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Summary
Let X = W + oL, where W is a Wiener process, L is the Tocal time at 0
of either W or a erner process independent of W, and o is a constant. We
show that if |a| > 16 the minimal filtration of X contains the minimal
filtration of W, that is, the "signal" ol can be completely recovered from

observation of X. If a is small the problem is unsolved.

Supported in part by NSF



1. Introduction
A fypica1 problem in filtering theory is that one observes a process
Y, = W, + |
t t 0

intergral of white noise, and one wants to estimate the "signal" ht' In

hsds, where W is a standard Wiener process representing the

this paper we consider Y* = W + ol where L is local time at zero of W and
o is a constant. We show in Theorem 3.2 that one has equality of the
filtrations of Y* and of W for |a] > 16, and hence one need not make

estimates at all, since oL can be completely recovered from observation

of Y. We actually prove the stronger result that, for any a < b and
la]l > 16, .

» ol o
(1.1) ofly - L,acxt < b) g;c(Yt -¥,asts b).

Nitﬁzhinor modifications our proof shows that (1.1) holds as well if L is
Tocal time at 0 of a Wiener process independent of W. By complicating the
proof webcan lower somewhat the bound 16, but we cannot get close to 1,
and we conjecture that (1.1) does not hold for all positive a.

We thank J. Pitman for introducing us to these kinds of questions.
He asked one of us ([3]) whether the filtrations of W + L and W are

identical, a question we have, evidently, not answered.



2. Theorems and Proofs
Throughout this paper we will take W to be a standard Wiener process

defined on a complete probability space (o, 3, P). (3 will denote

t)tiO
the minimal completed filtration of W, and L will denote its local time

at 0. We take L to be normalized so that

t
.1 _
(2.]) llgz IO ](_e,e)(ws)ds = Lt

holds.

Define Y* by

o _
Yt—wt'l'onl_t
and let (Q%)t>0 be the minimal completed filtration for Y*. Clearly

Gy S, t > 0.

(2.2) THEOREM. With the above notations G* = & for [af > 16.

First note we only need show Kt g;qt, t > 0. We consider only the caée
o = 16; from the proof it is clear the same techhique works for |a| > 16.
We let G = G* and Y = Y*.

First a few facts needed later are collected. A standard estimate
gives |
(2.3) P(w] >5)<e 7,
and the following lemma is a standard large deviation result

(2.4) Lemma. If X Xy are iid zero-one valued random variables with

1
p(X = 1) < e !5, then P(z7_{X; > n/10) = o(2™").

To prove this lemma we just take t = 10 in the inequality

trX,
P(ZXi > n/10) < E(e 1)/et(n/10).



Next fix t > 0 and let H be an open interval in [0,t]. We will
construct a zero-one valued r.v. T, gt - measurable, such that
(T = 0} = {ds: BS = 0 in H} a.s. This will allow us to recover L in
a -optional way.

Divide H into m equal disjoint subintervals (Ap)1§p§m so that

Fix p < m and write A = Ap = (x, x + v). Divide A into 2" equal disjoint

) , SO that:

subintervals (J
| 1<q<2’

q

The length of Jq = ]Jql = v/2", and letting ¢ = v/2" we form the fo]]owing

intervals for each Jq = (a,b):

q:_- = q q =
I] (a, a + ¢) (a], b]) (a], bl)

q _ n-1 ny _ (.9 g ;
In (a+2 e, a+ 2%) (an, bn) (an, bn).
Recalling A = (x, x + y), note that each Ji c (x, x + 2y) c H, for Ap with
p <m. Finally, we define r.v.'s Z(Jq,n) by:
1 if Zi=1,n ]{Yb _ Ya .5 |FB;:5;} > n/10

Z(Jd_n) = ! !

{2.5)
o 0 otherwise.

(2.6) LEMMA. P(Z(Jo.n) =10 (ds: Wy = 0 in (al, b1)}) = 0(2™").

S

Proof of Lemma 2.6: Let A, = {#s: Wj = 0 in (a], b})}. MNote that L is

constant on Aq; hence



P(Z(Jq,n) =1Nna) - P()f].:],n ](w

and an application of Lemma 2.4 completes the proof.

—) > .11, for any s, 0 <s < 1/2.

1
(2.7) LEMMA. P(Ys+]/2 -YS > 5/§

Proof of Lemma 2.7; Suppose we can show P(LSH/2 - LS > .37) > .112 for any

s, 0 <s < 1/2. Then

Y > 5 J—)

PNgir/0 = Ys r

< - 2.2)

|v

P(16LS+]/2 - ]6LS > 5.8) - F‘(W”2

112 - .002 = .11,

| v

Let R = inf{t > s: wt = 0}. Then

v

| v

35P(R < s + 1/3),

| A

since P(Lp, /6 = Lp > -37|R < s + 1/3) > Pllyyg > -37) = 2P(W 0>.37). 1t

1/6
remains to show P(R < s + 1/3) > .32. Then P(R <s + 1/3) =

E{P(B hits 0 in (s, s + 1/3)]BS)}
= Ef201 - 2y /3(181))}

[¢0]

10 eegdy [0 <5 < 1/2]

i

|v

4100 = 8 a(y) d
IO( ¢]/3 Y) @]/z(y) Yy

.32,

| v

where ¢ and ¢ are the usual Gaussian cdf and pdf.



Set rq = [ds: BS =0inuy Ig}. The last lemma immediately implies
(2.8) P(Yy - Y, >5Y bi—aiqu) > .11, for 1 <i <n
R i
Using (2.8) observe that:

(.11)n < E{Z‘i=],n ](Yb_ _ Ya > 5 '/—BF'—a_i_)'Fq]

i i

< MP{Zyq ](Yb. =Y, > 5/ bay)” n/10) + n/10;

i i
hence
(2.9) - P(Z(Jq,n) = 1]Pq) > .01.
Recalling that p is fixed, define
2. R = Z(J .
(2.10) Pan T plqee" (Jq,n
Let
(2.11) Ap = {gs: WS = 0 in Ap}, and
. Ap’qO = {Jqo,n is the first Jq such that
ds with ws = 0 in Jq,n}'
Then
n
.(2.12) P(Rp,n = 1|Ap) E‘QZ]P(Z(JQ5") —'1|Ap’q)P(Ap’q|Ap)
5N
.01 P(A A)= .01
R IVICRLY

where we have used (2.9). Next, letting
(2.13) D, = (s Mg = 0dn 4 UAyq)

we have that

=2"o(2™™) =0(1)



by Lemma 2.6, hence

= = = ] .
c, P(Rp,n mDp) o(1)
Choose a subsequence'{ni} such that Zi=1 o Cp. < for ¢, as above.
’ i
Define
(2.14) R = lim sup. R

p T p’ni,

with Rp zero-one valued. By the definition of Rp and Borel-Cantelli we have

. ' =1 N0nDhH) =
(2.15) P(Rp p) 0
while

(2.16) P(Rp = 1[Ap) > .01

from (2.12) and Fatou's lemma. Note that Rp depends only on the values of

Y in Ap u Ap+]. We now define

(2.17) T = SUPY Ry
Let

A = {ds: such that wS =0 in H}
(2.18) _

D = {#s: such that ws = 0 in H}.

Then it follows easily from (2.15) and (2.16) that
{ P(Tm 1ndD)=0
P(T, = T1A) = .01,

(2.19)

Next we set’

(2.20) : Tﬁ = 1im SUP Tm'

Using (2.19) note that Borel-Cantelli and Fatou's lemma respectively yield
P({Th =1¥nDd)=0
P(Tﬁ = 1|A) > .01.

We note that {Tﬁ = 1} is measurable o(Yt - Ya’ a<t<b+e) forany e.

Secondly, the proof just given immediately generalizes to show that



(2.21) P(T), = 1]A nB) > .01,

where B is any set in o(Y,, t < a). Now let (Cn’dn)’ n > 1, be an ordering

t,
of all the open intervals contained in (a,b) which have rational endpoints.

Define T, = T = sup_ T(Cn’dn). Then (2.21) immediately implies

(2.22) P(T, = 1]A) = 1,

since if wt hits 0 in H it is possible to find with probability 1, an
arbitrarily large finite disjoint collection of intervals (ck,dk) such that
W, hits 0 in each of the intervals.

At the beginning of. the proof (following Lemma 2.4) we fixed an open
interval H in [0,t]. For each such H with rational endpoints, {Ty =0} =
fﬁs: W, =10 in H} a.s., and {TH =0} ¢ Qt. Thus the complement of the |
ZeFo set of W is a “-optional set. Then Hg = 1Z(s), the indicator of thé
t

1

zero set of W, is Qa—predictable and wt = f E'Hsdys' Alternatively, a

0%
~ theorem due to Léevy allows us to express the local time L as a limit of
these random intervals (cf [2, p. 730]). Thus L is a ¢®-optional pkocess :

and this completes the proof of Theorem 3.2.

(2.23) COMMENT. Filtering theory is usually concerned with cumulative
siéndl'prOCeSSes that have absolutely continuous paths. If Yt =
W+ j; his, ws)ds for bounded, Borel h, then using Girsanov's theorem oné
can find a new probability law Q that makes Y into a Brownian motion. W is
then a solution of the differential equation

dwS = dYS = h(s, ws)ds
and W is a strong solution by Zvonkin‘§ theorem [65]. Thus in this case as

well the filtrations of Y and of W aré the same and one need not make estimates



8

of hS = h(s, ws). Indeed, we do not know of any additive functionals A of W
such that if Y = W + A then the filtrations of Y and W are different; we
conjecture, however, that if A = eL for small enough ¢ then the filtrations

dre in fact different.
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