (E) +o_(E). (3.3.8)

Y~ o'~ B~
It follows from the definition of r(T) given at the beginning of Sec-

tion 3.2, (3.1.7) and (3.1.8) that
r(T) = [ o(E)Q( —51—7—-)w*(§)dE. (3.3.9)

Hence, from (3.3.7), (3.3.8), (3.3.9) and Lemma 3.3.3,
r(T,) + 1(T,) z_r(IY). (3.3.10)
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However, it also follows from (3.3.5) that

m(Tg-E) < Im(T.E)| + [m(T.E)]. (3.3.11)
Noting that
12 # 13 = i] # 13 or 1] # 12,

it can be shown that

and hence that

o (E) < GY(E) + Gu(E)' (3.3.12)

It now follows from (3.3.9), (3.3.11), (3.3.12) and Lemma 3.3.3 that
r(T )+ r(T,) > r(T,). (3.3.13)

Using (3.2.4), (3.3.6), (3.3.10) and (3.3.13), the following in-
equalities can be obtained:

q,(Tg) +a_(T)) < (T)<a(T)+a,(l)

(3.3.14)

., (T) +a_ (Tg) <a_(T) <a_(T) +a(T).

From (3.2.7) and (3.3.14), it can be seen that:
(i) It the action d* is taken in component problems o and g,

then q_p(Ia) > 0, q_p(] ) > 0, which implies that q_p(IY) > 0,

B
forcing action d* to be taken in component problem .

(ii) If the action d is taken in component problems o and g,

then qp(Ia) < O,qp(IB) < 0, which implies that qp(IY) <0,
forcing actien d” to be taken in component problem vy.

iii) If the actions d+,dO are taken in component problems a,8,

o
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respectively, then

a_(T)) >0, q_(T,) <0<q/(l

)

impTying that

+
qp(IY) z_qp(IB) q_p(Ia) > 0,

and thus that action d~ cannot be taken in component prob-
lem v.
(iv) 1If the actions d',d0 are taken in component problems o,g,
respectively, then
q (T,) <0, a_(T,) <0<aq/(Tg),
implying that

a_, (1) = a_(Tg) +q,(T) <0,

and thus that action d* cannot be taken in component prob-
lem v.
Comparing these conclusions with the definition of inconsistency in Sec-
tion 2.1, it is seen that the component Bayes rules, when applied simul-
taneously, cannot produce inconsistent action vectors. This result com-
pletes the proof of Theorem 2.2.1.

Using arguments similar to those used to derive (3.3.13), but with
the roles of component problems o and g interchanged, it can be shown
that

r(T,) + r(I,) > r(T,)

~ 0
and hence that

qp(Ia) + q_p(IB) f_qp(IY),

a_(T) = a_(I) +a (T,)-
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Hence

max{qp(Ia)+q_p(IB),q_p(Ia)+qp(IB)} <q,(T) <q (T,) +a (T,),

q (T,) +a_(Tg) <a_ (T ) <mintg (T )+a_ (To)sa_ (T )+a (To)3.

o ~a ~ -

The above inequalities can produce bounds for the quantities
qip(I) for one component problem in terms of similar quantities al-
ready calculated in other (related) component problems. Hence, these
inequaTlities could be used to obtain screening procedures to replace
or supplement those described in Section 3.2. Because the Togic needed
to program the computer to search for "related" component problems is

complex, such screening procedures were not utilized in the computer

program described in Section 4.2.
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CHAPTER IV
ALGORITHMS FOR COMPUTING THE BAYES RULE

In Chapter 3, it was shown that all component Bayes rules ¢ (A)(I)
choose actions based upon the signs of two functions qp(j) and q_p(I).
The present chapter is devoted to deriving computational procedures for
these functions, and also to devising an algorithm for implementing the
full Bayes decision procedure of Theorem 2.2.1. Such a procedure will
use the screening methods of Section 3.2 in order to avoid, as much as
possible, the necessity of computing qp(]) and q_p(I) in any given com-
ponent problem.

Section 4.1 gives an iterative procedure for computing the con-
stants

a; = é ai(g)w*(g)dE, 1 <4 <3.

These constants determine the posterior mean

of n = u, . -u, . 1in each comparison problem. In Section 2.2 it was
11 T2d2

noted that the sign of A(T) allowed us to eliminate one action

(d” if a(T) > 0, d"if A(T) < 0) from our choice of possible actions in
any component problem. The ai's also play an important role in the
first of the two screening procedures described in Section 3.2. Section

4.2 deals with a method for computing qp(I) and q_p(I), and also the
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quantities o and Y(I) defined in Section 3.2. At the end of Section
4.2, the proposed algorithm for implementing the full Bayes rule is

described.

4.1. Algorithm for Computing a5 1 <1i=<3, and a(T).

Define

M(Q 5 §) = M( ]9d29d33d4 3 31352553954)

o o @ 5
r 3 exp ]Wz
=j /// 17 dv.dv.dv.dv (4.1.1)
4
0 11
3 i=]

I 0~1

= ol | =

4+ 19V28V3%y
V4 V3 \ - V. :

where d],dz,d3,d4 are positive integers, and S],SZ,S3,S4 are positive
real numbers. From (2.1.13), (2.1.15), (2.1.17), (2.1.18), (3.1.3),
the definition of n*(E) as =(E|SS*,f*), and (3.2.12), it can be shown
that

L MOt s %)
* * F% * . * ]
1 MFx T2 FRps T2 5 S5%)

* *o . *y - - .
. MOFELFE,FXg#2,F5-2 5 SS%) - M(FE,F5+2,Fkp,F2-2 5 $5%) (0.1.2)
* * * k. * e
2 M(FE T3, Txg. 1% 5 55%)

* f£%k £% *o . *) - *. * f* *. . *
M(FE,FEFRp*2,T5-2 5 SS*) - M(FR+2,F3.F,,F4-2 5 S5%)
* £% £% L *
M(fA’fB’fAB’fe 1 SS )

a3
where f* = (fK,fg,fKB,f;)‘ and SS* = (SSA*,SSB*,SSAB*,SSE*)”are defined
by (2.1.19). The function A(T) can then be calculated from (4.1.2) and
(3.1.4).

The function M(d ; §) is recognizable as an iterated multi-

dimensional integral of incomplete gamma functions. Note that

1

f& = re(k-1) + f
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is an even integer in any of the following cases:

(i) r or c are even integers and fo is an even integer,

(ii) K is an odd integer and fo is an even integer,

(iii) r,c, and f, are odd integers, K is an even integer.

When, as is often the case, a prior of indifference is used (in which
case fe = 0 is even), f; will be even in all cases except the one where
r, ¢ are odd and K is even. From the above considerations, finding an
algorithm for M(d ; $) when d, is even will allow computation of the

constants a,,a,,a3 (and of A(T)) in the majority of applications.

Algorithm for Computing M(d ; S) When d4 is Even

Define

' dvydv,dy

® eng' . ] 2V-%
i
* Vg V3 .= [91 ]

.(4.1.3)

Then
S
4
S exp? 2V g
0o V4
Also note that if
< S
I( _ EXP{" 'ZW}
XId,S) = W— dW, (4.].5)
w

then
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S
> expg- 75%
GV4(d‘|’d25d3 s 31352353) = f —%_T3_|TT I(Vsld]’S])I(V3|d2’52)dv3’
v V3
4
(4.1.6)
and
S
o] 7|
d . _ Vg
- HVZ Gv4(d],d2,d3 : 31,52,53) = E’d3+] I(v4|d],S])I(v4|d2,32).
Vg
(4.1.7)
Lemma 4.1.1. For d4 > 1,
dy 2
M(d],dz,d3,d4+2 ; §) = gZ-M(g ; §)+ gZGO(d],dz,d3+d4 ; S],SZ,S3+S4).

Proof. From (4.1.4)

S
. - 1 4 .
M{d 5 S) = j<_%‘34+—1> [e"pg' z_vginLl(d] »dpsd3 51’52’33)}‘”4'
0 \Vg

'(% d4+])
Integrate by parts, using Vg as one term, and
exp{-S4/2v4}Gv4(d],d2,d3 : 51,82,33) as the other. Use of (4.1.7),
(4.1.4) and (4.1.6) then yields
3 2

M(d ; S) = ——-M(d],dz,d3,d4+2 3 S) - a—-GO(d1,d2,d3+d4 ; 51,52,S3+S4)
-7 4 4

from which the stated result directly follows. O

Lemmq 4.1.2. M(d],dz,d3,2 H §) = (2/54)Go(d],d2,d3 H S],SZ,S3+S4).
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‘ Proof. After changing variables from v, to X = v&1,
M(d-l 2° 3a 5 feXp G (d'la 3 5 S'l 952953)dx-
0

Integrate by parts, using exp{--%54x} as one term and
](d1, X 3 : S1,S2 ,S.) as the other, and making use of (4.1.7).
Then, change the variable of integration back from x to v, = x"1, and

apply (4.1.6). O

Starting with d4-any even number, d4 > 2, the recursive scheme pro-
vided by Lemmas 4.1.7 and 4.1.2 enables us to avoid calculation of the
fourfold integral (4.1.1), since every term calculated in the recursion
is a threefold integral of the form (4.1.3), with x = 0. However,

these threefold integrals also do not have to be calculated, as shown

below.
Define
w } C
exp - _2V
\](t-l,tz 5 C.l ,Cz) =f ——W I(Vlt-l ,C-I)dV. (4.].8)
0 v

Lemma 4.1.3. For all d],dz,d3 > 1, and 51,52,83 > 0,

Go(dy>dpadgte 5 51352353)

ds
- 2 6,(d;»dysdy 5 Sp5S

5> Goldyadpsdy 3 S50

3)

w

2 . .
s gg-[J(d1,d2+d3 ; 5,5,%53)+0 (dg.dy¥dy 5,:5145) | -
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: '(% d3+])
Proof. Integrate by parts in (4.1.6), using V3 as one term and

exp{—S3/2v3}I(v3ld],S])I(v3|d2,52) as the other. Using the fact that

d exp '{é%}
- HV'I(Vld,S) = ——;%—H;T—

and (4.1.6), and rearranging terms as in the proof of Lemma 4.1.1,

yields the stated result. O

Note: Lemma 4.1.3 also holds for d3 = 0. The proof of this assertion

is similar to that of Lemma 4.1.2. Thus,

_ 2 i )
Gy(dy2dy,2'5 1,5,.55) = §5—[?(d],d2, §125,455)+(d, dy sz,s1+s3ﬂ
(4.1.9)
Define
T
I'(OI.-I+OL2) ' (X'I--l o ']
B(T;ot]sa.z) = m)— y (1-y) dy, 0<t<1, (4.7. 10)
0
and
H(msT) = (&M (4.1.11)
T, 2™
8

We recognize B(T;d],uz) as being the incomplete Beta function.

Lemma 4.1.4. J(t H(t “T)H(tz;,Cz)B(t“

]stz s C-ls 2)

Proof. From (4.1.5) and (4.1.8),

0
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Make the change of variables

‘- C2W+C]v i C]v
v > Y C2W+C1V

in the above double integral, noting that the range restrictionw > v

implies that y §_C1/(C]+CZ). Integrating over x and applying the defi-
nitions (4.1.10), (4.1.11), completes the proof. O

The computation of M(g; §) has now been reduced to a recursion,
where at every step the familiar incomplete Beta integral is computed.
Although subroutines exist to give this computation, we have found it
more feasible to calculate the function J(tl,t2 ;C1,C2) recursively.
Our procedure is based upon the following well known facts about the

incomplete Beta function and the complete gamma function.

Lemma 4.1.5.

(1) J(t]stz 5 C]acz) = H(t'l s C])H(tz 5> Cz) = J(tzst'l H CZ’C])’

t
y ) -2 ) 2 )
(i1) J(t],t2+2 : C1,C2) =T J(t],t2 : C],CZ) t T H(t]+t2 : C]+C2), _

2 2
(ii1) J(t +2,t,; C1,C,) = El-J(t . C.uC,) - 2= H(to+t, 3 Ci+C,)
1 1752 %20 M2l T T 1°%25 4122) T T 1723 1T/
(iv) H(m+23T) = TH(M; T),
Lemma 4.1.6.
4 Gy
(i) J(1,1;¢C,C,) = arctanf /— | ., -
L Cy
172
3(2,2 5 C.,C.) = 4

1° 2) CZiC]+C25 >
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. , 2 /7
(11) J(-Iszsc'lacz) _q t]—I_z"

_ 2/2x G2

J(2,1;¢C ) (1- />——+—
b S 2 C +C
C]/C2 1 72

1:C

-1

(i11) H@2:;T) = 2T, H33T) = vZn T2, W4, 1) = 4172 |

Before describing the complete computational algorithm, two more

useful results about the function GO(d],dz,d3; 51,52,33) are given.

Lemma 4.1.7. (Updating first and second indices of GO.) For

d],dz,d3 > 1, S],SZ,S > 0,

3

d
- : = .

2
g;-d(d d;+d

2°4 3;52,5']"'53),

(=X

»d,,d

.. . _ 2 .
(i1) GO(d],d2+2,d3, 51,52,53) = =— G (d1 0d3

S1555,S
2 0 1

2’ 3)

2 :
- gE-J(d],d2+d3, S1255%55).

Proof. Both of these results follow from the relationship:

I(x{d,S) = 3 I(x|ds2,5) + & &,

X®
which can be proven by using integration by parts in (4.1.5). Rewrit-

ing this equation in the form
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I(x|d#2,5) = § I(x|d,S) - & e -,

X2
with x= Vs , d= d], S= S in (i), x= Vi d= d2, S= 52 in (i1), and substitut-

ing into (4.1.6) y1e1ds the desired results. [

Lemma 4.1.8. For 51,52,53 > 0,

. 2
(1) 6(2,dy,dy5 5,5,,55) = S—[J(dz,d3, ,53)-0(d, 3,sz,s]+s3)],

—

p . - 2 . _
(1) 6(d),2,d55 5.5,,5,) = g[d(d], 35 57:55)-0(d),dz5 51,5,%5,)].
Proof. 1In (4.1.3) carry out the integration over vy [for (i)] or over

Vo [for (ii)], and apply (4.1.8). DO

Finally, the fo]]owing results are useful for starting the recur-

sion for Go(d]’dZ’d3; 51,52,53)

Lemma 4.1.9. For S,,S,,S, > O,

1°%2°°3 7

W=

- 2m -
G(1,1,75 5,,5,,8,) = 4<S15233> arc tan [(s]sz./ [(51453)(55+54)-5,5,1) ] |

Proof. From (4.1.3),

3 Si
o) e exp - z W
. - i=1 1
G0(1,1,1 ; 51,52,33) f f f 377 dv]dvzdv3 .
(v VoV 3)
0

Make the change of variables
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S1v3 52v3 S
,X3

X:-——_——-, X - ———
1 S3v]+S1v3 2 S3v2+82v3

and integrate over X,. Then, with F. = S.(S.+53)'], i=1,2,

F F
2 % 1 1 3/2
m TExCE( -
Go(l 1,15 51,52,83) <515253> ff Xo 1x]x2) dxzdx].
o 0
Make a further change of variables to t] = FZX],t2 = X Xy Then
A
_ _ 21 \? 1) (o2 -3/2
Go(l,l,l, 51,52,33) = | ss35° J. E J. 2 Z(1-t ) dt2 dt]
17273 1L.
0 0
F1f2

i
N
T
wy
o—
(/')I\)
e
U"
w
\/
Wl
— S
|
od
P
—
‘—'-
—
—
N
Q.
‘—r

NI L FiF2
arc tan N
5,5,5; [TFF,

and the result follows by substituting for F],Fz, in terms of S1,SZ,S3JJ

Lemma 4.1.10. For 31,32,53 > 0,
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(ii) GO(1,2,1; 51,52,53)

arc tan - arc tan
8 /%) . 5p%%3

Sp./51 /53 /5253

(111)  6o(252,15 5755,253)

=ﬁ_@__1,____1,___.1’_+____l____,
5152 [/§g /5155, /5,753 /§;¥§E:s3]

Proof. The above equations follow directly from Lemmas 4.1.8 and

4.1.6. O

Algorithm for Computing M(d S) When d4 js 0dd
When d4 is odd, computation of M(g; §) is more complicated. However,
if’d]and d2 are both even, it is possible to express M(d s §) as a finite

sum. First, by a change of variables it can be shown that

s
2x 4 4
2 -u
I(x]d,S) = H(d3S) .[ 4 £ du. (4.1.12)
] T(Qﬁ

We recognize the integral on the right side of (4.1.12) as the incom-
plete gamma function. When d is even, W€ can apply the familiar expan-

sion of the incomplete gamma function in a Poisson series, obtaining

( 14-1 <_S_>1 |
) _ ) = 2 S
I(x]d,S) = H(d,S)\]— pa Nl exp{- -27} (4.1.13) -

Substituting (4.1.13) with d = dys S = s, and also d = d,, S = s, into
(4.1.6), and this result into (4.1.4), yields

M(d; S) = H(dq 5 Sq)H(dy s Sp) [20-21—22+z12] . (4.1.14)
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where

2g = J{dg.dy 5 S355,)s

.i
%d]’l <S_]>

3 J(d,+21,d, 5 S¢S

4; 'I 39 4)’

3

J
%dz’ <.S_2>
I, = ZO 3T J(d3+2j,d4; 52+S3,S4),

1l

1 J
e s (2]
> ) JONZLAZL g(dgra(iti).dy s Sy¥SytS

£/ ,S,)-
127 Gk gk AT 273324

Lemmas 4.1.5 and 4.1.6 can be used to evaluate the quantities

J(t],tz; C]’CZ) appearing in the sums Z,Zy,Z,, and 1o 10 (4.1.14).
However, if d3 is also even, further simplification can be done by using
Lemma 4.1.4, and the well known representation of the incomplete beta
function as a sum of binomial probabilities, to represent each

J(t C]’CZ) as a finite sum of powers of C]/(C1+C2).

],tz;

Description of Algorithm

In this section we have described methods for constructing algo-
rithms to compute M(d,S) in two cases: (i) when d4 is even; and (ii)
when d, is odd (or even), and dy> d, are even. Algorithms for comput-
ing M(g; §) in the remaining cases [where d4 and either d1 or d2 (or
both) are odd] can be constructed. However, such algorithms are likely
to be considerably more cumbersome than those exposited above. The
two algorithms described above are sufficient to handle a large number

of practical problems, and permit us to apply the Bayes procedure
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described in Chapters 2 and 3 to real data in Chapter 5. If the Bayes
procedure proves to be a useful statistical tool, we will then have
some justification for improving and extending our algorithms for cal-

culating M(d; S). A flow chart to compute M(§i§) in the aforementioned

two cases is given in Figure 4.1.

4.2. Recursive Method for Computing r(T)

The functions A(T) and r(T) together determine the component Bayes
rules; see, for example, Equations (3.2.5) and (3.2.7). Recall from

(3.3.9) that

r(1) = o (MLED) o (E)re(E)dE, (4.2.1)
. €

where m(T,E) is defined by (3.2.1), o°(E) is defined by (3.2.2),
7*(E) = =(E|SS*,f*), and Q(w) is defined by (3.1.8).

Lemma 4.2.1. For all w, - < w < «,

J
s V2 w? 2
Q) = ) TEy \ 7 exp{;'%w }‘
Proof. Note from (3.1.8) that Q(w) is thz expected value of |V|, where
v ~ N](w,l). It is well known that in this case U = V2 has a noncentral

x2 distribution with noncentrality parameter %tnz. Thus

o < 2>J g
W . .
© 5/ 2 +j-1 1 '
Q) = E([V]) = EOVD) =f/a 7\ 7/ expl-30?) w2 expi-dul g,
o Lo . r(3+3)2=™

and the stated result follows after interchanging sum and integral, and

integrating term by term. [



Enter

Positive Integers d],dz,d3,d4
Positive Numbers S1,52,S3,S4

o
Is d4 even?

NO

NO

79

YES
-
9
\ Setmy = 5
I =07 NO Is d ?
sm4— { S 3even.
YES YES
. S
ERROR Set my = =
N
. ; NO o
Set t]—dz,tz—d1, Is m, 07
C.=S
172 l YES
C,=51¥55%5,
ERROR

|

CALL SUBROUTINE

a1
Set My = —5— |
Is m3”= 0?
NO N YES
ERROR

Set t]=dT,t2=d2,
C1=S1,C2=52,

C,=S,+S

37374

N

J-FUNCTION
Tset t=di,t,=dys
Set JF1 = TF 112
HF = UF a7
Cp=527534

CALL - SUBROUTINE
G-FUNCTION

Figure 4.1:

L

Set R3=1

L

CALL SUBROUTINE

J-FUNCTION
Set JF2 = TF
GF = 0.

Set R3=0

Algorithm for

Computing M(d,$)
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Is d, even? [YESY Set my = 92 || Is m, = 02 [YESH ERROR
| NO NO
NO
ERROR Is d; even? ERROR
YES
— YES: - JF* 5
ERROR ‘ Is m, = 0.}%—— Setm, = 5
LNO
1=0, J=0
Compute -
Hy=H(d13S1) J=0
Hy=H(d23S) T
N I=T+1 Print M
CALL SUBROUTINE J-FUNCTION no T T
(dsdy353,5435UM,H) Is T = my-12HESfSUM=SUMKH  #H,
. » I# | YES T
Compute CONST=( 2% ) /1! Is J =m-17N0 oo
CALL SUBROUTINE J-FUNCTION | SUM=SUM+CONST*JR
(d3+21,d1351+53,5s3JR,HR) (.
JL. 1 [CALL SUBROUTINE J-FUNCTION ]
T=1+] (d3+21+20,d4 35 1#5+S3,Ss 3 JR,HR)
SUM=SUM+CONST*JR — —
J i E— A
N0 s T=m,-17 | Jcompute cons=CH T2 (1101)]
L YES S2 \J ] 7
Compute CONST=( 7%-) /It K  J=d+1 |
{ B e J:me?P YES{ 1=0
CALL SUBROUTINE J-FUNCTION e L9=0
(d3+2J,d4;Sz+Sg,Sq;JR,HR)
SUM=SUM+CONST#JR

Figure 4.1: Continued
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Set I=0
I=0
MF=0.
YES
Is T = m3?
NO
J+d+1
I=1+1 MF= Z(g--l)MF_FSL GF
Ra+21-2 2 4 N
GF= =& GF+ JF1+JF2
S35, oSy | ) 6F= 2 [15 22 gragF140F2]
_ dj+R3+21-2 2 37k
S1+S3tS, 2
Jro= d2tRe*2l-2 4505, 2 yF
yp= d1tdotRs+21-2 0 277370
S1¥5,+5344S,, HE= d;+d,+d3+2J-2 HE
51545345,
wl |
Is J = my?
YES
PRINT M
Figure 4.1: Continued
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SUBROUTINE J-FUNCTION (ty,t53Cy,Cy;TF,UF)

Compute TF=J(t1,t2;C1,C2), UF=H(t1+t2;C1+C2)
Enter
Postive Integers t;,t,
Positive numbers C;,C,
N
Is t; 0dd? | —ESy TIs t, odd? |—YES
JNO | NO
NO 1 Is t, odd? my=(t;-1)/2 my=(t1-1)/2
m,=t,/2 mo=(t,-1)/2
YES 27 %2 2 2 )
m,=t,/2 my=t, /2
m,=t,/2 m,=(t,-1)/2
Set TF=J(],2;C1,C2)
J | UF=H(3;C;+C,)
Set TF=d(2,25C1,Cy) gl Ret0
UF=H(4‘;C1+C2) >
R1=0, R,=0
I1=1=1, JJd=d=1
\
Set TF=J(1,1;C;,C5)
Set TF=J(2,1;C1,C5) UF=H(2;C,+C,)
UF=H(3;C1+C2) Rl—], R2—1
Ry=0, R,=1 11=1=0, J=0=JJ
II=1=1, Jd=JJ=0
NO } 1sm, =17 YES } 1sm,=J7 [NO
T Vs
I=1+1 YES J=J+1
Tr=RE2U-T) 1 2 Tr=Ret2U-1) gy 2 yp
1 1 2 2
to+Ry+2(1-1) _2IT+R1+Ro+2(J-1)
U=, — UF UF= cli c, ~UF
Figure 4.1: Continued
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SUBROUTINE G-FUNCTION (t;,ts3C1,Cz,C33GF ,JF1,JF2,HF)

Compute GF=GO(t1,t2,];C1,C2,C3), JF]=J(t2,t1+] ;Cz,C1+C3)
JF2=J(t1 ,t2+] ;Cl ,C2+C3) s HF‘=H(t1+t2+]‘ ;C1+C2+C3)
Enter positive integers t;,t,
positive numbers C;,Co
L .
Ts t, 0dd? PES o Is t, odd? 2
L NO
Is t, 0dd? NO
¢ NO J, YES N
Set m; = t1/2 Set my = t1/2 Set m1=(t1—1 )/2 Set m1=(t1—1 )/2
my = tp/2 my= (ty-1)/2 my=t,/2 my=(t,-1)/2
GF=G,(2,2,1;C1,C2,C3) GF=G,(1,2,13C1,C2,C3)
JF1= \JQ,3 CZ,C +C3) JF1=3(2,2;C2,C1+C3)
JF2= J(2,3,C1,C2+C ) JF2=J(1,3;C1,C2+C3)
HF=H(5;C,+C5*C3) HF=H(4; C1+Cz+C3)
R1=0,I=II=1 R1=1,I=I1=0
R2=0,J=dd=1 R2=O,J=JJ=1
N3
GF=G4(2,1,1;C1,C2,C3) GF=64(1,1,1;C1,C2,C3)
JF1=4(,3; CZ,C +C3) JF1=J(1,2;C5,C;+C3)
JF2=0(2,2;C;;C,+C4 JF2=3(1,2; Cl,C2+C )
HF=H (4} c1+%2+% HF=H(3;C1+C,*C4
R] 0,I=II=1 R1=1,I=I1=0
R2=1,J=JJ=O R2=1,J=JJ=0
T
: 0
NO Mism, = o7 [AES Ism =12 O
T ) \
R1+2I-2
GF= R2+2J 2. GF- 2 9F2 YES GF=—¢ JﬂGF--—~ JF1
Cz C2 1
- II+2R1+2J 2 2 :
IFI=REEEI-Z gp1- L =gz v Toves
o JJ+2J-2+2R2 2 _R1+21-2 2
JF2= C,+Cs JF2+ & +C3HF JF2= T JF2- C HF
t)+JJ+2R242J-2 _TI+RT+21
HF= C1+C2+C3 HF HF C1+C2+C3 HF
Figure 4.1: Continued
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Let

2\ 2
£5(w) =(u) ) exp{- 2w } (4.2.2)
Using Lemma 4.2.1 and (4.2.1), it follows that in the component problem

where u, . is compared to u, . ,
111 T2d2

r(T) = W/'Z_ss—*) ,ZO [23r(j+%)]—]Hj(I;f*; 55%), (4.2.3)
~ 2 Jj=

where the function M(d; S) of d = (d],dz,d3,d4)’ and § = (51,32,33,84)’
has previously been defined in (4.1.1), while the function Hj(I; d;S)

is defined by

Hi(T5ds8)
exp i- 5o
- g m(I’y) 0_(v) i=] 2V1 dV dV dV dV
I v,
0 V4 V3 v i=1 1
(4.2.4)
where v = (v],vz,v3,v4)’,
v v v v v
4 4 Vq 1 Va
m(T,v) = (1- == )T, + (= - = )T, + ( — - - ))T., (4.2.5)
LA V3 1 v3 Vo 2 V3 vy 3
2v v v v v v
2 8 gl AT L IV T 4 _ 4
LY = [0 g (g g )G 3w (18 4 )G - 7D)]

Type I and Type II Component Problems

In Type I component problems, m(T,v) and oz(y) are functionally in-
dependent of vy Similarly, in Type II component problems, m(T,v) and
cz(y) are functionally independent of Vo. In these cases, (4.2.4) can

be simplified.
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Lemma 4.2.2. For any integer d > 2,

o S ol S S
exp{- ?V} 42 exp{- ?V}' 5 exp{— f;}
e V(%)) a7 - (5

X

while

@ S
i ?\7} 2 S
S 2 dv = g-[l—exp{--gz} 1.

X

Proof. The first result follows from an integration by parts, while the

second result is established by direct integration. O

For t = (t{,t,,tq)5 C = (C,C,,C ); define

1272°737° ~ 1°72°73
FJ(I,EaQ)
exps- W}
_ m{T,w) i=1 i
_S S XEJ<7ﬁWr>GW) 3 %H+1 mﬁm%m% ,(4.2.6)
I w
0 W3 W2 i=1 1
where in Type I component problems,
W w W 2W w W W
- 3 3 3 2 3 3 1,73 3
m(T,w) = (1- 2T, + (= - )T, o (w) = — [(0- =) + S (= - =),
~2s W, 1 Wy Wy 2 ~ K W, riw, W
and in Type II component problems,
W W W 2w W W W
= (1- 3 3_3 200) = —37(1- 3y + 1L (3.3
(L) = (- ATy + G - PTg 0" = — [0- ) + o G- )]

Lemma 4.2.3. Suppose that d1,d2,d3,d4 > 1, and 54,5,,53,5, > 0. 1In

Type I component problems,
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H (Ts d]+2 d2 d3,d4, S)

(=1

= L HATsdsS) -

and
H (T 2 d2,d3,d4, S)
_ 2 _ )
= 51 [F (T d2 d3 d4, 52,53,54) Fj(I, d d3 d4, SZ,S]+33,S4)].

In Type II component problems, .

Hs(T 5 dysdy#2,dg,dy 5 )
9, 2
= “é’ HJ(I’ g 5 §) = g Fj(-[; d'l ,d2+d3,d4 s S'l ,52"'53,54)

and

H (T3 d1,2 dssdy 3 S)

-2 _ )
Proof. These results follow directly from the previously mentioned fact
that m(I; Y) and oz(y) are functionally independent of V1 in Type I com-
ponent problems, and of Vo in Type II component problems. This allows

us to use Lemma 4.2.2 to provide the recursion formulas given above. O

The triple integral in (4.2.6) can be reduced to a double integral

by making the transformation:

3 1
— 4, Z = —
] W) W3

and integrating out z. Thus,
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3
(07 5r(z )t 3)
. . = 'l:
Fj(I, t;C) 3
T 1t
(L) =
2
1 vy ) 1
. zt.-1 5t,-1
s[ (mxy))Hx” T y" 2 dxdy3
2V t.4j-42
0 0 — 2 2.2 ; z
<02(x,y)>J, 2 Kw+c_‘x+c2y+c3; i=1
o (x,¥)
(4.2.7)
where

2
m{x,y) = (1-y)Ty + {y-x)T, » o"(x,y) = (1-y) + %-(y—X),
in Type I component problems, while

(.y_x) s

O]

n(x.y) = (1=9)T; + (y=x)T, 5 o2(x,y) = (1-y) +

in Type II component problems.

For j=0,1,2,...,Fj(§; 9) defines a double interated integral over
a triangular area bounded by the vertices (0,0), (0,1), (1,0). A nu-
merical quadrature procedure called TRINT [Mustard, Lyness and Blatt
(1963)], in the possession of the TRW Program Library, is used to eval-
uate this integral. The number of subintervals of equal length parti-
tioning the interval [0,1] on each axis is chosen to be 32. In this
case, it is known that the maximum error made by the quadrature formula

in approximating Fj(T; t; C) is

4 4 4
3.3114x10710 max [ 2F06Y) , 3TF0GY) | qq 27F0GY) 4
g ; 2.2

where f(x,y) is the integrand of the double integral (4.2.7).
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~ ~ ~

In using the recursion provided by Lemma 4.2.3 for Hj(T; d;S),
initial values Hj(I; 1,d,,d3,d, 5 8), Hj(I; dq,1,d3,d, 5 S) are needed for
Type I component problems with d] = fﬁ odd, and Type II component prob-
Tems with d2 = f§ odd, respectively. These can be obtained by means of
the general a1gorithm for Hj(I; d; §) to be described for use in Type
ITI component problems. Of course, for Type I component problems with
d] = fK even, and Type II component problems with d2 = fE even, the ini-
tial values Hi(T; 2,d,,d3,dy 5 S) and H;(T; dy,2,dg,dy 5 S) are specified
by Lemma 4.2.3.

Type III Component Problems

In Type III component problems, m(T,v) and oz(y) depend upon every
element of v, complicating the problem of calculation. One simplifica-

tion can be achieved by making the transformation:

v v v
oy e e L
1 2 3 4
in (4.2.4), and integrating over w. Thus
i-3 3
K2 rl 3 ) dy+i-3
e d- - i=1
Hj(I, d;S) i
17 d
1 i=1
(%)
1z z° 1 1 1
' . zdi-1 5d,-1 5d,-1
S s S (m(Xsy,Z))ZJ X ! y 2 z 3 dxdydz
. d ’
1 —t
00 0 . 2121 d;+j- 3

" ‘ — 2 \
, (02'(x,y,z):)J_ ® K————mz .,(.X’y” ’Z)+51
)

\ X+S,Y+S37+S,
(x,¥,2)

(4.2.8)
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where
m(x,y,z) = (1-2)Ty + (z-y)T, + (z-x)T5,

o (x.y,2) = (1-2) + = (z-y) + 1 (z-x).

To evaluate this three-dimensional iterated integral, a subroutine
INT3D is obtained from Stroud (1973). The procedure is based on a
16-point product Gauss-Legendre polynomial formula. The computer pro-
gram is given in Appendix B. References giving estimates of the numeri-
cal errors made by such a procedure are Ahtin (1962), Chawla (1968),

Stenger (1966), and Stroud and Secrest (1966).

Calculation of (T) and 99

Recall that

ZH
m\
Q
h
l'l'l
('D
x
o
)
nNo
Q
N} —~
— [t~
1| v
~—r [T
~—
[N’
>*
~~
M
~—
o
m

plays -a role in one of the screening methods described in Section 3.2.
Using an obvious extension of the definition of Hj(I; d; S) to the case

j = -1, we can show that

H_](T; f*; S5%)
y(T) = - .
/2n M(f*; SS*)
Further, in Type I and Type II component problems, H_](I; d; S) obeys
obvious analogues of the recursion formulas of Lemma 4.2.3, and
F ](T t; C) is computable from (4.2.7) with j = -1. It is also always
the case that H_;(T; d; $) can be calculated from (4.2.8) with j = -1

for Type III component problems. Thus, v(T) can be calculated by means

of the same techniques used to calculate T(T), except that r(T) is an
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infinite weighted sum of Hj(I; f*; 8§*%), j=0,1,2,..., while y(T) only
involves H_](I; f*; SS*).
The constant

oy = og(f*s S5%) =_£a(g)w*(§)d§,

also has a role in a screening procedure. Again, in Type I and Type II
componeht problems, oo(g; §) obeys a recursion relationship of the form

of Lemma 4.2.3. That is, in Type I component problems

.y = 1 . ). 2. :
00(d1+23d23d39d4 H §) - ] 00(2j ’ §) S'] G(dzad‘|+d3ad4 s 52:S]+S3ss )a
and
.q) = 2 X - X
00(25d2,d33d4 B §) - S_ [G(d29d3sd4 ’ 52353’54) G(d29d3’d4 ’ sts]+539s4)]a

1

while in Type II component problems,

(o)

Loy = 2 .oy 2 )
0‘0(d'| ,d2+2,d3,d4 > §) = '_E 0'0(9 ’ §) 52 G(d'l 3d2+d3 ,d4 s S] 552+S3ss4)
and
.y = 2 . - .

where G(t],tz,t3; C],CZ,C3) can be obtained from the right side of
(4.2.7) by setting T,=T,=T3=7=0. Similarly, oo(g; S) can always
be computed from the right side of (4.2.8) by setting T]= Tp= T3= j=0

for Type III component problems.

Computation of r(T), 9. (T), and Implementation of the Bayes Rule.

*p
The function r(T) can be computed exactly using the results given

in this section. In each component problem, the algorithm will decide

the type of component problem (Type I, II or III) and determine, in the
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case of Type I and Type II component problems, what initial values to
use for the computation of the HJ( f*,55*%)'s. However, the exact
value of T(T) is not really needed in order for the component Bayes rule
to make a decision. The infinite summation (4.2.3) defining T(T) con-
sists of nonnegative terms. Thus, if we calculate term by term of this
summation, starting at j=0, we need only carry out the symmation until

the signs of

a_, = MT) - or(I) 5 a, = A(T) + or(T)

are determined. Thus, in every computation of r(T) only a finite num-
ber of terms in the sum (4.2.3) needs to be computed.

Even this computation is unnecessary if the screening methods de-
scribed in Section 3.2 allow us to arrive at a decision. For this rea-
son, the algorithm for implementing each component Bayes rule starts
by calculating A(T), using the methods described in Section 4.1, plus
og = co(f*; SS*) and ¥(T), using the methods given in the present sec-
tion. These quantities are then used to implement the screening pro-
cedures of Section 3.2. Only if these procedures fail to identify an
action to be taken, is r(T) calculated. Since if a(T) > 0, the de-
cision of what action to take is restricted to choosing dO or d+, only

(T) is calculated. The expression (4.2.3) is calculated summing term
by term until it either exceeds o A(T) (in which case q_ (T) < 0 and
action d0 js taken), or until a term is reached in the summat1on which
is so small in magnitude that it is clear that further terms will not
materially change the value of the sum. (A comparison value of 10'6
is used for this decision.) Since the Hj(I; f* §§*) terms are bound-

ed, this rule can be justified as yielding an exact procedure, since
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the weights [ZJF(j+~%)]'] determine a convergent power series. If a
term less than 10'6 is reached and the sum up to that point is less
]A(T), action d¥ is taken. Similarly, if a(T) < 0, calculation

~ ~

than o~
of (4.2.3) proceeds by summing term by term until either the sum ex-
ceeds p-]IA(I)I, in which case action d0 is taken, or until summation

is stopped by a term less than 10'6, in which case action d~ is taken.

A flow chart of the full computer program MCP (Multiple Comparison
Problem) is given in Figure 4.2. The data from an rxc two way balanced
design with K observations per cell are first analyzed in the usual
fashion, producing an ANOVA table, sample cell mean matrix X, and other
informational data. After pooling the ANOVA sums of squares and degrees
of freedom with the corresponding sums of squéres and degrees of free-
dom provided by the user's prior distribution, the algorithm calculates
the constants 315 855 33 (see Section 4.1), which are common to all
component problems, and then proceeds to implement the component Bayes
rules. Because of their greater computational simplicity, Type I and
Type II comparisons are done first, followed by Type III comparisons.

In every component problem, the approach mentioned above [using the
screening procedures first, after which full calculation of qp(I) or
q_p(I) is done only if necessary] is followed. After all comparisons
have been completed, a printout of relevant data summaries and the com-
ponent decisions is given.

Examples of the use of the Bayes rule on four actual data sets are
given in Chapter 5. In addition, Chapter 5 compares the Bayes rule with
appropriately modified classical procedures (Scheffé, Newman-Keuls, LSD,

Tukey) in terms of the decisions made on the given data sets. Finally,
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an approximation to the Bayes rule based on the approximate normality
of posterior densities in large samples is described and compared to

the exact Bayes rule.
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CHAPTER V
APPLICATION OF THE BAYES RULE

In order to assess the general performance of the Bayes rule propos-
ed in this study, in comparison with the usual non-Bayesian multiple com-
parison procedures available in the two-way design, four examples are
presented with the intention that they will be somewhat representative
of situations found in most two-factor experiments. The examplies are
chosen to represent various combinations of significant or nonsignifi-
cant main effects (A,B) and interactions (AB). The results of applying
the Bayes rule in these examples, and a discussion of the performance
of the Bayes rule in comparison to other available multiple compari-
sons procedures, is presented in Section 5.1. Section 5.2 describes
an approximate Bayes rule based on the asymptotic posterior distribu-
tion of the true mean difference. Since computation of the exact Bayes
rule can be costly in terms of computer time, such an approximation
provides an economical alternative. Some concluding remarks about the

exact Bayes rule are also included in Section 5.2.

5.1. Full Application Procedure with Description and ITlustration

Using the computer program listed in Appendix B and flowcharted
in Section 4.2, the Bayes rule proposed here can be computed for the

data from any balanced rxc design.
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To usekthe Bayes procedure, we must first choose an appropriate
value of the error-weight-ratio X = KW/KKT This ratio can be inter-
preted as a measure of relative seriousness of comparisonwise Type I
to comparisonwise Type II errors.

In Waller and Duncan's (1969, 1974) work, it is suggested that for
a given o-level of 0.10, 0.05 or 0.01, the value for the *-ratio can be
taken at 50, 100 or 500, respectively. Such a correspondence between o
and X was suggested by considering the case of 2 treatments in a one-way
design. Taking F* = 4.0 as a representative F-ratio, and using F* = 4.0
in Equation (1.2.16) with values of X = 50,100,500, the resulting Bayes
t-values (t=1.715,1.988 or 2.577) are very close to the critical t-values
(t=1.645,1.960 or 2.576) obtained from.the t-distribution at a-levels of
10%, 5% or 1%. Thus with these correspondences as reference points,
lower, intermediate or higher values of X may be chosen accordingly.
For simplicity, in our applications, all examples are run at X =100.

The examples we use here are taken from well-known textbooks on
the design of experiments. To specify any prior distribution other than
the prior of indifference would reflect knowledge not available to us.
For this reason, the prior distribution chosen is the prior of indif-
ference (for which SSAp = SSBp = SSABp = SSEp =0, fy = fg=fag =T, =0).

Our first two examples are designed to illustrate the adaptive
nature of our Bayes rule. If the F-value for the interactions is signi-
ficant, the two-stage approach (see Section 1.3) views the cell
means as if they came from a one-factor design, thus permitting vari-
ous classical procedures described in Section 1.1, Chapter I to be em-

ployed.
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Example 1. The data for this example are taken from Anderson and

McLean (1974), p. 63. Five levels (r=5) of the factor A (time of auto-
matic welding cycle) and three levels (c=3) of the factor B (gage bar
setting) are considered and K=2 measurements of the dependent variable
(breaking strength of the weld) are taken for each treatment combination.

The data and its ANOVA table are given in Table 5.1 and Table 5.2 respec-

tively.
Table 5.1: Data of Example 1
Factor B
Factor A B] 82 B3 Row Mean
A] 11.00 17.00 9.00 12.3333
A2 15.00 13.00 10.50 12.8333
A3 25.50 34.00 7.50 22.3333
A4 17.00 13.00 14.50 14.8333
A5 19.00 13.00 15.00 15.6667

Column mean 17.50 18.00 11.30 15.6000 (grand mean)

Table 5.2: ANOVA of Data 1in Table 5.1

Source S5 d.f. MS F-ratio  F(0:05)
A 385.53 4 9. 38 8.82 > 3.06
B 278.60 2 139.30  12.74 > 3.68
AB 597.07 8 74.63 6.82 > 2.64

Error 164.00 15 10.93
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The results of use of the Bayes rule and various classical rules
to compare the means is summarized in the following tabular form
(Table 5.3). Note that the column headings are the sample cell means

arrayed in decreasing order of value.

Table 5.3: Comparison Results of Five

Multiple Comparisons Procedures on Example 1.

Xao %311 Xs1| %a1| %12 21| %53 *a3{*22) 42 Xso1%111%23] *13{ %33

31 bs.g 1917 {17 |15 {15 Pas| 1313 {13 |11 o 9 7.5

Rap coluelor o ur {ur | LsT|LsT|LsT| LST|LST{LST|LSTILST
Ne |ne Lne | N8 | NB [ NB{'NB [NB |NB |NB |[NB |NB |NB |NB

Ry BT I I R A
el gl 8| B| 8| B|NB |NB [NB [NB {NB |NB |NB
X T T O R L A S A
51 BlB|B|B
X LolLoIL L
41 Bl BB
X Lot L
12 Bl B|B
%1 L
e LL
a3 L

A "B" in a cell of the above array denotes that the two entries
(cell means) which define the cell are significantly different by Bayes

rule. Similarly, an "S" denotes a significant difference by Scheffé's
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method, a "T" denotes a significant difference by Tukey's HSD method,
an "N" denotes a significant difference by Newman-Keuls test and an

"L" indicates a significant difference by the LSD procedure. Looking

at the above array, it can be seen that the Scheffé method gives the
most conservative conclusions. Tukey's test gives more significant

differences than Scheffé's method. This is not surprising since the HSD
method generally is more sensitive than the Scheffé method in situations
where one 1is only 1hterested in pairwise comparisons.

It is worth noting that Newman-Keuls' method, also being an
adaptive procedure, performs more similarly to the Bayes rule than any
of the other experimentwise procedures. The only comparisonwise pro-
cedure used (the LSD at the o = 5% level), besides all the significant
differences declared by the Bayes rule, adds ten more pairs of signifi-
cance differences (such as (X51’X22)’ (X51’X42)’ (XS],X52), (X4],X]]),

., etc.) Comparing the results of the LSD, HSD and Bayes rules, gives
some support to the claim that the Bayes rule effectively provides a
compromise between the comparisonwise {such as LSD) and experimentwise

(such as HSD) approaches.

Note. In Examples 1 through 4 it should be noted that our ranking of
the means in descending order offers a convenient way to display sig-
nificant differences without specifying whether these differences are
significantly postive or significantly negative. However, it is pos-
sible that the two observed cell means show Xij > Xi‘j” and yet the

Bayes rule concludes that uij < Fortunately this event did not

U_i,j,.

happen in any of the given four examples.
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The data for this example are taken from Lindman (1976).

The data and its ANOVA table are -displayed -in Tab1eH!5:4gand :

Table 5.5.
Table 5.4: Data of Example 2
Factor B
Factor A B] 2 B3 B4 85 Row mean
A] 35.00 53.00 68.00 75.00 70.00 60.20
A2 62.00 76.00 84.00 83.00 82.00 77.40
A3 48.00 65.00 76.00 79.00 76.00 68.80
Column mean 48.33 64.67 76.00 79.00 76.00 68.80 (grand mean)
Table 5.5: ANOVA of Data in Table 5.4
Source SS d.f. MS F-Ratio F(0.05)
A 2218.80 2 1109.40 78.13 > 3.32
B 5793.20 4 1448.30 101.99 > 2.69
AB 365.20 8 45.65 3.21 > 2.27
Error 426.00 30 14.20

To be able to visually see the comparison of various

results by

these different procedures, a tabular form similar to that used in

Example 1 is utilized.
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Table 5.6: Comparison Results of Five

Multiple Comparison Procedures on Example 2.

X

23| 24| "25| *a4 22| *33) X351 *14 15 [%13) K32 (X1 | K1) Ry | o
84 |83 (82 |79 |76 |76 |76 |75 |70 |68 |65 |62 |53 |48 |35

>
><i
><I

X

L L {L L |[LT |LT-[LST|LST|LST|LST LST
Bl Bl B| B| NBf NB| NB| NB| NB| NB| NB

L |L (L |L |LT |[LT [LST{LST|LST|LST|LST
Bj B| B[ B|{ B| NB{ NB| NB| NB| NB| NB| NB

L fL JL L (LT (LT |[LST|LST|LST|LST|LST
Bl Bl B| B| NB| NB| NB{ NB| NB| NB| NB

L |L (LT |LST{LST|LST|LST
B{ By B| -B| NB| NB| NB| NB| NB| NB

L L |L |LT |LST|LST{LST
Bl B| NB| NB| NB| NB| NB

L (L (L [LT [LST|LST|LST
B! B| NB| NB| NB| NB| NB

L (L |L |LT |LST{LST{LST
B| Bj NB| NB| NB| NB| NB

L |L |LT |LST|LST|LST
Bl Bl NB{ NB| NB{ NB| NB

L |LST|LST|LST

B{ NB} NB| NB
L |LT |LST|LST
B| NB] NB| NB
LT [LST|LST
NB{ NB| NB
L LT |LST
NB| NB| NB
LT
B NB
LT

NB
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The comparative performances of the Bayes, LSD,Scheffé,Tukey,and
Newman-Keuls procedures are similar to that in Example 1. However, note
that there are now 9 comparisons where the Bayes procedure declares a sig-
hificant difference, while the LSD procedure does not, while there are no
cases where the converse occurs. Thus, the Bayes procedure is actually
more sensitive than the LSD {n this example. A possible explanation is
that the Tow (but significant) level of interaction allows the Bayes
procedure to use row and column means in arriving at a decision.

In the above example, only 16 pairs of nonsignificantly different
means are found from a total of 105 pairwise comparisons. This small
portion of nonsighificant differences is not surprising considering that
all the main effects are highly significant.

The next two examples illustrate application of the Bayes rule when
the interactions are not significant. It was noted in Section 1.3 that
classical procedures can be modified so as to compare cell means in a
two-factor additive model. For example, it is possible to modify the
Scheffé and LSD rules to apply in such situations. Because the Scheffe
rule is very conservative (as can be seen in Examples1 and 2), only the
LSD rule has been used to compare to the Bayes rule. Due to a lack of
funds (and time to write and correct a computer program), the computa-

tion for the LSD rule had to be done by hand.

Examp]e'3; The data are taken from Hicks (1973), p. 136, in which the
effect of both depth and position in a tank on the concentration of a
cleaning solution in ounces per gallon is to be determined. Concen-
trations are measured at three depths (€=3) from the surface of the

tank, 0 inches, 15 inches and 30 inches. At each depth two measurements
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(K=2) are taken at each of the five different lateral positions in the
tank (r=5). The data collected are shown in Table 5.7 and the ANOVA
table in Table 5.8.

Table 5.7: Cleaning Solution Concentration Data

Depth from Top of Tank

Position B B, B3 Row mean
A] 590.50 589.50 587.00 589.00
A, 590.50 589.00 579.00 586.17
Ag 592.00 591.00 584.50 589.17
Ay 592.00 592.00 586.00 590.00
A 588.50 592.00 584.50 588.33

Column mean 590.70 590.70 584.20 588.53 (grand mean)

Table 5.8: ANOVA of Data in Table 5.7

Source d.f. F-Ratio F é?%gs)
A 50.47 4 12.62 1.00 < 3.06
B 281.67 2 140.83 11.18 > 3.68
AB 58.33 8 7.29 0.58 < 2.64
Error 189.00 15 12.60

When the means are arranged in descending order, the Bayes rule de-

clares two nonsignificant groups. The first group consists of the first

X

10 means - X ]2,‘X2257X5]., The second

31> %415 Kgp0 X500 X305 X975 Xops

group consists of the remaining. five means - ng,’X43;>X33, 253 and-X23.

Any mean from the first group is significantly larger than any mean from
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the second group except three pairs - (221’X43)’ (222,X13) and

(X22,X43). The results of the Bayes rule and the modified LSD describ-

ed in Section 1.3 are shown in_Table 5.9.

Table 5.9: Comparison Results of the Bayes Rule
and the Modified LSD Rule on Example 3

X311 % 41| Xa2! ®s2l X32| X11) %21) X121 %22| *51 %13] ¥4z X33| ¥53| %23

X3y 592 ! | B|B{B|B]|B
LoL b b b

X4q 592 BlB|B|B|B
L LoLoL Lot

X,, 592 BI!B|B{B|B
42 L LoLobL L

X... 592 BlB|B|B/|B
52 T T TR R ]

X., 591 B|{B|B|B]|B
32 TR I T
X;y 590.5 BB |B|B|B
T T T T

Xpq 590.5 B 5|8 |8

X12 589.5 B|{B|B|B/|B
LoLoL Lol

Xy, 589 BB |B
L

R, 588.5 BB !B !B |B
T T

X, 587
X,, 586

43 )
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Note that the Bayes rule dec]ares-significance in some cases where
the modified LSD does not and vice versa. A possible explanation for
such disagreement is that even if the interaction is not significant,
the Bayes rule can still use the information provided by the cell means
together with row and column means in arriving at a decision. The modi-

fied LSD can only use row and column means.

Example 4. The data are taken from Lindman (1976). The data with r=3,

c=5, K=3 and its ANOVA table are shown in Table 5.10 and 5.11, respec-

tively.
Table 5.10: Data of Example 4
Factor B
Factor A B B, By By By  Row mean
A] 17.00 9.00 15.00 14.00 14.00 13.80
A2 12.00 10.00 4.00 6.00 11.00 8.60
A3 12.00 6.00 11.00 4.50 12.00 9.10

Column mean 13.67 8.33 10.00 8.17 12.33 10.50 (grand mean)

Table 5.11: ANOVA of Data in Table 5.10

Source S5 d.f. MS F-Ratio  F(0:05)
A 246.90 2 123.45  10.69 > 3.32
B 214.00 4 53.50 4.63 > 2.69
AB 185.60 8 23.20 2.01 < 2.27

Error 346.50 30 11.55




The comparative results of the Bayes rule and the modified LSD

rule are very similar to that in Example 3, as shown below.

Table 5.12:

Comparison Results of the Bayes Rule

and the Modified LSD Rule on Example 4

107

Y1113 %15 %1a] %21 %311 *35] *25| X33 [ %22 | *12 [ *24| %30 | ¥34| %25
(17) 115 (18 |14 |12 12 {12 (11|11 |10 9! 6] 6 |4as]a
X1 BiB|B|B|B|B|B|BlB|B|SB
L T U T T O R T F R T T P 1Y
K13 B| B BlB| BB
L L Lot L |o
X15 B B B|B|B| B
LoIL T T T T T TR F

X BlB|B|SB
14 L Lol |

X BlB|B|B
21 L L N
X B! B|B| B
31 Lo|L LoL (L (L
X BB |B|SB
35 L L L L
% B | B
25 L L o{L L

X3 B
X

22 ]

X B | B

12 Lo L
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In Examples '3 and 4, the interaction is not significant by the
usual F-test. Nonetheless the Bayes rule would still use ‘the informa-
tion provided by the cell means data to determine the decisions. The
modified LSD does not use any cell data at all. Thus the effect from
the cell mean differences for the Bayes rule can alter the decisions
made differently by the LSD rule.

Most of the computation time for Examples 1-4 is spent on the numeri-
cal procedures for calculating double or tripleintegrals for,T(I) in deter-
mining the component Bayes rules. The execution time in terms of the
CPU (Central Processor Unit) for the above four examples are estimated
to be 1270,1080,1510,1620 seconds, respectively, when CDC 6500 of the
Purdue MACE system is used. For our four examples, the following table
indicates how the screening procedures of Section 3.2 have succeeded in

reducing the total amount of computation time.

Table 5.13: Summary Statistics of Examples

Number of Component Problems Computed by:
Component st nd
Type 17" Screening 2 Screening q, or q_p Total

I 11 3 1 15
Example 1 Il 21 8 1 30
ITI 34 15 11 60
I 5 22 3 30
Example 2 II 0 15 0 15
ITI 12 42 6 60
I 5 10 0 15
Example 3  II 30 0 0 30
I11 20 20 20 60
I 19 6 5 30
Example 4 II 6 5 4 15
ITI 30 19 11 60
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It can be seen that due to the high computation cost of implement-
ing the exact Bayes rule, an extensive study of its properties on simu-
lated data is unfeasible. However, an approximate Bayes rule which be-
haves similarly to the Baves rule.is . given:in the next sec-

tion.

5.2. An Approximate Bayes Rule; Summary and Conclusion

The posterior distribution of n, given the sufficient statistic
(X,SSE) is a normal distribution.with posterior mean
E(n|X,SSE) = a(T(X),S8*%,f*),

and variance

Var(n|X,SSE) = [ o2 (E)n(E|SS*,f*)dE = o2 (S5*%,f*). (5.2.1)
e T T T -

It is known from Johnson (1967, 1970) that after suitably centering

and scaling, the scaled posterior distribution of

L2 (S5%,T%)17 2 (n-a(T(X),55%, £%))
has an asymptotic (as rcK - «) expansion with fhe standard normal density
as the leading term. Thus the posterior distribution of n given (X,SSE)
can be approximated by the N1(A(T(X),§§*,f*),02(§§*,f*)) distribution.
Using this approximation for the posterior density, the functions qp(I)
and q_p(]) in (3.2.4) can be approximated by
ag(T) = [ aN (n]a(T(X),55%,£%),0(

- Co

SS*,f*))dn

t ¢ [ InlNy(n[8(T(K),SS%,F%) 07 (SS*,F%) )dn,  (5.2.2)

with ¢ = p,-p.
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Since both A(I(X),§$*,f*),02(§§*,f*) are constants given the data
(X,SSE), the approximate Bayes rule can be derived exactly as in the
case of Section 3.1 where all the oi,og,ogB and og were assumed known.

Thus from (3.1.14) the approximate Bayes rule @*(T(X)) has the form

(1,0,0), & > t*(c%)2
e* (T(X)) = (0.1,0), [a] < t*(c?)% , (5.2.3)
(0,0,1), A < -t*(¢2)% ,

where A = A(I(X),§§*,f*),02 = 02(55*,f*), and t* is the unique solution
of the equation given in (3.1.15).
The computation of such an approximate Bayes rule ¢* 1is straight-

2

forward since the computations of A and o~ are direct applications of

the algorithms described in Section 4.1. Indeed, it can be seen that

2_2 1 1
"= x Lb1+F(]‘5j .3 )b2+E(]'61‘ ; )b3], (5.2.4)
1°-2 12
where,
. M(fK,fﬁ,fKB,f;-Z;SS*)-M(fK,fﬁ,fKB+2,f;-4;SS*)
* * * X *
1 M(fA,fB,fAB,fe,SS ).
- M(fK,fg,fKB+2,f;—4;SS*)-M(fK,f§+2,fKB,f;-4;SS*) (5.2.5)
* * * * . E3 .
2 M(fA,fB,fAB,fe,SS *)
* * * Y, - * * - *
- M(fA,fB,fAB+2,f; 4,35?) M(fA+2,fB,fAB,f; 4;SS*)
* * * *x . *
3 M(fA,fB,fAB,fe,SS )

with f*, SS* defined by (2.1.19) and M(d,S) by (4.1.1).

The approximate Bayes rule ¢* of (5.2.3) offers us a very economi-
cal, alternative way to arrive at insight into the relationships of the
cell means,since the expensive computation 6f r(T) for the exact Bayes

rule ¢ can be avoided. Indeed, such an approximate Bayes rule ¢*
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performs quite similarly to the exact Bayes rule ¢. The amount of dis-
crepancy between the decisions made by the rules ¢* and ¢ depends
largely on how frequently states of nature occur which result in marginal
cases (qp(I) and q_p(]) close to 0) for the Bayes rule in the component
problems. In particular, the approximate Bayes rule appears not to be
very sensitive in detecting small differences among cell means. The
disagreement between ¢ and ©* can be substantial when one or more of
the main effects or interactions are not strongly significant.

We have compared the approximate Bayes rule ©* with the exact
Bayes rule on each of the four examples discussed in Section 5.1. The

extent of disagreement in their conclusions is summarized below.

Table 5.14: Discrepancy Between ¢ and ¢*

# of Disagreements in- Total # of Total # of
Type I - Type Il .  Type III ggﬁgg:?ggns Disagreements
Example 1 0 0 2 105 2
Example 2 3 0 1 105 4
Example 3 3 1 3 105 7
Example 4 0 0 3 105 3

Note that in Example 3,where the greatest disagreement occurs, both the
main effect of A and the interaction term are insignificant:

We have previously mentioned that due to the expensive computation
of the Bayes rule, a simulation study to assess the general performances
of the Bayes rule in comparison with the classical multiple comparisons
procedures is not feasible. However, a simulation study on the approxi-

mate Bayes rule could be done with relatively 1ittle cost. Since the
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approximate Bayes rule ¢* seems to possess the same properties as the
exact rule ¢ , such a simulation would give insight into the properties

of both rules, v and ¢*.

Summary and Conclusion. In this study we have shown that the Bayesian

procedure proposed by Waller and Duncan (1969, 1974) for the symmetric
multiple comparisons problem in one-factor designs can be extended to give
an adaptive Bayes procedure in two-factor designs (or in higher-factorial
designs if the pairwise comparisons problem is of interest to the user).
In the exact formulation of the Bayes rule, the Bayesian solution
involves exceedingly complex integrations. which are costly (in terms
of computer time) to compute. By analytic simplification and by the
introduction of two screening procedures (given in Sections 3.2), compu-
tation time has been reduced by an order of magnitude 1/2400. Never-
theless, one disadvantage of the Bayes rule that has prevented studies
of its properties on simulated data is the high cost of computing time
for implementing the procedure.

Neverthless, it has been shown by examples that in cases where
there is highly significant interaction, the Bayes rule performs similar-
1y to the Waller-Duncan procedure in one-way designs in terms of its
sensitivity relative to Tukey's HSD, the Scheffé method, the LSD and the
Newman-Keuls test. But when the interaction is only weakly present, the
Bayes rule can take advantage of the information provided by the cell

mean differencesiij-i so as to be more sensitive in some cases than

i’j~
the LSD classical one-factor rule, or even the modified LSD rule for an
additive model. Because of the high computational cost of using the

Bayes rule, we have offered an approximate Bayes rule which is
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considerably easier to compute. The algorithms that are given in Sec-
tion 4.1 suffice to compute this approximate Bayes rule in almost all
practical cases. Since the approximate Bayes rule appears to behave
very similarly to the Bayes rule, it is hoped that this rule will prove
to be an attractive alternative to the exact Bayesian solution to the

symmetric multiple comparisons problem.

Questions for Future Research. The Bayes procedure proposed in this

thesis exhibits two characteristics which are worth emphasizing again.
The first characteristic is the dependence of the Bayes rule on the ex-
perimental F*-values rather than on the number of treatment cell means
to be compared. The second characteristic of interest for the proposed
Bayes rule is that prior information may be easily incorporated into the
analysis by pooling techniques. With these advantages in mind, the
following questions of practical interest invite similar Bayesian treat-
ment.

In experiments comparing rxc treatments in which one of the treat-
ments is considered to be a control, it is assumed that one is interest-
ed in comparing the control with each of the other (rc-1) treatments.
The proposed Bayes ruie will not be applicable here since the exchange-'
able prior assumption is not satisfied. But if the control is not one
of the treatment combinations considered in the experiment, it is pos-
sible to derive a Bayes rule for the multiple comparisons of the con-
trol with each of the rxc treatment combinations. Here, the grand mean
difference He~H would have to be assigned an appropriate prior, which
subsequently results in a more complicated integral equation to be solv-

ed in order to determine the Bayes rule.
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We have so far considered univariate populations only. Quite often,
we may collect several kinds of measurements (say, p) from each experi-
mental unit. Suppose one is interested in pairwise comparison of treat-
ment mean vectors. It is possible to carry out p separate univariate
analyses of variance, one for each of the p characteristics considered,
but we sacrifice some power in not making use of the correlations among
the p variates. If a multivariate (p-dimensional) analysis of variance
is performed, we now have two different kinds of multiple comparison
problems to be considered: (1) Which populations differ? (2) With
respect to which of the p characteristics do the populations differ?

The Tatter problem does not, of course, occur in the univariate (p=1)
situation.

The approxfmate Bayes rule developed in the beginning of the
present section can be used to give a procedure for constructing simul-
taneous interval estimates for all the true mean differences, using
their asymptotic joint posterior distribution.

Other research topics related to the present Bayesian development
of the multiple comparisons problem that are worth exploringare: ranking
the main effects in additive analysis of variance models, multiple
comparisons of regression functions, multiple comparisons of the tetrad
differences or interactions in two-way balanced designs, pairwise com-

parisons of tetrad differences.
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APPENDIX A

THIS APPENDIX PROUVIDES T# UALUES FOR VARIOUS LEUELS OF
Ks THE ERROR WEIGHT RATIO. THE PROGRAM WHICH COMPUTES

THESE UALUES IS LISTED AFTER THE TABLEAU OF DATA.

ERROR-WEIGHT RATIO

5.000.
10.000
20.000
30.000
50.000
70.000
100.000
150.000
200.000
300.000
500.000
r00.000
1000.000
2000.000
3000.000

T-STAR VAL.UE
.6360272846
.9014815863

1.1589215716

1.3053535081

1.4851958086

1.8007734702

1.7207832524

1.85403894349

1.9467111563

2.0745128132

2.2311160714

2.3316784725

2.4361181524

2.6330191921

2.7446730662
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PROGRAM TSTARCINPUT, DUTPUT, TAPELQ)

303636 R 36 330 IR N HH BN KN

* *
*® T-STAR *
= *

36 3 F6F 56 % W KK KK F NI HHKR

R I 36 KRNI S S 26 2696 I 0636 I 36 F 36 IEIE3E I I 36 363 36 3636 R A K WA R IR IR RXH KX ¢

vTHIS PROGRAM COMPUTES THE.T-STAR VALUE FOR THE INTEGRAL

EGUATION K1(I+)+K0(I-)=0L0G

****i*************%***ﬁ**********************************'

DIMENSION C(15)sWAC3)sX(1)

REAL CsHA

EXTERNAL QFUNCT

DATA C/5.0,10.0,20.0,30.0550.0570.05100.0,150,0,200.0Cs
300.0,500.05,700.0-1000.05,2000.053000.0/

INPUT INITIAL UALUE FOR THE. ITERATIONS
X(1)=1.25

SPECIFY THE PARAMETERS FOR SUBROUTINE ZSYSTM. ZSYSTM IS
A SUBROUTINE TO DETERMINE THE ROOTS OF A SYSTEM OF N
SIMULTANEQUS MNONLINEAR EQUATIONS IN N° UNKNOWNS.

EPS=1.0E-12
NSIG=10

N=1
ITMAX=1000
IER=0

WRITE (1053)

DO 10 I=1,15,1

CONT=C(I)

CALL ZSYSTM(GFUNCT;EPS,NSIG,N,XpITMQX,NﬂyCUNTyIER)
WRITE (10,2) CONTsX(1)

X(1)=K(1)+0.2

CONTINUE

FORMAT (/520XsF10.3510%,F15.10)

FORMAT (18X, *ERROR-WEIGHT RATIO*,8X»#T-STAR UALUE*)
STOP

END

REAL FUNCTION QFUNCT(XsCONT)

REAL X{1), CONT,s FX

CALL MDNOR(X(1)sFX)

GFUNCT (1.—-CONT)#(EXP(—(X(1)*%x2)/2,}/2.506628274631)
+(1,-CONT )X (1)*FX+CONT*X(1)

RETURN

END
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APPENDIX B

PROCRAM HﬁIN(INPUT:DUTPUT:TﬁPES=INPUTiTﬁPES=UUTPUT)

R FHBAHRERERTRRREEER

* *
%  MAIN PREGRAM =
*® *

REEXLHXERFXXRIXHFXEEN
T3 6 T3 N I G R 3 I I I 36 W3 H H R IO T H WX ITWH IR NR R NR

THIS PROGRAM COMPUTES THE COMPONENT BAYES RULES FOR THE
MULTIPLE COMPARISONS PROBLEM IN A TWO-WAY BALANCED DESIGN.
IT WILL READ DATA,PRODUCE .AN ANOUA TABLE, SAMPLE CELL MEAN:
MATRIXs AND OTHER INFORMATIONAL DATA. AFTER POCOLING THE
ANOUA SUMS OF SQUARES AND DEGREES OF FREEDOMS WITH THE
CORRESPONDING SS°S AND D.F.’S PROVIDED BY THE USER’S
PRIOR DISTRIBUTION. THE FULL IMPLEMENTATION OF THE
COMPONENT BAYES RULES FOR EACH OF THE TYPE I,TYPE II,

TYPE ITI COMPARISONS WILL PROCEED. THIS LISTING IS
INTERNALLY DOCUMENTED.

R H AR R R R AR IR DX H R H R R IR A AR R ERR IR HEHRTRE -

DIMENSIDN Y(10)sCMEAN(10510)5CUARC10,510)
DIMENSION ROWMEANC10),COLMEANC10)
DIMENSION FCRIT(3)

GLOBRL UVUARIABLES *®

INTEGER ILEVEL » JLEVEL s KCELL

INTEGER IDECIDE, MULTI»MULTZ2

REAL QRs 3Bs OCs QEs 5SAs SSBs SSCs SSE»

! T1:T25 T3,FIsFJs FKs FKKs FAP, FBP, FCPs FEP,
H EXPAs EXPBs EXPCs EXPEs SUMAL s SUMA2, SUMA3
REAL HEIGLs HEIG2s HEIG3s RMM» RMAs RMBs RMC
REARL SIGMALs SIGMAZ2s SICMA3

REAL RESULT1,RESULT2sRMFC1,RMFC2

REAL SSAP» SSBP» SSCPs SSEP, SSSUB»s SSSUM

REAL TSUBs EXSUBs FSUBs SASUBs FLAGLs FLAGZ
REAL CONST1,CONST2> CONST3

COMMON ~STATS~- QA 3Bs QC» BEs SSA» SSBs SSC» SSE,
1

T1,T25T3s FIsFJsFKs FKKs KK

"COMMON ~EXPON/  EXPA, EXPB» EXPC» EXPE, SUMG1, SUMA2, SUMGS3

COMMON ~WEIGH” WEIG1sWEIG2s WNEIG3sRMM

COMMON ~SIGMA- SIGMAL, SIGMAZ2s SIGMA3

COMMON ~DRULE~- TIDECIDEsRESULT1,RESULTZ

COMMON ~SUBST~ TSUB»>FSUBs EXSUBs SSSUB»> SSSUMs SASUB
COMMON ~/MULTS~ .CONST1,CONST2,CONST3,MULT1,MULTR2
COMMON ~FLAGS- FLAG1,FLAG2

EXTERNAL G»GSs FFO» FFOSs FFKKy FFKKSs Ps PPs 2
LoCaAaAL UARIABLES *
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INTEGER INCRMNTs ILIMIT, JLIMITs NDIV

REAL CONSTs OK1,s OK2, FODDs FMM

REAL SUMs AUE, SUM2s ASUM2» BSUMZ, CSUM2s GRAND,
! MSAs MSBs MSC» MSE s FUALA, FUALBs FUALC
REAL INT3D

READ IN THE DESIGN MATRIX AND # OF OBS PER CELL

READ (55500) ILEVEL,JLEUEL,KCELL
RERD (3,519) (FCRIT(I)»I=1,3)

WRITE (6,501)
WRITE (B,502)
WRITE (6,503)

PRODUCE FLOATING POINTS TO ACHIEUE EFFICIENCY

FI=FLOAT(ILEVEL)
FJ=FLOAT (JLEVEL)
FK=FLDAT (KCELL)

COMPUTE DEGREES OF FREEDOM FOR ANOUA'

QR=FI-1.
@B=FJ-1.
(QC=0A=QB
QE=FI*FJ=(FK-1.)

COMPUTE OFFTEN~USED CONSTANTS TO SAUE COMPUTING TIME

EXPA=QA/2.-1.
EXPB=QB/2.-1.
EXPC=QC/2.-1.
EXPE=RE/2.-1.
SUMO1=(@B+GBC+RAE-1.)2.
SUMR2=(QR+QAC+QE~1. ) 2.
SUMA3=(RA+AB+QC+JE~1.) /2.

READ IN SAMPLES FOR EACH CELL
SAMPLE CELL MEANS ARE COMPUTED

DO 100 I=1,ILEVEL,1
DO 200 J=1,JLEVEL,1

READ (5,519) (Y(K)sK=1,KCELL)
CALCULATE CELL SAMPLE MEANS

SuM=0.

DO 1 K=1,KCELL,1
SUM=SUM+Y (K>
CONTINUE
AUE=SUM-FK

CALCULATE CELL ERROR UARIANCES

SumM2=0.,

D0 2 K=1,KCELL,1
SUM2=SUM2+Y (K) =Y (K)
CONTINUE

CUARCI» J)=5UMR-FK*AUE*AUE
CMEANCI, J)=AUE

200 CONTINUE
100 CONTINUE
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COMPUTE ROW AND COLUMN ‘MEANS. FOR THEETNU-NQY

DO S I=1,ILEVELs1
ROWMEANCI}=0.
CONTINUE

DO 6 J=1»JLEUEL, 1
COLMEAN(J)=0.
CONTINUE

DO 8 I=1,ILEVEL,1
DO 9 J=1,JLEVEL, 1

ROWMEAN( I)=ROWMEANC I )+CMEANCT 5 J3

CONTINUE

ROWMEAN (I )=ROWMEANCI) /FJ .

CONTINUE )

GRAND=0.

DO 11 J=1,JLEVELs 1

DO 12 I=1,ILEVEL,1
COLMEAN(J)=COLMEAN(JI+CMEANCI, J3
CONTINUE
COLMEAN(J)=COLMEANC(JI/F1
GRAND=CRAND+COLMEAN(J>

CONTINUE

GRAND=CRAND-F J

COMPUTE ALL SUMS OF SQEUARES FOR THE ANOUA

§5A=0.
§SB=0.
SSC=0.
SSE=0.
ASUM2=0.
BSUM2=0.
CsurMe=0.

DO 20 I=1,ILFUEL,!

DO 30 J=1sJLEVEL,1
BSUM2=BSUM2+COLMEAN(J) *COLMEANC(J)
CSUM2=CSUM2+(CMEAN(Is J)~COLMEAN(J)I-RONMEANCI ) +GRAND ) *x2
SSE=SSE+CUAR(Is J)

CONTINUE
ASUM2=ASUM2+ROWMEAN(I ) *ROWMEANCI)
CONTINUE

SSA=F J#*FK= (ASUM2~F I *GRAND*GRAND)
SSB=F I #FK%* (BSUM2/F I-F J*GRAND*GRAND)
SSC=FK=CSuUM2

COMPUTE THE MEAN-SRUARES FOR THE ANOUA

MSA=SSA-0A
MSB=55SB-03B
MSC=SSC-QC
MSE=SSE-QE

COMPUTE THE F-UALUES FOR THE ANOUR
FUALA=MSA~-MSE

FUALB=MSB~MSE

FUALC=MSC-MSE

PRINT THE ANOUA TABLE FOR- THE TWO-WAY
WRITE (65510}

WRITE (6,511}
WRITE (6,512) SSAs QA MSAs FUALASs FCRIT(1)
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WRITE (8sS513) SSB»&B,MSB, FUALB,FCRIT(2)
WRITE (6s514) S5C,QC,MSC,FUALC, FCRIT(3)
WRITE (6,515) SSE,QEsMSE

WRITE (6,526)

DD 40 I=1,ILEVEL,1 :
HWRITE (6,520) (CMEAN(I»J}sJ=1,JLEVEL),RONMEANCI)
CONTINUE

WRITE (65327)

WRITE (655203 (COLMEAN(J)sJ=1, JLEUEL).,GRAND

INPUT THE USER’S PRIOR INFORMATION IN TERMS OF SUMS OF SQUARES
SQUARES . ESTIMATES AND DEGREES OF FREEDOMS FROM THE PREVUIOUS
EXPERIMENTS

READ. (5,504) SSAP,SSBP, SSCP, SSEP
READ (5,504) FAP;FBP,FCPsFEP

COMBINE THE SUMS OF SQUARES FROM DATA AND FROM PRIOR
INFORMATION BY POOLING TECHNIGQUES.

SS5A=5SA+SSAF
SSB=SSB+SSBP
SSC=SSC+SSCP
SSE=SSE+SSEP

QR=QA+FAP
QB=QB+FBP
QC=QC+FCP
QE=QE+FEP

COMPUTE THE EXPECTATION OF THE MEAN FUNCTION

THE ALGORITHM TO CALCULATE M-FUNCTION DEPENDS ON THE INTEGER
UALUE OF QE. WHEN QE IS EUEN.SUBROUTINE RMFC1 IS USED.
OTHERWISE,RMFC2 IS USED FOR ODD QE.

IF (AMOD(QEs2.).EQ.1.) GO TO 45
RMM=RMFC1 (QA,s @B, AC; GE)
RMC=RMFC1 (BAs QB> BC+2., AE~2. )
RMB=RMFC1(BA, @B+2.,QC, QE-2.)
RMA=RMFC1 (QA*2.,0B,QC, QE-2. )
GO TO 48

RMM=RMFC2(QA~-2.,3B/2.,QC 2., QE 2. )

RMC=RMFC2(EA/2.sBB/2.sQC/2.+1.,QE/2,-1.)
RMB=RMFC2(Q8A/2.,3B/2.+1.,0C/2.,0E/2.~1.)
RMA=RMFC2(BA/2.+1.58B/2.5AC/2.,0E/2,~1.)

THE MATCHIMG CONSTANT FOR THE POSTERIOR DISTRIBUTION. .
IS D-STAR=1.0-/RMM.

COMPUTE THE THREE WEIGHTING FACTORS.

HEIG1=(RMM-RMC)~/RMM
WEIG2=(RMC-RMB) /RMM
WEIG3=(RMC-RMA)/RMM

COMPUTE THE EXPECTATIONS OF THE THREE SIGMA FUNCTIONS
COMPUTE THE INTEGRAL OF SIGMA I FUNCTION

NDIU=32
FLAGL=1,
FLAG2=0.
TSUB=T2
SSSUB=SSB
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EXSUB=EXPB
SQESUB=5SUMAL
S585UM=55A+5SC
FSUB=F1I

IF (AMOD(BAs2.).EQ.0.) GO TO 150
MULT1=CINT(BA)-1),2
CONST1=GAMMA(SUMAE3)/SART (FK)
SIGMAL=CONST1=INT3D(Z)/RMM

GO TO 180

MULT1=INT(QA) 2-1

CONST1=GAMMAC(SUMAL ) ~SART (FK)

OK1=2, #*CONST1*(TRINT(Gs NDIU)-TRINT(GS, NDIU))/SSA
IF (MULT1.EQ.0) GO TO 175

CONST=CONST!

DO 170 MM=1,MULT1,1

FMM=FLOAT (MM)

CONST=SQESUB*CONST

EXPC=EXPC+1.

SQSUB=S@SUB+1.

OK2=2. 0% (FMM=0IK1-CONST*TRINT (GS, NDIU) ) /554
0K1=0K2

CONTINUE

SIGMA1=0K1/RMM
EXPC=EXPC-FLOAT(MULT1)

COMPUTE THE INTEGRAL OF SIGMA II FUNCTICN

FLAGI=0.
FLAG2=1.
TSUB=T3
FSUB=FJ
EXSUB=EXPA
58SUB=S5A
SSSUM=SSB+5SC
SASUB=SUMA2

IF (AMOD(Q@Bs2.).EQ.0.) GO TO 190
MULT2=(INT(Q@B)~-1)/2 ‘

‘CONST2=GAMMA(SUMA3) /SART(FK)

SIGMAR=CONST2=INT3D(Z)/RMM

GO TO 250

MULT2=INT(@B) 2-1

CONST2=CAMMA(SUMA2) ~SART (FK)
OK1=2,*CONST2:%(TRINT(G, NDIU)-TRINT(GS, NDIU) 3/SSB
IF (MULT2.EQ.0) GO TO 220

CONST=CONST2

DO 215 MM=1,MULT2,1

FMM=FLGAT (MM)

CONST=SQSUB*CONST

EXPC=EXPC+1.

SQSUB=SQSUB+1.

0K2=2. 0% (FMM*0K1-CONST*TRINT(GS,NDIU) )~SSB
OK1=0K2

CONTINUE

SIGMA2=0K1-RMM
EXPC=EXPC-FLOAT(MULT2)

COMPUTE THE INTEGRAL OF SIGMA III FUNCTION

FLAGL=1,
FLAG2=1.
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CONST3=GAMMA(SUMR3)/SART (FK)
SIGMA3=CONST3*INT3D(Z)/RMM

WRITE OUT THE POSTERIOR MEANS AND SIGMA FUNCTIONS.

HWRITE (B5528)

WRITE (6,529) RMM,RMCsRMBsRMA
WRITE (6:530)

WRITE (Bs531) WEIGL,WEIG2sWEIG3
WRITE (B,532)

WRITE ¢Bs533) SIGMAL,SIGMAZs SIGMA3

PREPARE T1,T2»T3 STATISTICS FOR MULTIPLE COMPARISONS
FOR EACH PAIR IN EACH TYPE

PERFORM TYPE I COMPARISONS FIRST

WRITE (65516)
WRITE (B6,523)

FLAGL1=1.
FLAG2=0.
FSUB=F I
SSSUB=SSB
SSSUM=5SA+SSC
EXSUB=EXPB
SQASUB=SUMBA1

DO S0 I=1,ILEVEL,1
JLIMIT=JLEVEL-1
DO 51 J=1,JLIMIT,1
INCRMNT=J+1
DO 52 JJ=INCRMNTs JLEUEL, 1
T1=(CMEAN(I, JY)-CMEANCI, JJ})/1.414213562
T2=(COLMEANCJ)-COLMEAN(JJ) ) 71.414213562
‘TSUB=T2
T3=0.
CALL TYPEI
WRITE (6,522) I,J»I»JJ»T1lsT2sRESULTL,RESULTE, IDECIDE
CONTINUE
CONTINUE
CONTINUE

DO ALL TYPE II COMPARISONS

WRITE (B5517)
WRITE (B,524)

FLAG1=0,
FLAG2=1.
FSUB=FJ
EXSUB=EXPA
SSSUB=5SA
SS5UM=SSB+SSC
SQSUB=SUMOZ

DO 60 J=1,JLEVEL,1
ILIMIT=ILEVEL-1
DO 61 I=1,ILIMIT,1
INCRMNT=I+1
DO 62 II=INCRMNTsILEVEL,1
T1=(CMEANCI, J)-CMEANCII, J))1.414213562
T3=(ROWMEANC(I)-ROWMEAN(II})~1.414213562
TSUB=T3
T2=0.
caLL TYPEII
WRITE (B,522) IsJsIT1»JsT1, T3, RESULTLs RESULT2s IDECIDE
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500

62
61
69

COl
CONTIN
CONTIN

DD ALL

HWRITE
HRITE
FLAGL=
FLAGZ2=

DG 70
Do ri
INCR
DO
Do

73
[t
7l
70

Cco
co
CONTIN
CONTIN

FOLLOW

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

501
s02
503
504
S16
511
1
Si2
513
514
515
S1i6e
517
518
o518
520
521

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

FORMAT
'

522 FORMAT
[]

523 FORMAT
[]

524 FORMAT
[]

525 FORMAT
[]

526 FORMAT

527 FORMAT

528 FORMAT

529 FORMAT
]

530 FORMAT

. 531 FORMAT

532 FORMAT
533 FORMAT
]

"sTOP

FORMAT
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NTINUE
UE
UE

TYPE 11I 'COMPARISONS

(6,518)
(6,521)
1.
1.

I=1,ILIMIT,1

J=1sJLEVELs 1
MNT=I+1

v2 II=INCRMNTs ILEVELs1

73 JJ=1,JLEVEL,1

IF (JJ.EQ.J) GO TO 73
Ti=(CMERAN(Is J)-CMEANCLI, JJ)J)-1,.414213562
T2=(COLMEANCJ)~COLMEAN(JJ)),1.414213562
T3=(ROWMEANCI)-ROWMEANCII)I~1.414213562
CALL TYPEIII L
HRITE (6,525)IsJ>II»JJsTly T2»T3>RESULT1sRESULTZs IDECIDE
NTINUE

NTINUE

UE

UE

INGS ARE FORMAT STATEMENTS

(1X,312)

(1Xs*THIS PROCRAM PERFORMS MONTE. CARLO SIMULATIONS#=)

(1X,* ON THE MULTIPLE COMPARISONS PROBLEM:#*)

(1Xs* OF THE TWO-WAY CLASSIFICATION BALANCED DESICGN*)

(1X,4F8.2)

(/75 1Ks #ANOUA TABLE FOR THE TWO-WAY LAYOUT*)

(BXy #*SOURCE#*5 14X 5¢55%, 9X5 D F . %5 1 1 X5 ¥MS%, X,

#*F~-UALUE#*, 8X, *F-CRITICAL *}

(1Xs*A MAIN EFFECTS%*sF15.4,F10.1,2X,3(F14.4))

(1Xs%B MAIN EFFECTS*,F15.45F10.1,2X,3(F14.4))

(1X, *AB INTERSECTION#sF14.4,F10.152X»3(F14.4))

(1X,* ERROR%,8XsF14.4,F10.1,2X,F14.4)

(775 1%s#*ALL PAIRWISE COMPARISONS OF TYPE Ix)

(r7s 1Xs #ALL PAIRWISE COMPARISONS OF TYPE II%)

(r751X%s #*ALL PAIRWISE COMPARISONS OF TYPE III%)

(1X, 10F6.23

(1X»5F10.4»5XsF10.4)

(775 18s % COMPARISON OF #s 1X, *T 1%, 5X, #T2%, 5X,

#®T 3%, 7Xs ¥~ 1%, 5K, #.—2%, 6Xs *DECISION*)

(/s 1Xs 1H(s 125 1Hs 5 I25 1H) 5 2X5 1H(s I25 1Hs 5 I2s
1H)s2(F12.6)s2(E14.6)52Xs I2)

(/75 1Xs % COMPARISON OF #,BX, %T1%s 10X, *T2%,

10K, %L =13, 10Ky %L—2%, 3X, #*DECISION*)

(//51Xs % COMPARISON OF #,BXs#T1%, 10X, *T3%,

10K #L~1%, 10Xy %L ~2%, 3X, *DECISION=)

(/5 1Xs IH(5 I25 1Hs 5 I25 1H) s 2Xs 1H(s I25 1Hs 5 I25 L1H)»

3(F11.8),2(E14.6):2Xs I2)

(751X #*THE OBSERUED MEANS ARE IN MATRIX FORM#%)

(1Xs7)

(755X, *THE MEAN COMPONENTS INFORMATION IS GIUEN®*)

(10Ks #RMM=%,E13.65 10X, *RMC=%,E13.65 10X>

*RMB=%,E13.65 10X» *RMA=%,E13.6)

(/755¥s *THE THREE WEICHTING FACTORS ARE GIVEN*)

(10Xs *HEIGHT#1=%,F13.8, 10X, *EIGHT#2=%,F13.85 10Xs

#WEIGHT#3=%,F13.8)

(/7/59%>*THE SIGMA FUNCTIONS ARE GIUVEN*)

(10Xs #SIGMAl=%,E13.65 10X, *SIGMA2=%*,E13.65 10X»

®SIGMA3=%,E13.6)
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SUBROUTINE TYPEI

26362096 36 0 F I WA W KKK X

* 3*
* TYPE 1 *
3% *

332636 3 BT I F N IR

FI 33 RIIEIL RN L T30 T F I I 2RI HHFHHARFXF T TR AFAETIIEEEEEET

THIS SUBROUTINE COMPUTES THE COMPONENT BAYES RULES OF
TYPE I PROBLEMS. TWO SCREENING PROCEDURES ARE UTILIZED
TO AUOID THE COMPUTATION OF THE CRITICAL EQUATIONS
DEFINING THE BAYES DECISIONS. THE COMPONENT BAYES RULE
IS PRINTED FOR EACH COMPARISON PROBLEM.

o e M S O M 32 30 3035 3B 36 3% JE 263 55 35 38 36 36 36 36 26 He R JEH W HK AU H 3030 S 3 X 3 3 M 2 3 Ao 3 S S0 B IE 6
e 36 236366 2 36 36 3636 6 36 36 36363 3636 X 36 3 A R IR I H I AXFRFXXXFTARCARFTAAFTZEAZ

GLOBAL UVUARIABLES *

- INTEGER IDECIDE,MULT1,MULT2

REAL QA OB, QCs BE, SSAs SSBs SSCs SSE»

! Ti,T2s T3 FIsFJsFKs FKKs

! EXPAs EXPB» EXPCs EXPE» SUMA1,» SUMGE, SUMA3
REAL WEIGLs WEIG2> WEIG3s RMMs RMAs RMBs RMC
REAL SIGMALs SIGMAZs SIGMA3, RESULTL, RESULT2
REAL TSUBs EXSUB» FSUB» SASUBs SSSUB» SSSUM
REAL CONST1,CONST2, CONST3, FLAGL, FLAGE

COMMON ~STATS/ @A, (B, GCs» BE, SSAs SSBs SSCy SSE»

! T1, T2 T35 FIsFJs FKs FKKs KK

COMMON ~/EXPON/ EXPAs EXPB» EXPC» EXPE, SUMR1L, SUMG2, SUMA3
COMMON ~/WEIGH/ WEIG1,WEIG2,WEIG3sRMM

COMMON ~SIGMA- SIGMALsSIGMAZs SIGMA3

COMMON ~DRULE- IDECIDE,RESULTL1,RESULTZ

COMMON ~SUBST~/ TSUBs FSUB» EXSUB» SSSUB» SSSUM» SASUB
COMMON /MULTS/ CONST1,CONST2,CONST3,MULT1,MULTE
COMMDON ~FLAGS” FLAGL,FLAGZ

EXTERNAL FFOs FFOSs FFKKs FFKKSs P PP
LOCAL UARIABLES *

REAL TSTARs BOUNDs CFUNCs FIRST, SERIS,
! DK 1, 0K2s UPDATEs CONSTs FMM

REAL CBOUND, CUBIC, SCREEN

REAL OKKK 1 » OKKK2s CONNS» INT3D
INTEGER- NDIUs IFIX

THE SUBPROGRAM WILL COMPARE T1 WITH ITS COMPUTED UPPER
AND LOWER BOUNDS FOR A SHORTCUT PROCEDURE. IF T1 DOES NOT®
FALL IN-BETWEEN THE BOUNDS, EITHER L1 OR L2 FUNCTION

WILL BE COMPUTED. THE RESULTING DECISION WILL BE TAKEN.

THE PROGRAM WILL GIVE THE DECISION AND L1 OR L2 VALUE.
aT C-LEVEL=100, THE T-STAR UALUE IS 1.7207832624.
TSTAR=1.72078326

NDIU=32

BOUND=1.E-B

SERIS=0.0

WE COMPUTE THE FIRST TERM OF THE L-FUNCTION.

FIRST=T1*HEIG1+T2*WEIGZ
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COMPUTE 'THE UPPER AND LOWER BOUNDS.

TUPPER=(TSTAR*SIGMA1-TR*NEIG2) /WEIGL.
TLOWER=(~TSTAR%*SIGMA1~TE*WEIG2) ~WEIG]

HRITE (6,2210) TUPPER> TLOWER:FIRST

CBOUND=2.*FIRST/101.
CUBIC=0.

IF (T1.GE.TUPPER) GO TO 2000
IF (T1.LE.TLOWER) GO TO 2001
IDECIDE=0

RESULT1=0,

RESULT2=0,

GO TO 2100

THIS BLOCK COMPUTES AN UPPER AND LOWER BOUNDS FOR L”S.

IF (T2.LT.0.) GO TO 2010
IFIX=1
GO TO 2002

IF (T2.GT.0.) GO TO 2020
IFIX=-1

KK==~1
FKK=FLOAT(KK>

IF (AMOD(BA,2.).EQ.0.) GO TG 2003
CONNS=CONST1/FK~-(SUMQ3~1.)
CUBIC=CUBIC+CONNS*INT3D(PP)/RMM-2.506628274631
GG TO 2004

CONNS=CONSTL/FK~-(SUMR1-1.)
OKKK1=2.=CONNS* (TRINT (FFKK» NDIU)~TRINT (FFKKSs NDIU) )~SSA
IF (MULT1.EQ.0.) GO TO 2008

DO 2005 MM=1,MULT1,1

FMM=FLOAT (MM)

CONNS=(SASUB-1 . ) *CONNS

EXPC=EXPC+1.,

SASUB=SQSUB+1.

OKKK2=2., * (FMM*OKKK 1-CONNS*TRINT (FFKKSs NDIU))./SSA
OKKK1=0KKK2

CONTINUE

CUBIC=CUBIC+0KKK1~/RMM/2.506628274531
EXPC=EXPC~FLOAT(MULT1)

SAESUB=sUMAL
SCREEN=CBOUND-1.9603960396%CUBIC*FLOATCIFIX)
WRITE (6,2220) CUBIC, SCREEN

IF (IFIX.EQ.1) GD TO 2007

IF (SCREEN.GT.0.) GO TO 2020
GO TO 2009

IF (SCREEN.LT.0.) GO TO 2010
IDECIDE=1+*IFI¥X

RESULT1=1.000

RESULT2=1.000

GO TO 2100

THIS BLOCK COMPUTES L1-FUNCTION TO MAKE DECISION D-0 OR D+.
CFUNC=0.72139177#FIRST

IFIX=1
GO TO 2030
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THIS BLOCK COMPUTES L2-FUNCTION TO MAKE DECISION D-0 OR D-.

CFUNC=-~0.72139177*FIRST
IFIX=-1

THIS BLOCK COMPUTES THE INFINITE SERIES IN THE L-FUNCTION.
THE FIRST TERM OF THE SERIES WHEN KK=0 IS COMPUTED
SEPARATELY FROM THE REST OF THE TERMS.

DO-LOOP IS USED FOR KK=152535....

THE RECURSIVE FORMULA DEPENDS ON THE' INTEGER UALUE OF GA.
THE BLOCK DOES RECURSIVE METHOD FOR BOTH EUEN OR ODD GA.

IF (AMOD(QAs2.).EQ.0.) GO TO 2034
CONST=CONST1-1.7724538509
OK1=CONST+*INT3D(P)/RMM

UPDATE=SUMR3*CONST*FK

DO 2032 KK=1,20s5 1

FKK=FLOAT (KK)

CONST=UPDATE

OK1=CONST*INT3D(PP)
UPDATE=UPDATE*FK* (SUMA3+FKK)/ (2. 0%FKK+1.)
SERIS=SERIS+0Ki/RMM

WRITE (6,2200) OK1/RMMsKK

IF (SERIS.GE.CFUNC) GO TO 2070
IF (OK1-RMM.LE.BOUND) GO TO 2075
CONTINUE

GO TO 2075

CONST=CONST1-1.7724538509
OK1=2.*CONST*(TRINT (FFO, NDIU)=-TRINT(FFOS> NDIV) }/S5a
IF (MULTL.EQ.0) CO TO 2038

DO 2035 MM=1,MULT1,1

FMM=FLOAT (MM)

CONST=SQSUB*CONST

EXPC=EXPC+1.

SQSUB=SQSUB+1,

OK2=2. 0% (FMM=0K 1-CONST*TRINT (FFOS, NDIU))/SSA
OK1=0K2

CONTINUE

SERIS=SERIS+0K1/RMM

WRITE (6,2200) OK1/RMM
EXPC=EXPC-FLOAT (MULT1)

SAESUB=SUMQO1
UPDATE=CONST1%FK*SUMQ1/1. 7724538509

D0 2045 KK=1,20,1

FKK=FLOAT (KK)

CONST=UPDATE

OK1=2. 0=CONST= (TRINT (FFKK, NDIU)-TRINT(FFKKS, NDIU))/SSA
IF (MULT1.EQ.0) GO TO 2043

DO 2040 MM=1,MULTL1,1

FMM=FLOAT (MM)

CONST=(SQSUB+FKK)*CONST

SQSUB=SQSUB+1.0

EXPC=EXPC+1.0

OK2=2. 0% (FMM*0K 1-CONST*TRINT (FFKKSs NDIU) ) /S5A
OK1=0Kke ‘

CONTINUE

EXPC=EXPC-FLOAT(MULT1)
SQASUB=SUMOL
UPDATE=(SQSUB+FKK)*FK=UPDATE/ (2, 0%FKK+1.0)



2045

2070

2075
2080

2085

2200
2210
2220

2100

SERIS=SERIS+OKI1/RMM

WRITE (B,2200) OK1-RMMsKK

IF (SERIS.GE.CFUNC) GO TO 2070
IF (OK1-,RMM.LE.BOUND) GO TO 2075
CONTINUE

GO TO 2075

IDECIDE=0
GO TO 2080

IDECIDE=1#IFIX

IF (IFIX.NE.1) GO TO 2085
RESULT1=FIRST-1.386R03332%*5ERIS
RESULTZ2=0.

GO TO 2100

RESULT1=0.
RESULT2=F IRST+1.386209332*SERIS

FORMAT(SXsF18.125I3)

FORMAT (/75 5Xs ¥*HI=%,F13.6s 5Xs *.0=%sF 13.6y 5Xs *P-MEAN*, F13.8)
FORMAT (5Xs *CUBIC TERM=3%,E13.6s5KXs *SCREEN=%,E13.5)

RETURN
END

133
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SUBROUTINE TYPEIX
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THIS SUBROUTINE COMPUTES THE COMPONENT BAYES RULES OF
TYPE IT PROBLEMS. TWO SCREENING PROCEDURES ARE UTILIZED
TO AVDID THE COMPUTATION OF THE CRITICAL EQUATIONS
DEFINING THE BAYES BECISION. THE COMPONENT BAYES RULE
IS PRINTED FOR EARCH COMPARISON PROBLEM.

36 33836 3530 36 3 3696 36 263032 3630 3 30 38 38 36 36 36 95 36 36 30 3536 36 36 36 36 3 I JEIE I 363036 36 36 I 6 I I

GLOBAL UARIABLES *
INTEGER IDECIDE, MULT1sMULT2

REAL (A, BB, OC,s QE, SSA, SSBs SSCs SSE »
! T1:T2s T3sFLs FJs FKs FKK»

EXPAs EXPBs EXPCs EXPE» SUMB1,, SUMG2, SUMA3

REAL WEIG1s HEIG2s HEIG3s RMMs RMAs RMBs RMC
REAL SIGMALs SIGMAZ> SIGMA3s RESULT1,RESULTR2
REAL TSUBs EXSUBs FSUBs SASUB» SSSUB»s SSSUM
REAL CONST1,CONST2s CONST3s FLAGLs FLAG2

COMMON ~STATS-/ (QA, @B, AC, QE> SSA» SSBs SSC, SSE,
Tl T2s T3s FIsFJs FKs FIKKs KK

"COMMON /EXPON/ ‘EXPAs EXPB» EXPCs EXPE, SUMA1» SUMA2, SUMGS3

COMMON /WEIGH” WEIGLsWEIGE,WEIG3,RMM

COMMON ~SIGMA~ SIGMALlsSIGMAZs SIGMAS.

COMMON ~DRULE- IDECIDE,RESULT1,RESULT2

COMMON ~SUBST- TSUBs FSUB, EXSUB» SSSUB, SSSUM» SASUB
COMMON ~MULTS- CONST1,CONST2,CONST3, MULTL,MULTZ
COMMON ~FL.LARGS-” FLAGL,FLAG2

EXTERNAL FFOs FFOSs FFKKs FFKKSs P» PP
LOCAL VUARIABL.ES ®

REAL TSTARs BOUND, CFUNC,» FIRST> SERIS,
! 0K 1s0K2. UPDATEs CONSTs FMMs FODD
REAL CBOUNDs CUBICs SCREEN

REAL OKK1sOKKZ2> CONNSs INT3D

INTEGER NDIUs IFIX

THE SUBPROGRAM WILL COMPARE T1 WITH ITS COMPUTED UPPER
AND LOWER BOUNDS FOR A SHORTCUT PROCEDURE. IF T1 DOES NOT
FALL IN-BETWEEN THE BOUNDSs, EITHER L1 OR L2 FUNCTION

WILL BE COMPUTED. THE RESULTING DECISION WILL BE TAKEN.

THE PROGRAM WILL GIUE THE DECISION AND. L1 OR L2 UALLUE.
AT C-LEVEL=100s THE T-STAR UALUE IS 1.7207332624.
TSTAR=1.72078326

NDIU=32

BOUND=1.E-6

SERIS=0.0

WE COMPUTE THE FIRST TERM OF THE L-FUNCTION.

FIRST=T1*WEIG1+T3*UEIG3
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COMPUTE THE UPPER AND LOWER BOUNDS.

TUPPER=(TSTAR*SIGMAR2-T3*WEIG3) /WEIGL.
TLOWER=(~-TSTAR*SIGMAR-T3*WEIG3) 7HEIG]

WRITE (6,2210) TUPPER, TLOWER,FIRST

CBOUND=2.*FIRST~101.
CUBIC=0.

IF (T1.GE.TUPFER) GO TO 2000
IF (Ti.LE.TLOWER) GO TO 2001
IDECIDE=0

RESULT1=0,

RESULT2=0.

GO TO 2160

THIS BLOCK COMPUTES AN UPPER AND LOWER BOUNDS FOR L”S.

IF (T3.LT.0.) GO TO 2010
IFIX=1
GO TO 2002

IF (T73.GT.0.) GO TO 2020
IFIX=-1

KK=—1
FKK=FLOAT (KK)

IF (AMOD(Q@B,2.).EQ.0.) GO TO 2003
CONNS=CONST2/FK~/(SUME3-1.)
CUBIC=CUBIC+CONNS*INT3D(PP)/RMM/2.506628274631
GO TO 2004

CONNS=CONST2/FK~(SUMER~1.) '
OKK 1=2. *CONNS* ( TRINT (FFKK» NDIU)-TRINT (FFKKS» NDIW) )/SSB
IF (MULT2.EQ.0.) GO TO 2008 :

DO 2005 MM=1,MULT2,1

FMM=FLOAT (MM)

CONNS=(SQSUB-1. }*CONNS

EXPC=EXPC+1.

SQSUB=SASUB*+1.

OKK2=2. * (FMM*0KK1-CONNS*TRINT (FFKKS, NDIV) ) ~SSB
COKK1=0KK2

CONTINUE

CUBIC=CUBIC+OKK1/RMM/2.506628274831
EXPC=EXPC—FLOAT (MULT2)

SQSUB=SUMG2
SCREEN=CEOUND-1.8603960396*CUBIC#FLOAT(IFIX)
WRITE (B,2220) CUBIC, SCREEN

IF (IFIX.EQ.1) GO TO 2007

IF (SCREEN.GT.0.) GO TO 2020

GO TO 2003

IF (SCREEN.LT.0.) GO TO 2010
IDECIDE=1#IFIX

RESULT1=1.0

RESULT2=1.0

GO TO 2100

THIS BLOCK COMPUTES L1-FUNCTION TO MAKE DECISION D-0 OR D+.
CFUNC=0.721339177*FIRST

IFIX=1

GO TO 2030

THIS BLOCK COMPUTES L2-FUNCTION TO MAKE DECISION. B-0 OR D-.
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CFUNC=-0.72138177*FIRST
IFIX=-

THIS BLOCK COMPUTES THE INFINITE SERIES IN THE L-FUNCTION.
THE FIRST TERM OF THE SERIES WHEN KK=0 IS COMPUTED
SEPARATELY FROM THE REST GF THE TERMS.

DO-LOOP IS USED FOR KK=1,25354s000

THE BLOCK DOES THE RECURSIVUE FORMULA: FOR BOUTH EVEN OR DODD GA.

IF (AMOD(GBs2.2.EQ.0.) GO TO 2034
CONST=CONST2/1.7724538509
OK1=CONST#*INT3D(P)/RMM

UPDATE=SUMA3*CONST*FK

DO 2032 KK=1,20,1

FKK=FLOAT (KK)

CONST=UPDATE

OK1=CONST*INT3D(PP)
UPDATE=UPDATE*FK* (SUMA3+FKK)/ (2, %FKK+1. )
SERIS=SERIS+0K1RMM

WRITE (B,2200) OK1/RMMsKK -

IF (SERIS.GE.CFUNC) GO TO 2070
IF (OK1/RMM.LE.BOUND) GO TO 2075
CONTINUE

GO TO 2075

CONST=CONST2~1. 7724538509
OK1=2.*CONST*(TRINT (FFO, NDIU) TRINT(FFUSvNDIU))/SSB
IF (MULT2.EQ.O0) GO TO 2038

Do 2035’NM=1,HULT291

FMM=FLOAT (MM)

CONST=SQSUB=CONST

EXPC=EXPC+1.

SHSUB=SQSUB+!L.

OK2=2. * (FMM*0K1~CONST*TRINT (FFOS, NDIVU) ) /SSB
OK1=0K2

CONTINUE

SERIS=SERIS+0K1/RMM

WRITE (B,2200) OK1/RMM
EXPC=EXPC-FLOAT (MULT2)

SESUB=SUME2
UPDATE=CONST2*FK=SUMR2/1.7724538509 -

DO 2045 KK=1,2051

FKK=FLOAT (KK)

CONST=UPDATE

OK1=2,0=CONST*(TRINT(FFKKs NDIU}-TRINT(FFKKSs NDIV))~SSB
IF (MULT2.EQ.0) GO TO 2043

DO 2040 MM=1,MULT2,1

FMM=FLDOAT (MM

CONST=(5QSUB+FKK)*CONST

SESUB=SQSUB+1.0

EXPC=EXPC+1.0

OK2=2, = (FMM*0K1-CONST*TRINT(FFKKS, NDIU) }/SSB
OK1=0K2

CONTINUE

EXPC=EXPC-FLDOAT(MULTZ)

SQSUB=5SUMQA2
UPDATE=(SASUB+FKK ) *FK=UPDATE/ (2. 0*FKK+1.0)
SERIS=SERIS+0K1/RMM

WRITE (652200) OK1/RMMsKK
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IF (SERIS.GE.CFUNC) GD TO 2070

IF (OK1/RMM.LE.BOUND> GO TO 207S
2045 CONTINUE

GO TO 2075

2070 IDECIDE=0
GO TO 2080

2075 TDECIDE=1%IFIX

2080 IF (IFIX.NE.1) GO TO 2085
RESULT1=FIRST-1.386208332%SERIS
RESULT2=0.

GO TO 2030

2085 RESULT1=0.
RESULT2=FIRST+1.386203332*SERIS

2030 IF (AMOD(@BsZ2.).EQ.0.) GO TO 2100
EXPC=EXPC+0.5
sUMR2=sSuUME2+0.5

2200 FORMAT (5X,F18.8,I3) v
2210 FORMAT(/ /s 5X» #HI=%,F 13,65 SXs ¥L.0=%, F 13.6s 5X» *P-MEAN*,F13.8). -
2220 FORMAT(5Xs #*CUBIC TERM=%,E13.6,5Xs *SCREEN=%s E13.6)
2100 RETURN

END
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* FUNCTIONS *
* *
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REAL FUNCTION G(UsU)

"GLOBAL
REAL

!
REAL
REAL

UARIABLES *

A, @Bs ACs JE» SSAs SSBs SSCs SSE

T1s,T2s T3sFI»FJs FK, FKK

EXPAs EXPB> EXPC, EXPE, SUMQ1, SUMA2, SUMA3
TSUBs EXSUBs FSUBs SASUB» SSSUBs SSSUM

COMMON ~STATS/ QA,(QBsQCs BE, SSAs SSBs SSC» SSE,
!

T1, T2s T3sFIs FJs FK, FKK, KK

COMMON ~EXPON- EXPAs EXPBs EXPC, EXPE, SUMB1 » SUMAZ, SUMA3
COMMON ~SUBST~ TSUB,>FSUB» EXSUBs SSSUB» SSSUM, SASUB

G=0.

IF (U.EQ.0.) GO TO 320
G=(SART(1.-U%(1l.-1./FSUB)—-U-FSUB)*U**EXSUB#*U**EXPC) /
§  ((558UB#*U+SSC*U+SSE) /2. ) #%SQASUB

320 RETURN
END

REAL FUNCTION GS(U, W)

GLOBAL
REAL
!

"REAL
REAL

UARIABLES *

(A, @B, QCs QE,» SSA5 SSBs SSC» SSE»

T1, T2, T3s FIsFJds FKs FKK

EXPAs EXPBs EXPCs EXPE» SUMA1 » SUME2, SUMA3
TSUBs EXSUBs FSUB» SASUBs SSSUBs SSSUM

COMMON ~STATS~ @A, @BsQCs QEs SSAs SSBy SSCy SSE
]

TlsT2s T3> FIsFJs FKs FKKs KK

" COMMON 7EXPON-s EXPAs EXPBs EXPC» EXPE, SUMA1, SUMA2, SUMR3
COMMON ~SUBST~ TSUB»FSUBs EXSUBs SSSUB» SSSUMs SGSUB

GS=0.

IF (U.EQ.0.) GO'TO 330

GS=(SQRT(1.-

(1.-1./FSUB)*U~U/FSUB)*Ux*EXSUB*U*+EXPC}/

§  ((5SSUB#U+SSSUM*U+SSE) #2. )**SQASUB

330 RETURN
END

REAL FUNCTION FFO(UsU)

GLOBAL

REAL
'

REAL

REAL

UARIABLES *

QAs ABs OC» BE» SSA» SSB» SSC» SSE»
T1sT2s T35 FIs FJs FKs FKK

EXPAs EXPBs EXPCs EXPE, SUMA1, SUMA2, SUMA3
TSUBs EXSUB, FSUBs SASUBs SSSUBs SSSUM

COMMON ~#STATS-/ -BA,QB,AC,QEsSS5A, SSBs SSCy» SSE»
'

T1sT25T3s FIsFJsFKs FIKKs KK

" COMMON 7EXPON/  EXPAs EXPBs EXPCs EXPE. SUMB1 s SUMB2, SUMOS
COMMON ~SUBST- TSUBs FSUBs EXSUB», SSSUB» SSSUMs SQSUB

LoCcaL

UARIABLES *®
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REAL TEMP

FFO=0.
IF (U.EQ.0.) GO TO 320
TEMP=(1.-(1.-1./FSUB)*U-U/FSUB)
FFO=(SART (TEMP y%Us*EXSUB*Ux=EXPC) /
! CCCCL -U)»T1+(U-U)*TSUB) *¥x%2xFK/TEMP+
H SSSUB®U+SSCxU+5SE) /2. ) #%SQSUB

320 RETURN
END

REAL FUNCTION FFKK(U,U)

GLOBARL UARIABLES *

REAL 8A, @B, GC, BE > SSAs SSBs SSC» SSEs -

! TisT2sT3sFIsFJsFKs FKK _

REAL EXPAs EXPBs EXPCs EXPE, SUMAQL > SUME2, SUMA3
REAL TSUB» EXSUB, FSUBs SASUB» SSSUBs SSSUM

COMMON ~#STATS- QAs@Bs QAC» BEs SS5A, SSE» SSCs SSE,

§ T1sT2s T3sFIsFJs FKs FKKs KK -
COMMDN ~EXPON-s EXPAs EXPB», EXPC» EXPE> SUMA1s SUMAZE, SUMA3
COMMON ~/SUBST~ TSUBs FSUB, EXSUB» SSSUBs SSSUMs SASUB

LOCAL URRIAB LES *®
REAL TEMP1, TEMP2
FFKK=0.

IF (U.EQ.0.) GO TO 325

TEMP1=(1.~U)%T1+(U-U)*TSUB

TEMP2=1.-(1.~1./FSUB)=U-U-FSUB

FFKK=(TEMP 1% (2%KK ) *U#=EXSUB*Ux*EXPC) / (TEMP2%% (FKK-.5) )/

! ( (TEMP1##2=FK/TEMP2+SSSUB*U+SSC*U+SSE) /2. Y% (SASUB+FKK)
325 RETURN

END

REAL FUNCTION FFOS(U,U)

GLOBAL UARIARBLES *

REAL @A> OBs QCs BE» SSA» SSB» SST» SSE»

! T1:T2s T35 FIs FJs FKs FKK

REAL EXPAs EXPBs EXPCs EXPEs SUMAL» SUMA2y SUMR3
REAL TSUB,s EXSUBs FSUBs SASUBs SSSUB, SSSUM

COMMON ~STATS~ @A, QBs BCs BE> SSA» SSBs SSC» SSE

! T1sT25 T35 FIsFJsFKs FKKs KK

COMMON ~EXPON- EXPA> EXPBs EXPCs EXPE, SUMA1, SUMR2, SUMA3
COMMON ~SUBST~ TSUBs FSUB» EXSUB», SSSUB» SSSUM» SASUB

LOCAUVU UVUARIABLES *®
REAL TEMP
FF0S=0.

IF (U.EQ.0.) GO TD 330

TEMP=1.-(1.-1./FSUB)*U-U/FSUB

FFOS=(SART(TEMP ) #U%=EXSUB*U%%EXPL)/

! CCCCL~U=T1+(U-U) =TSUB) %%2%FK/TEMP

! +55SUB*U+S5SSUM=U+SSE ) /2. ) ##5QSUB
330 RETURN
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END

REAL FUNCTION FFKKS(UsU)

GLOBARAL UARIABLES *

REAL (A, QB BCs GE» SSAs SSB».SSCs SSE »

! Tl T25 T35 FI,FJs FKs FKK

REAL EXPA, EXPBs EXPCs EXPE, SUMAL, SUMGE2s SUMA3
REAL TSUB» EXSUBs FSUBs SASUBs SSSUBs SSSUM

COMMON ~#STATS~ .QRs(QB,QC,QEs SSAs SSBs SSCs SSE»

! T1sT2s T3sFIsFJsFKs FKKsKK :
COMMON ~7EXPON- EXPA> EXPBs EXPCs EXPEs SUMB1» SUMA2s SUMQ3
COMMON ~SUBST~- TSUBsFSUBs EXSUB» SSSUBs SSSUM» SASUB

LOCAL UVUARIABLES *
REAL TEMPLs TEMP2
FFKKS=0.

IF (U.EQ.0.2 GO TO 335

TEMP1=(1.~-U)*T1+(U-U)*TSUB

TEMP2=(1.-(1.-1./FSUB)*U-U/FSUBJ

FFKKS=(TEMP1 %% (2%KK ) *U**xEXSUB*U#*EXPC) / (TEMP2%% (FKK-,5) )/

! ((TEMP 1*%2%FK/TEMP2+5SSUB*LI+S5SUM*U+SSE ) /2. ) %% (SASUB+FKK)

335 RETURN

END
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SUBROUTINE TYPEIII

FEIE 3 I IE X3 I6 I IE WAL I NN W

* *®
* TYPE III *
* =

FRH LR RBR R R ERRXHNN
I FNIEH T I 03056 303 90 36 3 36 38 36 I 6 I 333 I3 R K I KR HHR I A X KRR

THIS SUBROUTINE COMPUTES THE COMPONENT BAYES RULES OF
TYPE III PROBLEMS. TWO SCREENING PROCEDURES ARE UTILIZED
TO AUOID THE. COMPUTATION OF THE CRITICAL EQUATIONS
DEFINING THE BAYES DECISION. THE COMPONENT BAYES RULE

IS PRINTED FOR EACH COMPARISON PROBLEM.

3R R RPN I I I 630 K303 506 36 3656 36 36 36 I 56 30 336 3 6L S IETE 6 LI LI M KN WA RN

GLOBAL URRIABLES, *®

INTEGER IDECIDEs MULT1,MULT2

REAL (3R, OBs ACs QE» SSA» SSBs SSCs SSE»
1 Tl T25s T35 FIs FJs FKs FKK»

! EXPAs EXPBs EXPC, EXPEs SUMGL, SUMR2, SUMR3
REAL HEIG1, HEIG2, HEIC3, RMMs RMAs RMB,s RMC
REAL SICGMAL, SIGMARs SIGMAS, RESULT1.RESULTZ2
REAL TSUBs EXSUBs FSUBs SASUB» SSSUB» SSSUM
REAL CONST1, CONST2s CONST3» FLAGL FLAGR2

COMMON ~STATS-/ QA, @B, QC, BE>.SSA» SSBs SSCs SSE

! T1, T2, T35 FIsFJs FKs FKKs KK

COMMON /EXPONs EXPAs EXPB» EXPC, EXPEs SUMA1, SUMA2, SUMA3
COMMON- #WEIGHs 'WEICG1,WEIG2s WEIG3s RMM

COMMON ~SIGMA~- SIGMALl,SIGMAZs SIGMA3

COMMON ~DRULE- IDECIDE,RESULT1,RESULT2

COMMON ~SUBST~ 'TSUBs FSUB»s EXSURs SSSUBs SSSUMs SASUB
COMMON ~MULTS~ 'CONST1,CONST2s CONST3,MULTLs MULTE
COMMON /FLAGS” FLAG1,FLAG2

EXTERNAL Ps PP

LoOCAL VARIABLES *

REAL TSTARs BOUNDs CFUNC, SERISs INT3Ds
! OK» UPDATEs CONST, FIRST

REAL CBOUND, CUBIC, SCREENs CONNS
INTEGER IFIX

THE SUBPROGRAM WILL COMPARE Ti1 WITH ITS COMPUTED UPPER
AND LOWER BOUNDS FOR A SHORTCUT PROCEDURE. IF T1 DOES NOT
FALL IN-BETWEEN THE BOUNDS, EITHER L1 OR L2 FUNCTION
WILL BE COMPUTED. THE RESULTING DECISION WILL BE TAKEN.
THE PROGRAM WILL GIUVE THE DECISION AND L1 OR L2 VALUE.
AT C-LEVEL=100s THE T-5TAR VALUE IS 1.7207832524.
TSTAR=1,72078326

BOUND=1.E-B

SERIS=0.0

WE COMPUTE THE FIRST TERM OF THE L-FUNCTION.
FIRST=T1=HEIG1+T2*NEIG2+T3*WEIG3

COMPUTE THE UPPER AND LOWER BOUNDS.
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TUPPER=(TSTﬂR*SIGMHS—TE*NEIBErTB*HEIGS)/NElﬁl

' TLONER=(-TSTﬂR*SIGNQB-TE*NEIGE-TS*NEIG3)/NEIGl

- 2000

*®

K X

ok K ok kX

2001

2002

2003
2008

2010

2020

2030°

WRITE (B,2210) TUPPER, TLOWER,FIRST

CBOUND=2.*FIRST/101.
CUBIC=0.

IF (T1.GE.TUPPER) GO TO 2000
IF (T1.LE.TLOWER) GO TO 2001
IDECIDE=0

RESULT1=0.

RESULT2=0.

GO TO 2100

THIS BLOCK COMPUTES AN UPPER BOUND AND LOWER BOUND FOR L”S..

IF (T2.LT.0.0.0R.T3.LT.0.) GO TO 2010
IFIX=1
GO TO 2002

IF (T2.G6T.0.0.0R.T3.GT.0.) GO TO 2020
IFIX=-1

KK=-1

FKK=FLOAT (KKJ

CONNS=CONST3/FK~/(SUME3-1.)
CUBIC=CUBIC+CONNS*INT3D(PP)/RHM/E.5088282?4S31
SCREEN=CBOUND—CUBIC*FLOQT(IFIX)*l.8803950388
WRITE (B,2220) CUBIC, SCREEN

IF (IFIX.EQ.1) GO TO 2003

IF (SCREEN.GT.0.) GO TO 2020

GO TO 2009

IF (SCREEN.LT.0.) GO TO 2010

IDECIDE=1%IFIX

RESULT1=1.0

RESULT2=1.0

GO TO 2100

THIS BLOCK COMPUTES L1-FUNCTION TO MAKE -DECISION D-0 OR D+t.

CFUNC=0.72139177%F IRST
IFIX=1
GO TO 2030

THIS BLOCK COMPUTES L2-FUNCTION TO MAKE DECISION D-0 OR B-.

CFUNC=—0.72138177*F IRST
IFIX=—1

THIS BLOCK COMPUTES THE INFINITE SERIES IN THE L-FUNCTION. .
THE FIRST TERM OF THE SERIES WHEN KK=0 IS COMPUTED
SEPARATELY FROM THE REST OF THE TERMS.

DO-LOOP IS USED FOR KK=1,2,3s....

CONST=CONST3-1.7724538503
SERIS=CONST*INT3D(P)/RMM
WRITE (B,2200) SERIS

UPDATE=SUMR3*CONST*FK

DO 2040 KK=1,2051

FKK=FLOAT (KK}

CONST=UPDATE

OK=CONST*INT3D(PP)
UPDHTE=(SUM83+FKK)*FK*UPDQTE/(2.0*FKK+1.0)
SERIS=SERIS+OK/RMM

WRITE (852200) OK/RMMsKK

IF (SERIS.GE.CFUNC) GO TO 2050

IF (OK/RMM.LE.BOUND) GOTO 2060
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2040 CONTINUE
GO TO 2060
®

2050 IDECIDE=0
GO TO 2070

% .
2060 IDECIDE=1%IF1IX

*
2070 IF (IFIX.NE.1) GO TO 2080
RESUL.T1=FIRST-1.386209332%5ERIS
RESULT2=0,
GO TO 2100

2080 RESULTI1=0.

RESULT2=FIRST+1.386209332*5ERIS
=
2200 FORMAT (5XsF18.8,13) :
2210'FURMHT(//sSX,*HI=*;F13.S;5X:*LU=*,F13.895X9*F—MEQN*£F13.8)
2220 FORMAT (5Xs *CUBIC TERM=%,E13.6,5X, *SCREEN=%,E13.5)
2100 RETURN

END
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RN H KKK RR RN

REAL FUNCTION Z(W,Us )
CGLOBAL UVUARIABLES *®

REAL (A, B, BCs QE> SSA» SSBy SSCs SSE

! T1sT25 T3sFIsFdsFKs FKKs

! EXPA», EXPBs EXPCs EXPE, SUMG1,SUMQR, SUMA3
REAL FLAGLsFLAG2

COMMON ~#STATS~ -QA»@B,QC, QE»SSA, SSBs SSC» SSE

! T1sT2s T3s FIsFJs FKs FKKs KK

COMMON ~/EXPON- EXPA, EXPB, EXPC, EXPE, SUMQA1, SUMB2s SUMAS
COMMON ~FLAGS~” FLAGL,FLAG2

2=0.
IF (U.EQ.0.) GO TO 70O
IF (U.EQ.C.) GO TO 700
Z=(SART((1.~W)+FLAGL* (H-U)/FI+FLAG2*(W-U)/FJ)
! =Us=EXPAxU%=EXPBxl*=EXPC)/
! ((5SAxU+SSBxU+SSCxN+SSE) /2. ) #x5UMA3
700 RETURN
END

REAL FUNCTION P(WsUs U3
GLOBAL UARIABLES =

REAL GARsQBsQC, OBEs SSAs SSBs SSCs SSE

! T1,T2sT3sFIsFJs FKs FKKs

! EXPA, EXFBs EXPCs EXPE», SUMAL, SUMA2s SUMRA3.
REAL FLAGLs FLAG2

COMMON ~STATS/ QAsQBs ACs QE» SSAs SSBs SSCs SSE,

! TlsT2s T35 FIsFdsFKs FKKsKK

COMMON ~7EXPON- EXPAs EXPBs EXPCs EXPE, SUMAL, SUMG2, SUMA3
COMMON ~FLAGS” FLAGLsFLAG2

LocaAaL URRIABLES *
"REAL TEMP

P=0,
IF (U.EQ.0.) GO TO 700
- IF (U.EQ.0.) GO TO 700
TEMP=(1.~H)+FLAGL* (L-U)/FI+FLAG23¢ (W-U)/FJ
P=(SART (TEMP) xUz=EXPAxU%*EXPB2W**EXPC) /
Vool =TI+ (H-U) T2+ (W-U) % T3 % 2%F K/
H TEMP+SSA*U+5SB*U+SSC#+SSE) /2. ) #x5UMA3
700 RETURN
END

REAL FUNCTION PP(WsUsU)
GLOBAL UARIABLES *®

REAL (A5 3B, AC,s QE s SSAs SSB».SSCs SSE»
H T1sT2s T3sFIsFdsFKs FKK
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REAL EXPAsEXPBs EXPC» EXPE s SUMRL, SUMB2, SUME3
REAL FLAG1sFLAG2

COMMDON ~STATS~ (R, QB> QC, BE; SSAs SSBs SSC» SSEy

! T1,T2s T35 FIs Fds FKs FKKs KK

COMMON “EXPON~ EXPAs EXPBs EXPCs EXPE, SUMA L s SUMBZ» SUMA3
COMMON /FLAGS” FLAG1sFLAGZ

LOCAL UARIABLES *
REAL TEMPL, TEMP2
PP=0,

IF (U.EQ.0.) GO TO 800

IF (V.EQ.0.) GO TO 800

TEMPLI=(1.-W)*T1+(W- U)*TE+(H—U)*T3

TEMP2=( 1, —H)+FLAGL* (W-U) /FI+FLAG2* (W-U) /FJ

PP=(TEMP 1% (22KK) #**EXPA=U»*EXPB*[{**EXPC )/
! (TEMP2%% (FKK-.5)) 7 ( ({TEMP1*%2%FK/TEMP2)
! +55A*U+SS5B*U+SSC*W+SSE ) /2. ) #% (SUME3+FKK)

800 RETURN

END
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REAL FUNCTION RMFC1l(Q1i,Q2.Q33,04)

FXRHRR K EXRXHRHERERRR -

9 *
*  M-ALGORITHM *
% *

36 K30 I R W WK I AR RN K

T3 I 0 WHE R TIE I 6 e 6 I3 3206 34 36 36 36 3636 36 4 3 3 36303036 3636 S AR IESEH T IONIEHIE I 6K -

THIS ALGORITHM CALCULATES THE EXPECTATION OF THE POSTERIOR
MEAN WITH THE INPUT PARAMETERS Q1,02,Q3s>AND @4 DENOTING
FOUR DECGREES OF FREEDOMSs SSAsSSBsSSCsSSE ARE THE FOUR
GIVEN SUMS OF SQUARES ESTIMATES.

ALL FOUR D.F.’S MUST BE POSITIVE INTEGERS AND SS’S MUST BE
POSITIVE REAL NUMBERS. THIS ALCORITHM IS DESIGNED TG
COMPUTE M~FUNCTION ONLY WHEN Q4 IS EVEN INTECER.

FHHERNHREER W ERXEEREARH B X LR LR IR R LT TR HREERXRERREX -

GLOBRL UVUARIABLES *
INTEGER ILEVEL, JLEVELs KCELL
REAL (A OB, AC, QE, S5A» SSBy SSC5 SSE 5

! T1sT2s T3sFIsFJs FKs FKK

COMMON ~STATS~- (A, QBs RCs QEs SSAs SSBs SSC» SSE,
! T1,T2s T35 FIs FJs FKs FKKs KK

LoCAL VUARIABLES *
INTEGER MULT3, MULT4

REARL TOLOs TOL1, TOL25s TOL3s GF's JF1s JF2s UFs
! RKsRL.s R35Q1, 025033, Q4

TOLO=SSC+SSE

TOL 1=5SA+S5C+SSE
TOL2=5SB+SSC+SSE
TOL3=SSA+SSB+SSC+SSE
MULT4=INT(Q4)-2

M-FUNCTION IS COMPUTED FROM G-FUNCTION WHEN Q3 IS.0DD.
ELSE FROM J-FUNCTION WHEN B3 IS EUVEN.

IF(AMOD(Q3s2.).EQ.1.) GO TO 10 -

MULT3=INT(Q3)-2

R3=0.0

CALL FUNCTNJ(Q2sQ15SSBs TOL1s JF1sHF)

CALL FUNCTNJ(Q1,Q2,5SAs TOL2s JF2s UFD

GF=0.0

GO TO 15

MULT3=(INT(Q3)-13)-2

R3=1.0

CALL FUNCTNG(Q1sQ2s S5As SSBs SSC»s SSE» GF» JF1s JF2s HF )

RMFC1 IS COMPUTED RECURSIVELY OUER MULT3 AND MULT4 TIMES.:

RMFC1=0.0

IF (MULT3.EQ.0) GO TO 25

DO 20 K=1sMULT3s1

RK=FLDAT(K)
GF=((R3+2.0*RK-2.0)=#CF+2. 0% (JF1+JF2})/TOLO
JF1=((Q1+R3+2.0*RK-2. 0)*JF1+2.0%HF }#TOL1
JF2=((Q2+R3+2.0%*RK-2. 0)*JF2+2. 0%HF )~ TOL2
HF=(Q1+Q@2+R3+2. 0%*RK-2.0)*HF #TOL3



20
23

30

CONTINUE

DO 30 L=1,MULT4,1

RL=FLOAT(L)

RMFC1=2. 0% ((RL-1.0)*RMFC1+GF)/SSE
GF=2.0%((Q3/2.0+RL-1.0)*GF+JF 1+JF2)/TOLO
JF1=2,0%(((Q1+Q3)/2.0+RL-1.0)=JF1+HF)-TOL1
JF2=2, 0% ((@2+033)/2.0+RL-1.0)*JF2+HF) ~TOL2
HF=(Q1+Q2+Q33+2. 0%*RL-2.0)=HF /TOL3

CONTINUE

RETURN
END
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SUBROUTINE. FUNCTNJ(ABLsAB2s S1,.525 TFUNCsUFUNC)

SRS 3 H R W NN RN

= *
#  J-SUBROUTINE =
= ®

XX P L XAR WXL EHREXER

I IE A 26 I T2 IE W0 FEE I 3636 76 3 36 36 3636 263 I3 36 JTE-36 30 I8 2 36T 26 3636 I HN I I FENIEIEK - ¢

THIS PROGRAM COMPUTES THE DOUBLE INTEGRAL OF INCOMPLETE
GAMMA PRODUCT WITH AB1 AND AB2 DEGREES OF FREEDOMS.
SART(2%PI) IS REPLACED BY A CONSTANT 2.508628274631.

CORERERERERERERE RS RE SRR N ETR R X E AR RREENRRRHREA R LR X R CEFERTE

100

105

110

115

120
125

~

LoCAL UARIABLES

REAL 51,52, TFUNC, UFUNC»R1sR2, QSUMs SGRT2PT,
RIsRJsABl,AB2

INTEGER MULTL, MULT2, ITEMPs JTEMPs I»J

QsuM=51+S2

SQART2PI1=2.506628274631

1=0

J=0

IF (AMOD(ABls2.).EQ.0.} GO TO 105

MULT1i=(INT(ABl)-1)-/2

IF (AMOD(AB2;2.).EQ.0.) GO TO 100
MULT2=(INT(AB2)~-1)/2

TFUNC=4, 0*ATANCSBRT (51-52) ) »SART (51%52>
UFUNC=2. 0-Q5UM

GO TO 115

MULT2=INT(AB2) /2

TFUNC=2. 0*SART2PI (SART(QASUM)*S2)
UFUNC=S@RT2PI/(QSUM*SART (ASUM) )
J=J+1

GO TO 115

MULT1=INT(ABL} 2

IF (AMOD(AB2s2.).EQ.0.) GO TO 110
MULT2=(INT(AB2)-1)/2

TFUNC=2. 0#SART2PI* (1, 0-SART (S2/QSUM) )~ (S1*SART(S2))
UFUNC=SQRT2PI~/(QSUM*SARTCQASUM) 3

I=1+1

GO TO 115

MULT2=INT(AB2)-/2
TFUNC=4.0-(S2*QSUM)
UFUNC=4. 0/ (QSUM=QSUM)
I=I+1

J=J+1

RI=FLOAT(I)

RJ=FLOAT (J)

R1=1.0-RI

Re2=1.0-RJ

IF (MULT2.EQ.J) GO 'TO 125

JTEMP=J+1

00 120 JJ=JTEMP.MULTZ, 1

TFUNC=( (R2+2. 0=*FLOAT (JJ-1) )% TFUNC+2. 0*UFUNC) /S2-
UFUNC=(2, 0%RI+R1+R2+2. 0*FLOAT (JJ-1) ) *UFUNC/QSUM
CONTINUE

IF (MULT1.EQ.I)> GO TO 135
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ITEMP=T+1
DO 130 II=ITEMP,MULTi,1
TFUNC=( (R1+2.0*FLOAT(II-1) }*TFUNC-2.0*UFUNC)~SL
UFUNC=(AB2+R1+2. 0*FLOAT(II-1))*UFUNC/QSUM

130 CONTINUE

*

135 RETURN

END
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200

205

210

150

SUBROUTINE FUNCTNG(ABL,AB25S1552s53s S4»GF s JF 1, JFEsHF 2

KRR L HKIE LW RHLRNRNH XN

* *
*  G-SUBROUTINE =
* %

AR XXX XA ERAXXRRAEN

FE A I3 I I 36 606 I 26N 38 3630 JE 3 36 36 36 36 36 36 3636 26363 36 36 I NI H M I 6 I 26 36 W AW RIEWH

THIS PROGRAM COMPUTES THE TRIPLE INTEGRAL OF INCOMPLETE
GAMMA PRODUCT WITH Bl,B2,AND B3 DEGREES OF FREEDOMS.

3 3636 96 3636 2 AT I 03636 I 6 96 56 36 36 36 36 36 3636 36 9E 26 630 I I A M0 H IR RINK -

LoCAL VURARIABLES

REAL S1,52s53. 54, GFs JF1» JF2s HF» AB1, AB2s SART2PI,
! POsP1,P25P3sRIsRJsR1sR2s TEMP

INTEGER MULTL,MULTZ2s ITEMPs JTEMPs II5JJ

P0=53+54

P1=51+53+54
PR=52+53+54
P3=51+52+53+54
SGRT2PI=2.506628274631
I1=0

J=0

IF (AMOD(ABls;2.).EQ.0.) GO TO 205
MULT1=(INT(ABL1)-1)/2

IF (AMOD(ARBE:;2.).EQ.0.) GO TO.200
MULT2=C(INT(AB2)—-1)/2

TEMP=8SQRT (S1*52/(P1*P2-51%52))
GF=4.0%SQRT2PI*ATAN(TEMP ) /SART (S1%52%P0)
JF1=2,0%SART2PI/(P1*5ART(P3))

JF2=2, 0=5QRT2PI/(P2*SART (P3))
HF=SART2PI/(P3*SART (P3))

GO TO 215

MULT2=INT (AB2) /2
GF=8.=(ATAN(SBRT(51-P0))/SART(FPO)~-ATAN(SART(S1-F2))~
! SART (P23 )/ (S2%*SART(S1))

JFi=4,/(P1%P3)

JF2=4, = (ATAN(SART(S1/P2) ) /SART(S1*P2)+1.P3) P2
HF=4./(P3%P3)

J=J+1

GO TO 215

MULT1=INT(ABL1) 2

IF (AMOD(AB2,2.).EQ.0.) GO 'TO 210
MULT2=(INT(AB2)-1)/2
GF=8.=(ATAN(SART(S52-P0) ) /SART (PO -ATAN(SART(S52/P1) )~/
§ SORT(P1))/(S1%SBRT(S2))
JF1=4.*(ATAN(SART(S2-P1))/SART(S2*P1)+1.0-P3)-P1
JF2=4./(P2%*F3)

HF=4, /7 (P3%P3)

I=I+1

GO TO 215

MULT2=INT (ABE2)/2
TEMP=1./SART(P0)~1./5QRT(P1)-1./SART(P2)+1./SQRT(P3)
CF=4.=SQRT2PI*TEMP/ (51%52)
JF1=2.=SART2PI*((1.~5ART(P1-P3) )/ (S2*SART(P1))+
! 1./(P3%SQART(P3)))-P1
JFE 2+.#SARTEPI=((1.—-SART(P2/P3) )/ (S1*SART(P2))+

1. 7(P3%35QRT(P3))) /P2
HF 3. *SQRT2PI/ (P3%P3%SART(P3))



215

220
225

230

235

I=I+1
J=J+1

RI=FLOAT(I)

RJ=FLOAT(J)

R1=1.0-RI

R2=1.0-RJ

IF (MULT1.EQ.I} GO TO 225

ITEMP=I+1

DO 220 II=ITEMP,MULT1s1
GF=((R1+2.*FLOAT(II-1))*GF-2.*JF1)/S1
JF1=((RI+2.*FLOAT(II-1)+2.,*R1)=JF 1+2. *HF) /Pl
JFe=((R1+2.*FLOAT(II-1))*JF2—-2.*HF )51
HF=(RJ+R1+2.#FLOAT(II))*HF/P3

CONTINUE

IF (MULT2.EQ.J) GO TO 235

JTEMP=J+1

D0 230 JJ=JTEMPsMULTZ2s1
GF=((R2+2.#FLOAT(JJ-1))*CGF-2.*JF2) /52
JF1=((R2+2.*FLOAT(JJ-1))*JF1-2.*HF ) 52
JF2=((RJ+2.*FLOAT (JJ-1)+2.*R2)*xJF2+2. *HF ) /P2
HF=(AB1+RJ+2. *R2+2. *FLOAT (JJ-1) ) =HF /P3
CONTINUE

RETURN
END
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REAL FUNCTION RMFC2(PQA,PQBsFQC,PQE) "

o 30 I0 I I I R A XN XN

*® *®
*  M-ALGORITHM *
*® *

FRFRRE KRR NN FANRHNNWNN

FEH WA TN I IIEIE SISO TN 36 3696 38 36 36 36 36 36 T 56 3 R X HI NI INI IR IER AW HRFERR

THIS ALGORITHM CALCULATES THE EXPECTATION OF THE POSTERIOR
MEAN WITH THE INPUT PARAMETERS PGA,PAEBsPQACs PRE DENOTING
FOUR POSITIVE INTEGERS, SSA,SSB»SSCsSSE ARE THE FOUR

GIVEN SUMS OF SQUARES ESTIMATES.

THIS ALGORITHM IS DESIGNED TO COMPUTE THE M-FUNCTION

ONLY WHEN PQE IS 0DD INTEGER AND PGAsPQB ARE EVEN.

3636 KR I A3 KM I 636 36 3636 36 H 36363 36 H 3R I NI IS 6 WK HeHH W3

DIMENSION TLLC10,10)5 TMM(10510)5SUM(10,10)

GLOBAL UVUARIABLES ®
INTEGER ILEVEL, JLEVEL, KCELL
REAL QA, @Bs AC, QE+ SSAs SSBs SSCs SSE

T1,T2, T35 FIsFJs FKs FKK

COMMON ~#STATS/ (A, QB,AC, QE, SSA» SSB» SSCs SSE,
TL, T2, T3> FIsFJyFKs FKKs KK

LoCAL VARIABLES *
INTEGER IMMs INNs IMs IN

REAL C1,C2,C3,C4>C5sC65C7»LC8s
cs,Cl10,C11,C12,C135C14,
C15,C16,C175PGAs FAB,

PQCs PAE. SSTOT» SUML s SUMMs ALL s AMMs ANNs
TL» TMs FL» FMs CONST 1, CONST2, SUMN»s CONS

IF (AMOD(PBCs1.).NE.0.) GO TO 50000
C1=5SC~ (SSC+SSE)

C2=(SSE~/ (SSC+SSE) ) ##PQE
C3=5SA~ (55A+SSC)

C4=(SSC~ (S5A+SSC) I #*PAC
C5=(SSA+SSC) 7 (SSA+SSC+SSE )
CE=(SSE~ (SSA+SSC+SSE) ) #*PRE
C7=55B~ (SSB+SSC)
C8=(SSC/(SSB+5SC) ) *%=PAC
C9=(SSB+55C) ~ (S5B+SSC+SSE )
C10=(SSE~ (S5B+SSC+SSE ) ) #*PQUE
SSTOT=SSA+SSB+SSC+SSE
C11=55A~ (SSA+3SB+5SC)
C12=SSB~ (SSA+SSB+55C)
C13=(SSC/ (SSA+SSB+SSC) ) #%*PAC
C14=(SSA+SSB+SSC)/SSTOT
C15=(SSE~SSTOT)**PQAE
C16=GAMMA(PAC)
C17=GAMMA(PQE)

SuML=1.

ALL=PQC-1.

IF (ALL.LE.0.) GO TO 11000
FL=1.

TL=1.

10000 TL=Cl=(PQE+FL-1.)*TL-/FL



11000 -

20000

21000

230038
*

30000

31000

33000
%

40000

41000
42000
*

SUML=SUML+TL

FL=FL+1.

IF (FL.LE.ALL) GO TO 10000
RMFC2=1.-C2%SUML

SUML=1.

TL=1.

FL=1,
TL=CS5*(PRE+FL-1.)*TL/FL
SUML=SUML+TL.

FL=FL+1.

IF (FL.LE.ALL) GO TO 20008
SUML=SUML=CE

™™=1.

AMM=PAA-1.
SUMM=TM=(SUML—=1.)

IF (AMM.LE.0.) GO TO 23000
FM=1.
TM=C3%(PQC+FM—-1.)*TM-FN

TL=C5=(PRE+PAC+FM-2.)*TL/{PAC+M-1.)

SUML=SUML+TL%CE
SUMM=SUMM+TM#*(SUML-1%-)
FM=FM+1.

IF (FM.LE.AMM) GO TO 21000
RMFC2=RMFC2+SUMM=C4

SuML=1.

TL=1.

FL=1.
TL=C9*(PRE+FL-1.)*TL/FL
SUML=SUML+TL

FL=FL+1.

IF (FL.LE.ALL) GO TO 30000
SUML=SUML*C10

TM=1.

AMM=PQB-1.
SUMM=TM=(SUML-1.)

IF (AMM.LE.0.) GO TO 33000
FM=1.
TM=C7*(PQAC+FM-1.)*TM/FM

TL=C9*(PRE+PAC+FM-2, )*TL/(PAC+FM-1.

SUML=SUML+TL=*C10
SUMM=SUMM+TM=*(SUML—1.)
FM=FM+1.

IF (FM.LE.AMM) GO TO 31000
RMFC2=RMFC2+SUMM=C8

SUML=1.

TL=1.

FlL=1.
TL=Cl4=(PRE+FL-1.)=TL/FL
SUML=SUML+TL

FL=FL+1.

IF (FL.LE.ALL) GO TO 40000
SUML=SUML#C15

00 42000 I=1,10s1
DO 41000 J=1510s1
TLLCIsJ)=0.
TMM(Is J3=0.
SUM(IsJ)=0.
CONTINUE

CONTINUE

IMM=INT(PQA)~1
INN=INT(PQB)-1
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43000

44000
46000

48000

438000
*

*
50000

51000
52000

53000
%
54000

154

TLLC1,1)=TL
SUM{1, 13=5UML
TMM(1s13=1.

SUMM=1.-SUML

IM=0

IN=0

FIM=0.

FIN=0.

IF (IMM.EQ.0.AND..INN.ER.O) GO TO 49000

GO TO 44000 :
TMMCIM+1, 1)=TMM(IM, L)% (PRCHFIM-1.)=CI11/FIM

TLLCIM+1s 1)=TLL(IMs 1)%C14=(PQE+PQC+FIM-2.)/(PRCHFIM-1.)

SUMCIM+1, 1)=8SUMCIMs 1)+TLLC(IM+1, 1)%C15

SUMM=SUMM+TMMCIM+1s 1% (1. ~SUM(IM+1, 1))

IF (INN.EQ.G) GO TO 48000

IN=1

FIN=FLOATCIN)

TMMCIM+Ls INFLDD=TMM(IM+1s IN) % (PRC+F IM+FIN-1.)*C12/FIN

TLLCIM+1, IN+L)=TLLCIM+1, IN)*(PRE+PQC+FIM+FIN-2.)%C14/
(PQCHFIM+FIN-1.)

SUMCIM+1s IN+1)=SUMCIM+1s INJ+TLLCIM+1, IN+1)%C15 |

SUMM=SUMM+TMM(IM+1, IN+13%(1.-SUMCIM+1, IN+1))

IN=IN+1

IF (IN.LE.INN) GO TO 4000

IM=IM+1

FIM=FLOATC(IM)

IF (IM.LE.IMM} GO TO 43000

RMFC2=RMFC2+SUMM=C13

CONS=(S5A/2. 0) #%PQAA%(SSB/2. 0) #%PAB* (SSC/2. 0)*=PAC
CONS=CONS#= (SSE~/2. 0) *=*PQE

RMFC2=GAMMA (PRA) *GAMMA (PEB)*C16%C17*RMFC2/-CONS

GO TO 58000

IMM=INT (PGAR)-1

INN=INT(PQB)~1

TM=5SA+35B+SSC

CALL FUNCTNJ(2.#*PQC,2.%PREsS5Cs SSEs SUMLs TL )
CALL FUNCTNJ(R2.*PQCs2.*PQEs SSA+SSC» SSE» SUMM, TL)

"CALL FUNCTNJ(2.%PQCs 2.*PQEs TMs SSEs SUMNs TL)

SUML=SUML-SUMM+SUMN

CONS=1.

IF (IMM.LE.O0) GO TO 52000°

DO 51000 MM=1sIMMs1

AMM=FLOAT (MM)

CALL FUNCTNJ(Q.*PRC+2.*AMM, 2. *PUE, SSA+SSCsy SSEs SUMM, TLD
CALL FUNCTNJ(2.*PBC+2.*AMMs 2. #PQE, TMs SSE» SUMNs TL)
CONS=CONS*(S5a-2. ) 7AMM

SUML=SUML +CONS*SUMN-CONS+*SUMM

CONTINUE

CONS=1.

CALL FUNCTNJ(2.+*PQC,2.*PQEs SSB+55Cs SSE» SUMMs TL)
SUML=SUML-SUMM

IF (INN.LE.0) GO TO 54000

DO 53000 NN=1,INN-1

ANN=FLOAT (NN}

CALL FUNCTNJ(2.%*PQC+2.*ANNs 2. #*PQEs SSB+SSC,s SSE» SUMMy TL)
CALL FUNCTNJ(2.#PQC+2.+*ANNs2.*PQE, TMs SSE> SUMN, TL
CONS=CONS#*(S5B-2. ) ANN
SUML=SUML+CONS#*SUMN-CONS*SUMM

CONTINUE

CONST1=1.

IF (IMM.LE.0.OR.INN.LE.O) GO TO 57000
DO 56000 MM=1,IMM»1

AMM=FLCAT (MM)



- 55000
56000
%
57000

59000

CONST1=CONST1=(SSA/2. }»AMM

CONST2=1.

DO 550600 NN=1, INN,1

ANN=FLOAT (NN)

CONST2=CONST2*(SSB/2. ) /ANN

CALL FUNCTNJ(2.*(PAC+AMM+ANN)» 2. *PAES TMs SSE» SUMN, TLD
SUML=SUML+SUMN=CONST1*CONST2

CONTINUE

CONTINUE

CONS=(S5A/2. Y**PQA% (SSB/2. }**PQB
RMFC2=GAMMA (PAA) *GAMMA (PEB ) *SUML-CONS

RETURN
END
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130
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REAL FUNCTION TRINT(FsNDIU)

2% SEIEIE X HRNIEN RHH X%

3% *
* TRINT =
* *

EX I T EL LR Lo & il o d gk

93 XIS W WK 3 330 K3 263 3 336 26 IR AR AH XN

THIS SUBPROGRAM INTEGRATES A GIVEN FUNCTION F OUER A
TRIANGULAR REGION, DEFINED BY THE VERTICES (0,0),(1,0)
AND (1,1). F(UsW) IS THE FUNCTION SUBROUTINE TO BE
INTEGRATED. NDIU IS THE NUMBER OF SUBDIVISIONS OF THE
UNIT INTERUAL (0s1). THE UALUE OF THE INTEGRAL IS
GIVEN BY TRINT.

33 3696 36 36 96 3656 35 3630 36 36 26 36 36 36 330 236 36 36 96 636 % 3 563 K303 H I IR RWHAH XXX s

EXTERNAL . F

ND=NDIV
H=0.5/FLOAT(NDY
THOH=H+H

TOT=0.

IF(ND.EQ.1) GO TO 130
Hi=2.

IF(ND.EG.2) Wi=l.
W2=8.

W3=4.

WILL SUM ALONG DIAGONALS FROM (0sYF) TO (XLs1)
KL=TWOH

YF=1.-XL

TAKE CARE OF FOUR SPECIAL POINTS NEARR (0,1)
TOT=F (0.5 1. Y HNL%C(F (005 YFI+F (KL 100 ) +HE2*F (Hs YF+H)
IF(ND.EQ.2) GO TO 130

NDM2=ND-2

DOUBLE. LOOP OUVER INTERNAL POINTS
DO 120 I=1,NDM2

KL=XL+THOH

YF=1.-XL

IFCI.LT.NDM2> GO TO 100

Wi=H1-1

HW3=W3-1

%x=0,

y=YF

TOT=TOT+W1#F (0.5 YF)

C=F (Hs YF+H)

U=0,

DO 110 J=1,1

X=X+THOH

Y=Y+TWOH

U=U+F (Xs YD

C=C+F (X+H» Y+H)
TOT=TOT+W3%U+HR*CHW1%F (XLs 1. )

SUM ALONG DIAGONAL STARTING AT (0sH)
C=0.

%x=0,

Y=H

ND2=ND+ND

DO 140 I=1,ND2

C=C+F (X5 Y)

X=X+H

©Y=Y+H

TOT=TOT+C+C
SUM ALONG DIAGONAL Y=X
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150 KWe=e.

: W3=1.

®=0.

Y=0.

C=F (HsH)

U=0.

IF(ND.EQ.1) GO TO 170
NDM1=ND—-1

DO 160 J=1,NDM1
X=X+THOH

Y=Y+TWOH

U=U+F (X5 Y)

180  C=C+F (X+H, Y+H)

170  TOT=TOT+W3=U+W2*C
TRINT=TOT#*(H#%2/3.)
RETURN
END
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REAL FUNCTION INT3D(FN)

63636 XX 3 X W XK %

* *
* INT3D *
* ®

3698 36 9636 2 S MK F IR 3
6 6 366 3 Mo 36 353 JE-36 T FFE 9630 36 36 36 36 26 36 F 08 I 36 26 330 36 38 PR W-I6 W JE W 6 I I 2663626 3¢ -

THIS SUBPROGRAM APPROXIMATES A 3-DIMENSIONAL .ITERATED
INTEGRAL CF THE FUNCTION FNUW,U:.U).
SUBROUTINE GLO16 PROVIDES A TABLE OF THE 1B-PCINT
GAUSS-LEGENDRE FORMULA.
THE UALUE OF THE TRIPLE INTEGRAL IS GIUVEN BY QMULTZ.
" THE LIMITS ON THE UARIABLES ARE
AA JLE. W .LE. BB
FLOLCW) .LE. U .LE. FUPLCUW)
FLO2(HsU) .LE. U .LE. FUP2(W>U)

363636 26 3030 369030 36 3 366 3 W 303636 30 SH I 30 MR 36 3 I FE B W H IR A H IR XA IERK R

EXTERNAL FNs FUP1,FLOLs FUP2,FLO2
DOUBLE PRECISION DX(186)s DA(16)
DIMENSION X(4053)s AC40-3), MM(3)
CALL GLO!6(DXsDAs—1.D0s1.D00>

DO 222 I=i:1651
XX=DX (1)
X(Is1)=XX
X(Is2)=XX
X(Is3)=XX
AB=DA(I)

A(Is 1)=AB
A(I,2)=AB
A(I,3)=AB
MMC(1)=16
MM(2)=16
MM(3)=16
INT3D=GMULT2(FNs 0c» 1. FUP1,FLOLs FUPZy FLOZs XsAs MM
RETURN

END

SUBROUTINE CGLO1B(XsAsCsD) :

DOUBLE PRECISION C,Ds X(1B)sA(LE)» XX(8)sAA(B)

DATA (XX(I)»I=1,8)~/
*,98940093439164839325961541734D0
*,9445750230732325760773884155D0
*,865631202387v8317438804E6783r7D0
*,79954044083550030338351011348D0
*,61787624440264374844667 17640D0
*,.458016777B8572273863424134423D0
#,2816035507792588132304605014D0
*.9501250883763744018531933542D~1

DATA (AA(I)>I=1,8)/
%*,2715245941 1754094851 7805724501,
*,62253523823864783286284383699D-1»
%*,8515851168248278480392510760D-1,
*, 12462897 12555338720524762821D0 »
%, 1485859888165767320815017305D0 »
%, 16915651933950025381833120730D0 »
*,1826034150449235888667636673D0 »
*,.1894506104550684862853967232D0 ~

DMC=.5D0%*(D-C)

DPC=.5D0% (D+C)

DO 444 I=1,851

NI=17-1

X(I)=—DMC=XX(I)+DFC

NSe @ s v @9 v



159

X{NIX=DMC*XX(I)+DPC
ACI)=DMC=AA(I)
A(NI)=DMC=AA(I)
RETURN

END

REAL FUNCTION BMULTZ2CFCN»sAR»BBs FULs FL1s FU2sFL2yXsAs MM)
3-DIMENSIONAL ITERATED INTEGRAL
DIMENSION X(40,3), A(40,3)s MM(3)

22
44
€6

H1=(BB-AA) /2.
G1=(BB+AAR) /2.
Qa1=0.

M1=MM(1)
M2=MM{(2)
M3=MM(3)

DO 66 I=1,ML
UI=H1=X(I,1)+G1
AI=H1*A(Is 1)
Di=FULCUI)
Cl=FL1CUD)
He=(D1-C1) /2.
Ge=(D1+C1) 2.
@2=0.

DO 44 J=1,M2
UJ=HE=X(Js 2)+G2
AJ=H2*A(Js 2)
b=FU2(UI,UJ)
C=FL2(UI;VJ)
H=(D-C)/2.
G=(D+C) 2.

Q=0.

D0 22 K=1,M3
WK=H=%X (K5 3)+G
A=Q+A (K5 3 *FCNCUTs Uds WKD
Q2=02+AJ=H=Q
Q1=Q1+AI*Q2
GMULTZ2=31
RETURN

END

REAL FUNCTION FUP1(HW}
FUPL = |

RETURN

END

REAL FUNCTION FLO1CHD
FLO1 = OEO

RETURN

END

REAL FUNCTION FUP2(WH,UD
FUP2 = W

RETURN

END

REAL FUNCTION FLO2(HsU)
FLO2 = OEQ

RETURN

END



