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1. Introduction and Statement of the Problem
It is desirable in applications to express a stochastic process as

a solution of a stochastic differential equation where the equation has a

point process differential whose jump intensity depends on the paths of

the solution. This can be described symbolically as:

(1.1) o X =K+ 2 F(X) dM, + z_e(x)st(x(X))s
where N(A(X))t is a point process whose jump intensity at time t is
A(Xu,ugﬁ). In this paper we slightly extend the theory of stochastic dif-
ferential equations to include an equation thch allows us to create such
a model. |

In section two we prove an existence and uniqueness theorem which is
not covered in the existing literature. We show so]utions exist ub to ex-
plosion times. We then use this equation to show é-so]ution exists to an
equation such asl(1.i). In section three we discuss ways to -assure that
the explosion time is a.s. infinite. In section four we indicate how the
model might be used-in economics. For all inexplained terms we refer the - -
reader to [2] or [3].

We wish to fhank the economist B.'Wefnerfe]t for suggesting.this in-

‘vestigation to one of us and for his advice.

2. Theorems and Proofs

Rather than seek ultimate genera]ity in proving existence and unique-
ness of solutions, we content ourselves with penultimate, which suffices
for applications. On a fixed filtered space (Q,J,;}t,P) let Z be an adapt-

ed process with cadlag (i.e., right continuous and left Timited) paths.



Let h, = |aZ.|, where ALy = 2, - 1, . Define the random measure

(2.1? | g(dt,dx) = SZO e(s,hs)(ds,dx)

where €5 is point mass at a. Let K be another adapted, cadlag process,
and let M be a semimartingale. Under appropriate conditions on F, G, and

H we will show a unique solution exists up to an explosion time of:

Ot

t '
(2.2) Xg = Ko+ é F(X)gaM, + | £RG(X)S]{H(x)s—<x}6(ds,dx).

(2.3) DEFINITION. An operator F mapping adapted, cadlag processes to

predictable processes is’M—acceEtable for a semimartingale M if a unique
' t
solution exists to the equation Xt = Kt + f F(X)des for every cadlag
0

adapted process K. .

There has been much recent progress in finding sufficient conditions for

F to be acceptable (cf., e.g., [2] or [3]). One simple condition given
=Xl t
T-]{Q;T}’.then X' = Y- implies (FX)T = (FY)T for any stopping time T;

by M. Emery [1] is that if X, Y are adapted, cadlag and '
X

that F(0) is dM integrable; and that there exists a constant K such that

(FX-FY)*';:K(X—Y)*, where X; = sup]XSI.
_s<t

(2.4) DEFINITION. Let D[0,t] be the space of cadlag functions on [0,t].
Let j be a functional such that j(f,u,t) is an adapted process with paths

in D[O,t] for any feD[0,t]. An operator H is said to be cadlag postive

if there exists such a j such that H(X)t(m) = j(Xu(w),U§;;m,t) and

H(X)t_(w) > 0 for each adapted 6rocess X with paths in D[0,t].



(2.5) THEOREM.  Let F be M-acceptable, H be cadlag positive, and let G

map adapted cadlag processes to predictable processes such that Y!~ = 71-

img]ies G(Y)T = G(Z)T. Then there exists a unique solution of (2.2) deter-

mined up to a strictly postive explosion time T.

Proof. Let X] be the unique solution of

1

X¢

S
= 1
=Kt é F(X)gaM, .
Let T! = inf{t-0: ht>H(X])t_}. Then T' > 0 a.s. Let X2 be the unique

solution of

t
K=k + [ FOC) aM + axe T .
t t 0 s s T] 1
_ [[T s°°[[
Then X! = X2 on [ O,T1E . Proceeding inductively let
= infeT g W)
and let Xn+] satisfy the equation

. t n
ntl _ n+l n+1 .
Xg ' =K+ é F(x )M, + 121 GXTi It o

Note that X" = X" on [ 0,7"[. Let T = supT", and Tet X = X" on [ 0,T"[.

n
Then X is well defined on [ 0,T[ and is a solution of (2.2) up to T. O
We call T an explosion time because if T < » then either |X;_| = = or Xy

does not exist as a Timit.
We now assume (0,3, Jt,P) supports a Lévy process Z (i.e., Z has sta-

, . . - 1
tionary, independent increments) with Lévy measure v(dx)_= 1{x¥0};§-dx.

(Thus Z has a lot of small jumps.) Set ht = |AZt|, where h is the process
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used to define g(dt,dx) in (2.2). Let A be a cadlag positive operator’énd
define a new cadlag positive operator H by H(Y) = 1/x(Y).
-Recall that if N is a point process, its (stochastic) jump intensity
t

is a nonnegative, adapted, measurable process A such that Ny - f.ASds is a
0

Tocal martingale. Such a A need not exist for an arbitrary point process.

(2.6) THEOREM. With h and H as given above, and with X the unique solution

of (2.2), then up to an explosion time T we may write X as the solution of

’ t t
Xt = Kt + é F(X)SdMS + é G(X)SdNS

where N is a point process with jump intensity A(X)t.

: t
_Proof. Define N = 6 .é ]{H(X)S_<x}8(ds’dx) where H and B are as describ-

ed in the preceding paragraphs. In view of Theorem (2.5), one need check
only that the intensity of N is indeed A(Xu;u;;)0<t<T. Let C be albounded

predictable prdcess and define the process:

}
Jd, =

O'— 8

CS 1 { H(X)S_>X}B(ds ,dX).

'We-phen have that
J, = § C. 1 :
t s<t ° {H(X)S_<|AZSI} {aZ#0}

The dual predictable projectioh of J (cf [2, pp. 90-92]), J, is (for t<T):

~ t o
Jt i é —jw CS]{H(X)S_<]X|}%V(dx)d5

2x2

’ 1
Ot ot

< -1
__{o CS]{H(XS_)<IX’} —= dxds



t - 2
= é c. J (1/x°)dxds

S
H(X) g

-

t
é C (1/H(X)_)ds

t
[/ CSA(Xu;u<s)ds,
b >

and the result follows. >- O

3. Infinite Explosion Times

“We discuss here conditions one can place on G and H in order to ensuré
that the explosion time in Theorem 2.5 is a.s. infihite. Which conditions
one might want to use will depend on the application.

In order to have an "explosion" at a finite time T one easily sees

from the proof of Theorem 2.5 that one must have lim infi%(X)t= 0. By the
t-T

definition of cadlag positive this implies that X cannot be extended from
[o0,T[ to [ 0,T] and be cadlag. |
Since X must either explode or have an oscillatory discontinuity, we -

see that necessary conditions to have an “explosion” at T < = are:
-(3.1) ]1"'1nft+TH(X)t =0

(3.2) - ' ) [6GX .| = = a.s.
: n=1,e ™

Qhere tﬁ? stopping times (Tn) are as constructed in the proof of Théofem
2.5,

One easily sees from (3.1) and (3.2) above that the following condi-
tions are each sufficient to assure that there is no explosion at a finite

time.
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(3.3) Take the cadlag positive operator H to have the additional property
- that for some ¢ > 0, Y cadlag on [[ 0,T] implies H(Y) > ¢ on [ 0,T] .

(3.4) Take thé operator G in (2.2) to be nonnegative and have compact sup-
port in the sense that there exists an N > 0 such that suplel > N implies

s<T -

GYT = 0.

4. An Economics Example

Suppose we wish to model the pUrchaée of an inexpensive convenience
good, where a conéumer scouts for new offers of sa}es of the goods. If
prices have been relatively low the consumer may reduce his efforts to
find new bargains, hence the consumer scouts with varying intensity and
therefore finds new offers at varying rates, with the rate intensity depend-
ing on the price. All thé while,'the consumer is continually consuming at
the lowest price yet'Seen.

Mathematically, let:

o _Xt(w) = last price (or-offer) seen before or at
time t
'Yt(m) = last price actually paid by the consumer
 before or at time t
g(t,w,x) = change at time t in size of offer if last
~ offer was x

instantaneous arrival rate of offers at

A(tsw,y)
time t if last price paid by the consumer
wés y. |

The model described here implies that

Y. (w) = inf X (o)
t Oss<t
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and X will satisfy the equation:

t
Xt = XO + é g(s,w,Xs_(m))dN(A(S,w,YS_(w)))

where the mathematical interpretation of this equation is given in Theorems

2.5 and 2.6.
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