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Abstract ' -

Let X be an observation from a p-variate normal distribution (p>3)
with unknown mean vector 0 and unknown positive definite covariance matrix
t- It is desired to estimate g under the quadratic loss L{s,0,}) =
(5—0)tQ(a—o)/tr(Q$), where Q is a known positive definite matrix. A ran-
dom matrix W with a Wishart ($,n) distribution is assumed to be available,
from which { can be estimated. A broad class of minimax estimatérs of ©
is developed, using a novel combination of techniques developed separate-
ly for estimating means and covariance matrices. These minimax estimators
can offer significant improvement upon the usual estimator, do(x) = X,

of 0.



1. Introduction

],...,Xp)t is a p-dimensional random vector (p>3)

which is'normally distributed with mean vector g = (0],...,Gp)t and posi-

tive definite covariance matrix f. It is desired to estimate o by an es-

Assume X = (X

timator § = (6],...,6p)t under the quadratic loss

L(s,0.%) = (s-0)"Q(s-0)/tr(q}),
where Q is a positive definite (pxp) matrix and "tr" stands for trace.
As usual, an esfimator will be evaluated in terms of its risk (expected
loss)

R(8,0,%) = EO,$L(5(X),e,t).

The usual minimax and best invariant estimator of 8 is do(X) = X.
Since Stein (1955) first showed that 60 could be improved upon for Q =
$ =1 (the identity matrix) a large body of work has developed éoncerned
with finding significant improvements upon 50. For the most part these
efforts have been directed towards problems where either § was known (or

known up to a multiplicative constant) or where Q = i_] (a rather special

-situation). For the general situation, Berger and Bock (1976a) and (1977) o

and Shinozaki (1977) were able to find minimax estimators (better than
60) under the assumption that $ was an unknown diagonal matrix or could
be reduced to an unknown diagonal matrix. Berger, Bock, Brown, Casella,
and Gleser (1977) (hereafter to be referred to as B3CG (1977)) and Gleser
(1979) succeeded in developing minimax estimators with no restrictions on
f or Q. In this paper we broaden and strengthen the class of minimax es-
timators found earlier, and also provide a complete]y analytic broof of

dominance.



It will be assumed that i is completely unknown, but that a random
(pxp) matrix W is available, from which § can be estimated. The matrix W
is asguméd fé have a Wishart distribution with parameter { and n degrees
of freedom (to be denoted ?/p($,n)), and is assumed to Be indepeﬁdent of
X. It will also be assumed that n>p+1. We will considef estimators

of 0 having the form

Yl (1.1)

R
sS(X,M) = (I-ca(Q® WQ)h(X
where o and h are positive real functions satisfying certain properties

and c¢>0. These estimators will be shown to be minimax for O <c<c¢

- n)p,
the constants Cn.p being determined in the course of the investigation.
The particular case of (1.1) considered in B3CG (1977) was
cch . (QW)
nin -1 -
sS(X,W) = (I- ' — Ty, (1.2)
(n-p-1)}X"W "X

LI 12
corresponding to the choice «(Q® WQ®) = ch 5,(Q= WQ%)/(n-p-1) and

1 1

h(th_ X) = ]/(th~ ). (We use chmin(A) to denote the minimum charac-

teristic root of the matrix A.) Gleser (1979) considered more general
functions h, but also was restricted to the above choice of a.
The other, perhaps more useful, generalizations obtained here con-

cern the constants <, p" First of all, larger values of <, D are obtain-

> b

3

ed (for n-p>12) than in the B°CG (1977) or Gleser (1979) papers. Hence

larger choices of ¢ in (1.1) or (1.2) are allowed, which can lead to sub-
stantial improvements. Secondly, a purely analytic result is obtained,

namely that (1.7) is minimax if

(1.3)

b

O<c<ch =2 - 4(n-ptiha

2 ) P

where

Mop T ELT/ch in(V) ], (1.4)



V being a 2})(I,n) random matrix. Previous proofs of minimaxity obtained
the values Cn,p only as solutions to intractable functional equations in-
vo]v{ng Wiéhart matrices, the solutions of which were estimated by simula-
tion. This was unsatisfactory to some statisticians, because the Cn,p
were not guaranteed by theory to be positive, and hence one'must “trust"

the simulation to believe that better minimax estimators were indeed found.
OF course, the chance that the simulations gave drastically wronqg values of
Cn,o 1s negligible, but it is worthwhile to have a purely analytic proof

that if (1.3) is satisfied then §° is minimax. Unfortunately, the c;

3

in (1.3) are considerably smaller than the Cn,p found by the simulation
technique, and hence give a much smaller class of minimax estimators.

The proofs of the minimax results in this paper are themselves of
interest because they combine two methodologies that have been develped
in simu]taneoﬁs estimation problems: the integration by parts technique
(also called the unbiased estimate of risk technique) developed by Stein
(1973) to deal with estimating o when $ is known, and techniques develop-
ed independently by Haff (1977, 79) and Stein (unpublished) which Tead to
Wishart identities useful in the estimation of $. This combination of
' techniques should be of considerable use to other researchers in the area.

Throughout the paper, E will stand for expectation, with subscripts
indicating parameter values at which the expectation is to be taken and
superscripts indicating the random variables or distribution with re-

spect to which the expectation is to be taken. When no confusion can

arise, subscripts and superscripts of E may be omitted. -

2. A Stochastic Ordering Result
[n this section a result concerning the stochastic ordering of condi-

tional distributions of Wishart characteristic roots is established. This



result will be needed in the proof of the minimax theorem. After deve]oﬁ—
ing the resu]t below, it was brought to our attention that the relevant
stochasfic ordering property was proven in Dykstra and Hewett (1978) by
a different line of reasoning. We give our original result be]og because
it deals with a somewhat broader class of distributions than Just that
considered in Dykstra and Hewett (1978), and hence may be of independent
interest, and also because the purely analytic pgoof may be useful else-
where.

It will be assumed that the random vector ) = (A],AZ,...,A ) has a

p
joint density (with respect to Lebesque measure) of the form

p
=10 1 9,001 (Ag-2,)] (2.1)

Lin o0,
! ]' (S7t) €A ~ {ék]i)\ziixp} <

where gi(xi)

v

0, IQ(g) is the indicator function on 9 (i.e., IQ(§) =1 if
> € Q and IQ(ﬁ) =01if 2¢0q), and A isany set of pairs (s,t) such that s
and t are integers between 1 and p, s<t, and (s,s+1) €A for s = 1,...,p-1.

The density of decreasingly ordered Wishart roots is in this class.

fheorem 1.  If i has a density of the form (2.1), then, for j=1,...,p-1,

the conditiong] distribution of (A],...,AJ) given (Aj+],...,Ap) is stochas-

tically nondecreasing in Ay(k=j+],...,kp), in the sense that

E[‘l’(x]7---a)\j)])\j+],-~-7>\p]

is nondecreasing in A forany real valued function ¢ which is nondecreas-

ing in the AQ(EI],...,D) (and for which the expectation exists).
’ i

Proof. From Proposition C.1 of Chapter 17 of Marshall and 0lkin (1979) (a

proposition based on results on stochastic ordering due to Veinott (1965)
and Kamae, Krengel, and 0'Rricn (1977)) it suffices to show that, for j=1,

.5p-1 and all t » Aj+1’ P >t]AJ+],...,A ) is nondecreasing in Ao

J p

AN



k=3+1,....p. Defining d\ - Ay oo dagand A = ((s,t)eh: si), it
is clear that
P(xj>t|>\j+],...,xp)
[ ] [ f)d?
} t )\j )\2
[ [ f(x)d))
/\J-+] )\J- )\2

cor J .
[ T 0 g1 1 (Gga)dd

toA. A i=1] (s,t)eA.
2 )
- w Joo o J J A * (22)
Pl 00,001 G )dy
Aj+] Aj Ay o iE (s,t)éAj

To show that the last expression is nondecreasing in Ak(k=j+],...,p),
we will simply show that its partial derivative with respect to.xk is non-

negative. The notation will be considerably simplified if we define

Ij,k = {s: (s,t) EAj and t=k},

(1) [j SVRaIN ( )] ( )
¢ A} o= T g.{x. I X =X /I A -AL ),
Jok*= sz 1T (s.t)€A. st scr. s "k

J Jk
and, for 2 Eljgk’
SOV R (N N W
" ' SGIj ‘

Note that ij k(3\) does not depend on Ak’ and that

S { (A -)\k) = - pJS.’k(x).

A S
k SGIj,k ik

Thus, letting N and D stand for the numerator and denominator, respective-

ly, of the last expression in (2.2), it follows that
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I O T U
ax, Q> tlagays--anp)
) . -.l o) © v .
=0 [ | - [ e, SIS o3 (x)]dAd
t o A, DT LT 3.k~
J 2 i,k .
2 o o oo . )
-NT [ [ e, [ T 3 () ]dad.
A A v, o Jak scl Jok~
MR BN 2 i,k

fee]

(When k=j+1, the boundary term arising from differentiating [ is zero,
A

JH

since (j,j+1)e Aj’ and so the integrand of D evaluated at Aj+] i5 zero.)

Defining

it is clear that

3 :
7n P(Aj>tlxj+],...,xp)
_ ) @ -3 . o] o © S
=0 [ 0 0T [ e nS ()ad]
sel t A A ok k A A A KT
,k 2 B R N 2
SRR A S DL e POL oS [N A AR B SO CVETRN
A4 SR by Ao
w0 t o3 .
Breaking up the integrals [ into [ + [ in the above expression and
A X t : -
JH JHI

subtracting common terms gives
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T P xj>t]>\ ,Ap)
_2. e © © S j t © © S . J
=D~ ) S e B N O S ICNES WO T- s | D SR PPRY NS I CU PR A
sel,; toa, o, JdokTs kTS A hY x, kTR
J,k J 2 N 2 .
t <0 o0 S . oo [o+] [ee] . .
S T S O ) [ e h LT (2.3)
Ajﬂ )\j )\2 t )\J. )\2

Using (2.3), we can now complete the proof by induction on J. Thus
consider first j=1, and observe that I] K ={1} (since s<jif SEIj K ).
Hence
K P(x;>t]a A ) = D'2 [ ? h) “(x)(x -Ay dx i [ h dA ]
AV 1 2200y 1,k 274

t
A2
.
- [ hy k(5)( dx 1 f h 2 )dx ]§
A ’
2 _

>D'2g[;h}’k( )(t- dx][[h M, ]
2

SR EERES FRNEST

= 0 (factoring out (t-xk)).

This establishes that P(AJ»tlAj+],...,Ap) 1s nondecreasing in A for j=1.
Assume now the induction hypothesis, that
P(A£>tlxﬁ+],...,xp) is nondecreasing in Ay (k=e+1,...,p)
for 2=1,2,...,5-1. (2.4)

We must then show that this is also true for 2=j.  To. this end, define

N N N AR N TR It



and
S ~ o oo s J—]
A b ,)\ - h d
85,k o) { { j,k(2)d2
J 2
Observe that i
S
. Aosea
5.k p’ = E*¥[a_-», ]
82 (heyeain) 5 kT
J,k g P

where "*" refers to expectation with respect to the "new" density

& [3¢]

S j -
he (N [ - f hY | (A)dad ] : (2.5)
J’k" J’k“' ~
A A
J 2
on Ay 2 Ay > ... 2.*j~1- For s < j: observe that the density in (2.5) is
the same as the conditional density of (A],...,Aj_]) given (Aj,...,xp)

when ) = (A],...,Ap) is assumed to have the density

fg,k(g) = cf(A)/ (-2 ),

c being the appropriate normalizing constant. Since s<j and k > J + 1,
f: K is a density of the form (2.1). Hence by the induction hypothesis

(2.4) (applied to f; P) together with another application of Marshall and

0lkin (1979), it follows that the f; K conditional density of (A],...,Aj_])

given (Aj,...,xp) is stochastically nondecreasing. Since [xs—xk} is non-

decreasing in A (s<j<k recall), it can be concluded that E*[AS—Ak] is

easing i .. Wb =J, E*LA.-2 = A
nondecrea g in AJ en s=j [ j k] ]

nondecreasing in Aj. Hence in all cases it can be concluded that

- Ao which is trivially

v (Asyooin ) : .

—%JE«—J~~—»-AP-r 1s nondecreasing in Aj' (2.6)
85,k goe oy
To complete the argument, a use of (2.6) in (2.3) gives (simpiy writ-

. S .
ing 4> and 4> when convenient)



-2 7 s yi_ to b v 7 s
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J,rk Jj+ J+l i}
ws(t A X ) | t
_2 @ ' y : LI |
20T T a0 ) (i S0 S )
SEIj,k t A (t,Aj+],...,Ap Aj+]

S
17 (t,kj+],...,A

t S
- A~(AJ,...,A )(

) [ee]
P )10 Asdxj]
Mg A t

’)\J.Jr],... D

S
1] (t,kj+],...,A )

O (factoring out the constant term -—— 9717 ""*"p’ ).

2> (t

,Aj+],...,kp)
This completes the induction step (verifying (2.4) for 2=j) and hence the

proof. ||

It is interesting to note that the induction step in the above proof
necessitated working with a new density of the form (2.1), and hence would
not have been possible had we tried to consider only the Wishart situation.

The particular results that will be needed in the minimax theorem are _

stated below as corollaries.

Corollary 1. If A ozhy 2 3_Ap are the characteristic roots of a
Zp (I,n) matrix, and ¢(A],...,Ap) is a real valued function which is non-
decreasing in each coordinate, then for J=1,...,p-1

E[¢(A],...,AD)IAJ+],...,Ap]

1s nondecreasing in A k>3+1.

k b

Proof. Let Aﬁ’ > Aé. The density of (A .,Ap) is of the form (2.1),

10
so, by Theorem 1,
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E[¢(A],...,Aé)lxj+],...,x6] 5_E[¢(A],...,A‘)]Aj+],...,k”].

A7) §_¢(A],...,A6’), so that

| A

E[¢(A],...,A’)]Aj+],...,A&] E[¢(A],...,A’)lxj+],...,x"]-

p

i A

E[¢(A],...,A")JAJ+],...,A5'],

establishing the result for k=p. The proof for other k is identical. ||

Corollary 2. If Ay oz " are the characteristic roots of a %p([,n)

matrix, and ¢(A],...,Ap) and w(A],...,Ap) are real valued functions which .

are nondecreasing in each coordinate, then

E[¢(A],...,Ap)¢(x],f..,xp)] 3_E[¢(A],...,Ap)]E[w(A],...,Ap)]-

Proof. Write

A

Agseesh s Ayla,, ...
9, Y 3 b
El¢w] = € pE e

)
Plov],
where the first expectation on the right is with>respect to the marginal

distribution of (i .,Ap) and the second with respect to the condition-

2’
al distribution of A] given AZ,...,AP. Since ¢ and ¢ are nondecreasing i
in A],
A lAo, .., PN D U A Ay, oA
1172 1172 1172
E Plov] > € Plo]e PLy].

Define the quantities on the right hand side above as ¢(])(A2,...,Ap) and

w(])(k ,Ap), respectively. Corollary 1 (used with j=1) shows that

IRRE
¢(]) and w(]) are nondecreasing in their coordinates. Hence

5 A cHA

Aoyeensh yeon AolAa,..
O T R TR |
) Ehg,...,Ap%EAZIA3,...,Ap[¢(])]EX2]A3,. ’Ap[w(])]f-

Define the quantities inside Lhecurly brackets above asqxz)(k3,...,kp) and
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N P PP
]) 3 b
Agsevsh ) = E 23 p[d)(])],

p
Corollary 1 can again be applied to conclude that ¢(2) is nondecreasing
in its coordinates. The same conclusion holds for w(z). Continuing in

the obvious way and combining the inequalities gives the desired result. ||

3. Minimaxity of ¢

In this section, the estimator defined by (1.1) is shown to be mini-
max under certain conditions. The needed conditiéns on the functions h

and o are as follows.

Condition h. Assume the function h: [0,») - [0,») satisfies

(i) 0 < zh(z) < 1;
(i1) h s contiﬁuous and piecewise differentiable;
(iii) -zh~(z)/h(z) < 1, where h-(z) = (d/dz)h(z);

(iv) h(z) is nonincreasing.

Condition o. Assume the real valued function a(S), defined on the cone

of positive definite (pxp) matrices § (whose elements are Sij)’ satisfies
(1) 0 <alS) < [ch . (5)1/(n-p-1);
(ii) a(S) is nondecreasing in the characteristic roots of S:
(i11) «(S) is continuous and differentiable:
] - . J _] I n s _
(iv) tr{[D1log a(S) 1§} < chmax ($S "), whene Chmax denotes maxi

mum characteristic root and D is the matrix differential opera-

tor wherein the (i,j) element of Dg(S) is defined to be

[09(5); ; -



Some natural and useful choices of « and h which satisfy the above -

conditions are given in the following lemmas.
Lemma 1. The function h(z) = min{k,%—} (where k > 0) satisfies Condition h.

Proof. Easy calculation. ||

Observe that the use of h of the above form in (1.1) eliminates a glaring

deficiency of the estimator (1.2), namely that (1.2) blows up (i.e.,

6] » ) as [X] > 0.

Lemma 2. The following choices of « satisfy Condition a:

(a) w(S) = [ch . (S)1/(n-p-1);

min

(b) w(S) = 1/[(n-p-D)tr(s"H 7.

Proof. Only Condition «(iv) is not immediately verifiable.

' (a) From Wilkinson (1965), it can be seen that

_ t
min (S) = RpRp

k]

D ch

where RD s the normalized eigenvector corresponding to chm. (S) (or,

m
-equivalently, the last column of the orthogonal matrix R for which
S = RARt, A being the diagonal matrix of decreasingly ordered charac-

teristic roots of S). Hence
er{{Uloy «(S)]4t = 'R]?) tr{[Du(S)]i}
1 t
= ———— ey tr{R R'$}
Chmin (s) pp

) | ty
- ey R

min (5) Prp



-1
<ch . (57),

completing the verification of Condition a(iv).

(b) An application of Lemma 4 of Haff (1980b) shows that

T, _ -2

[DtrS "] = -S7%.  Hence

tr{[Dloga(S)Jt} = (trs”! )tr{[D(~lj)] 1)

trsS
) -1 -] -1
= (tY‘S )(%_T?)tl"{[DtY‘S ]X:}
(trs™ ') ‘
= tr(-sTY)
trS
STEpsT ) 1
t < < -
_—"_Y:(-__m—_T—___.Chmax(*S )

p 2 - '
where B = S % §S Z/Chmax (1S ]). Since B is positive definite and

has roots less than or equal to one, it follows that the roots of
| 1

ST2BS"% are less than or equal to the roots of S_]. Hence

N |
tr{S #Bs" )

<1,
trs™]

completing the verification of Condition a(iv). ||

The following theorem contains the heart of the minimax analysis.

Theorem 2. The estimator GC(X,N) in (1.1) is minimax (and hence

R(6%,0.4) < R(s%,0,4) for all o and §) if

0 < ETa(AvMh (v, ) (2= J-c=a(n-p)v, (1+2%v;10))) (3.1)

for all p > 0 and positive definite matrices A, where An is defined in
-1 2

(1.4), Vio- X (n-p+1), ¢ ~ 7(p_](O,I), V2 ~ W;rﬂ(n’I)’ and V ~ Zb(l,n)

13
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is defined by
V = . (3.2)

(The above decomposition of V is wel] known, and Vis%s and VZ are inde-

pendent. )

Proof. We want to show that

0 LRV P AC(U,*) z R(Gc,o,i) = R(s ,o 1)

- *[{a (X,H)-03 QL6 (x,1)-03- 162 (x)-0 3 F0 160 (X) -0} .

Observe first that, without loss of generality, we can assume that the
matrix Q in the quadratic loss is the identity. This can be seen by con-
sidering the transformations X* = Q% X, o* = Q%(a, 5 = Q=s

§* = Q% $Q%, and W* = Q';l WQ%. It is easy to check that risks in the

* problem are simply reparametrizations of risks in the original problem,

and that the * problem has exactly the same structure as the original prob- -

lem except that the loss in the * problem is

(s%-0%) (6%-0%)/tr(4%).
We will henceforth assume that Q=1I.
Expanding the quadratic loss in the above expression for A verifies

that

h - -Eg’g{ZCa(W)h(xtw“X)(x-o)tw‘]x-czaz(

-1
) 2( t

wh k2. (303)

As in Berger (1976), integrating by parts with réspect to the X{ (i=1,...,p)
shows that

e () (k-0 b Ty - ECh (M X e (T w2n - (B T kb T Tx.

Condition h can easily be shown to ensure the validity of the integration



by parts for p>3. (The usefulness of such an integration by parts was

first noticed by Stein (1973).) Using this in (3.3) gives

. _E{2ca(w)h(xtw']X)tr(W']i)

+aca () (O T Kt T - 2elnx b2y (3.4)

At this point, we need the following identity, due to Haff (1977) and

Stein (unpublished work):

|

E?[trw‘]sj - 7 (ELtr($'8)1-26[tr(0B) 1, (3.5)

where B is a (pxp) matrix function of W and }, and DB is defined as the
matrix. formally obtained by multiplying the (pxp) matrix D (whose elements
will be denoted dij) times the matrix B, with the interpretation that dijb

(b an element of B) in the formal product stands for

9 . _
5o b if i =]
1]
ij? °
>, : .
Y (1 b) if i #
1]

(The definition of D here is equivalent to that in Condition «a, providing

we recognize Dg(S) as shorthand notation for D(g(S)I).) Choosing

B = a(w)h(XtW_]X)i, it follows that

1

ELa ()R (X X)tr(w 1))

1

e {pE[u<w)h(xtw“]x)]-éE[tr(D{ah$})]} . (3.6)

(It can be shown that this choice of B satisfies the conditions for (3.5)

to be valid, when Condition « and Condition h hold.) Observe that

DL ()R (KW X)) = [Dta(u)n (X)) 74

-1

W) Lon(xtu )T+ h(xtw"]X)[Da(W)]i

(- (O [oxtw X8 + hlDe]y
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H(W)h'(xtw‘]x)[D{tr(xxtw*l)}]¢ + h{Dal$

] -1

= =0 (X how o v nfoadg

the last step following from Lemna 4 of Haff (1980b). Using this in (3.6),

applying (3.6) to the first term in (3.4). and notina that
”(U [De(W)] = D1 0g (W),

establishes the equality

_ . ot -
ko= ~Elca{u)h (x| (e ﬁ;%:j ) fi - ot T Ty
: ' ! h(XW %)
- -7
- }Ij%-_--]- tr([070g « 1) -ca(WIN(x S 0y (xB %4017, (3.7)
Londition (i) and Condition h(i) imply that
) . (W)t -2,
Lonn (ST ) ?%ﬁx;]) : Xtﬁ;1ﬁ
’ XTW K
] 1
= n-p-1 ch i € )Chnwx (i )
L (3.8)
n-p-1 |
Condition «(iv) gives that
-1
j ’ k) < 1k 3.
r{{DTog ()]} ch o (0 ). (3.9)
and Condition h(iii) implics that
h- o e xh Ty Ty (3.10)
h(xbTx) (b Ktw']

Using (3.8), (3.9), and (3.10) in (2.7). together with the conditions that

o, h, and ¢ are nonneqative, results in the inequality

KW St 2p-c 4 il

b =By nylealun(iu o) (-p=1) ™ (nopd) Mg ()
! i« gv T

- A n-p-1 ) ] H
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1

_ 2. .
Making the transformations Y = §7% X and § = § = Wi 2 - Wp(I,n) above,

and simplifying,. results in the equivalent expression

¢ VoSt ad crtv ruto-T -1
AC < - “(h‘_m £ [OLH: S}t )h(Y S Y){ZD-C-[‘Chmax (S ) )
te-2
- 4(n-p) Y,CS—]Y 1. (3.11)
vty

Next, let Iy be the orthogonal matrix such that FYY = (lY[,O,...,O)t,

define V = rYSr$ ~ %p(l,n) (conditional on Y), and decompose V as in (3.2).

[t follows that (3.11) can be written

be € ey EE Talt™® v n(]v]y)

-1 -2
% {2p—c—4chmax V. "-4(n-p)(V )]]/v]}] ,

VY$F$. Note that we have used the independence of Y and S,

and will henceforth be working only with the second expectation, treating

-2 _ 2
ARG
2

b < 0 if, for all A= ™ and p = |Y|°,

where }* =

1o by

Z]Q), it follows that -

Y as fixed. Using the fact that (V

1

Ev[a(AVA)h(pv1)(Zp—c—llch”Iax (v ])—4(n—p)v (1+£tVé 0)1] > 0 . (3.12)

1

At this point, the following result is needed.

Lemma 3. If A is positive definite and p >0, then

-1

Ev[a(AVA)h(pv])ch (v <_Ev[a(AVA)h(pv])]EV[Chn v 1. (3.13)

max ta X

To prove this, write V = RARt, where A is the diagonal matrix of

I 2.kp of V. and R is an orthogonal (pxp) matrix.

Note that the distributions of R and V are independent. Also, define

eigenvalues »

B = AR, so that

v

E L (AVA)N (ov  )eh A

X (V"])] = R [u(pABt)h(nv])Ag]] ) (3.14)
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[t 1s easy to see that the roots of BABt are nondecreasing in the Ai, S0,

by Condition «{ii), u(BABt) is nondecreasing in the A Also, vy can be

written (ietting e, = (1,0,...,0)t and 7 = Rte])
2
VA
N IS VR RN SN SN S DU (2
vy o= (v )]] = e]V e, = e]RA R e, = I°n L = jé] X;-’ (3.15)

from which it is clear that vy is nonincreasing in the Ai' Condition
h(iv) then implies that h(pv]) 1s nondecreasing in the Ai. Setting
' t -1

¢(A],___,Ap) = «(BAB )h(pvl) and W(A],.._,Ap) = —Ap , it fol]ows.from

Corollary 2 (Section 2) that

_A A A

E"Cow] > E"[oJE 0]
Together with (3.14), this establishes the lemma.

The conclusion of Lhe theorem follows by combining (3.12) and

(3.13). ||

Corollary 3. The estimator GC(X,W) given in (1.1) is minimax providing

(1.3) is satisfied.

Proof. For the situation of Theorem 1, observe that (letting

e, = (1,0,...,0)

sing this bound in (3.17). and then applying Lemma 3 as in Theorem 2 yields --

that the sufficient condition for minimaxity is

1] o O.

v ) '
£ Lu(AVA)h(pV]){Zp—C-q(H—p*])An,p >

This is clearly implied by (1.3). |[]
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Corollary 4. In the situation of Theorem 2, 5C(x,w) is minimax if

0 5-C‘5-(2p'4An p) and, for all p>0 and positive semidefinite matrices

A, either
(a.) als) =ch . (5)/(n-p-1) and )
0« EV[Q(AVA){ZD—4An‘p—c— %%?éﬁ%y <1+atv5]z)}]; (3.16)
or
(b.) h(z) = 1/z and
0 - EV[M(AVA)[ZD—4An’p—Lz— ?é?éE%WA(l+ﬁtVé]ﬁ)}]. (3.17)

Proof. Using (3.2), it is straightforward to verify that the roots of AVA
are nonincreasing in Vi, and hence that «(AVA) is nonincreasing in v, {by
Condition «(ii)). Il follows that

\% \Y% \Y

E L) v ] s E T EME v ) = (aepe)) N T LaavA)] (3.08)
and
Evi[ (AvA)e] v 1o -1, vy
o Y1 1> E "[a(AVA)]E [v] 1= (n-p+1)E "[a(AVA)]. (3.19)

To verify the corollary for the situation of part (b), set h(z) =
1/z in (3.1), and use (3.19), the assumption that (2p—4An p—c) > 0, and

the independence of Vi L, and V2 to conclude that
Y -1.. t,,-1
£ [a(AVA)(pV]) {Zp—4An p—c—4(n—p)v](1+2 V2 2) 1]

2o B LalAVA) (2000 =) (n-p#1)-d(n-p) (142310} ],

N
Assumption (3.17) ensures that this is positive, so (3.1) is satisfied.
To verify the corollary for the situation of part (a), observe from

the relationship



Y1

- .;1‘
—v]VZ*Q

that V~]

which are nondecreasing in v [t

-
~vy(RVA) = —ch

15 nonincreasing in v

20
-v QtVéQ
1 | t-1

Vot vy “on v,

1 V_] has roots which are nonincreasing in vy Hence v]V flas roots

follows that

(viAVA)/(n-p-1)

n i

- Since «(AVA) is nonincreasing in vy and

(2p-4)_  -¢) 3_0} it can be concluded that

n,p

a(AVA) (2p-4)_ p—c—4(n<p)v](1+2tv

b

s nonincreasing in v

Ev[q(AVA)h(pv]){Zp—AAn p—c—4(n—p)v

E

v

2,V v
Z{E ]

. v
E [h(pV])]E [u(AVA){2p~4X

| v

the last step following from (3.18).

assumption (3.16), so (3.1) is sati

Corollary 5. Consider the estimato

w(S) = Chmin (S)/(n-p-1). This est

<, D is the unique solution to

- [ rpledty (e
C = mmn l (C)*[ ('C
where

.
1ple) = & L“(V){szluc

]f Finally, h(pv,) is nonincreasing in v

-1
’ )}

1 so that

1

AR

Vv
Ih(ov, ) JE ][a(AVA){Zp—4An’p—c A(n-p)v, (1ot }]}

1

orc IR (1 tvy o)),

This last expression is positive by

sfied and the proof is complete. []

r 6C(X,H) in (1.1) with

imator is minimax if 0O <c=<cy D’ where
b

; IOEC;} , (3.20)

(V)+ch (V)T (V)}] ,

min 2
C
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r](C) =t [O(V)(V]] VZZ)IQC(V)J ’
wgle) = EV,,T (Vwen (15 (0],
w(e) = EV[(vH-VZZHQC(vn , '

Vii is the (i,i) element of V - ﬁ;)(l,n),

SZC = {V. Q(V) < C} )

and
4(n-p) ty-1,
(a.) p(V) 2p—4An,p - (Htﬁt%%_(]+g V2 2)
or
- 4(n-p) t,-1
(b.) p(v) = 2p—4An, - (HTEIQT’(]+Q v; 0)

when h(z) = 1/z. : -

Proof. The proof starts with (3.16) or (3.17) and then proceeds exactly -

as in B2C6(1977). ||

Using Corollary 5, a simulation was performed to calculate the values

C It turned out that values of Ch . larger than those found in the

bl

n,p’
B3CG(1977) and Gleser (1979) papers, were obtained for n- p>12 (roughly).

(The analysis in the B3CG(1977) and Gleser (1979) papers was, of course, .

different.) Table 1 gives the relevant constants C, b for various n and

3

p. The entries under "B" are the values of o 0 for the situation of

3

Corollary 5(b) (which corresponds to the estimator (1.2) considered in

the B3CG(1977) paper), while the entries under "G" are the values of Ch b

for the more gencral situation considered in Corollary 5(a) (which
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corresponds to the Gleser (1979) situation). The entries in Table 1 are .
the maximum of the values found using Corollary 5 and the values given
in the edr]ier papers. The starred entries are those entries found using

Corollary 5 which are bigger than the corresponding values found in

3 3

BCG(1977) or Gleser (1979). (For n< 16 the B CG(1977) and.Gleser (1979)

values of <, D were always larger than ours, so refer to those papers

k4

to find the appropriate <, D for such n.) The improvement obtained using

Y

Corollary 5 was substantial, particularly for the Gleser (1979) situation.

For n=30 and p= 17, for instance, Corollary 5 gave <, b = 19.00, while

3

the corresponding value in Gleser (1979) was 14.23. (The standard errors

of the simulated solutions <, D ranged from about .02 (for p=3) to about

y

.1 (forn-p=4).)

TABLE 1
Values of Cn,p'
n
16 - 18 20 25 30

p B G B G B G B G B 6
3 1.06* .58 1.20% .75 1.34* .87 1.51 1.20 1.59* 1.27%
4 2.48%1.79 2.65* 2.02 2.85* 2.25 3.09* 2.78 3.33* 2.98*
5 3.80 2.78 4.05* 3.17* 4.35% 3.63* 4.79*% 4.28* 5.09* 4.71*
6 4.81 3.47 5.33 4.17* 5.73* 4.87* 6.43* 5.85% 6.80* 6.38*
7 5.78° 3.93 6.42 5.05* 6.99* 5.96% 7.93% 7.29% B8.47* §.00%
8 6.57 4.19 7.64 5.12 8.19 6.81* 9.26* 8.58* 10.15* 9.60*
9 7.02 3.86 8.40 5.56 9.22 7.38* 10.60 9.76* 11.80* 11.28*
10 6.79 3.66 8.90 5.17 10.25 6.80 11.98 10.92* 13.37* 12.62*
1 5.78 1.286 9.15 5.18  10.84 7.10 13.14 11.85% 14.74* 14.10*
12 2.73 .42 4.21 11,10 6.52 14.20 12.66* 16.06* 15.35*
13 7.1 294 11.09 6.25 15.48 12.66* 17.36* 16.40*
14 2.43 9.70 4.58 15.74 12.41* 18.72* 17.53*
15 7.93 16.61 11.77* 19.90* 18.57*
16 2.26 16.67 10.91 20.62 18.78*
17 16.67 10.45 21.56 19.00*
18 16.34 9.3 22.38 18.11*
19 22.83 14.84

20 23.47 14.52
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As mentioned in the introduction, the more satisfying explicit
bounds c; . given by (1.3) (see also Corollary 3) are substantially less

than the'bounds in Table 1. This is indicated in Table 2, which gives

(V)] (under the "x" columns) and c; b (under

b

values of An,p = E[l/chm].n

the “c" columns) for various n and p. (Only positive entries of c; o

are given. The bound was always negative for n<18.) Of course, Corol-

lary 3 does cover a broader class of estimators than Corollary 5.

CTABLE 2
Values of i and c¢*
n b n’
n
16 18 20 25 30

P L A S R R S U
3 129 - 107 - .092 - .070 - .054 -

4 71 - 136 - 114 .25 084 61 .063 1.20
5 221 - 172 37 141 .98 100 1.60 .073 2.4]
6 .291 - 215 .82 A71 1,74 118 2.56 .084 3.60
7 .38 - 27 1.04 .21 2.18 138 3.51 .097 4.69
8 .50 - 35 .60 .26 2.43 163 4.26 .110 5.88
9 46 - 33 2.21 190 5.08 124 7.09
10 .41 1.78 223 5.73 141 8.16
11 .53 .70 .266 6.04 .162 9.04
12 .69 - 313 6.47 . 187 9.79
13 .378 6.34 216 10.45
14 .461 5.87 .250 11.00
15 .57 4.92 .29 11.44
16 .73 2.80 .34 11.60
17 : .91 1.24 .40 11.60
18 o 1.2 - .49 10.52
19 .60 9.20
20 . .72 8.32
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4.  Comments

1. The values ¢ are undoubtedly not the Targest values of ¢ for

. n,p
which 6 is minimax. The approximations in the proof resulted in a less

than optimal bound on c. It is generally desirable to choose ¢ = p-2
(see Berger (1980a) for indications of why this is so in the case of known
1), so a good choice of ¢ here is c* = min{p-2,c_ p}' Luckily, as can

k]

be seen from Table 1, p-2 is quite often less than <, D"

2. If :'(U],...,np)t 1s thought to be the "most likely" value of
0, s¢ should shrink towards 1 rather than zero. The appropriate estimator

is then

60GM) = (Tl W) n( DX 10 DX 100 W ) () +
This estimator is also minimax under the given conditions on ¢, @, and h,
as. a simple transformation shows.

More generally, if a linear restriction on o is thought to hold, then
dc can (and should) be modified to shrink towards the subspace determined
by the linear restriction. (See Theorem 2 of Berger and Bock (1977) for .
the method of doing this.) The innt is that éc, though uniformly better
than 50, is significantly better only for 0 near the region towards which
the estimator shrinks. llence it is crucial to shrink towards the region
in which 0 is thought to lie. |

3. If Qf has a very brdad'eigenvalue spectrum, then'

W0 1

!L(Ql wui)h(xtw']x)(; ch (Q+ wWQ- )/[(xtw‘

win X)(n-p-1)]) will tend to be

small. From (3.7), it follows that e will be close to zero, and hence
5 will improve little upon 60. [f, therefore, certain coordinates of
X are considered likely to result in comparatively small eigenvalues of

Qf, it would pay to estimate those coordinates separately.
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4. For known f, it is argued in Berger (1980a) and Berger (1980b)
that in choosing an alternative to 50 a partly Bayesian attitude is neces-
sary (for baéically the reason given in Comment 2). Minimax results for
appealing Bayesian estimators were given in Berger (1980a) and especially
Berger (1980b). It would be very nice if similar results could be devel-
oped for unknown }, but that necessitates consideration of a much wider
class of estimators than given by (1.1). Unfortunately, we were unable to
establish minimax results for other classes of estimators. The techniques
used here, particularly the employment of the identities of Haff (1980b),
will probably be indispensable in any such generalization, however.

5. For an illustration of the amount of improvement obtainable by

using éc, the reader is referred to Figure 1 in B3CG(1977).

Acknowledgements: We are grateful to Regina Becker for assistance in

the computer calculations.
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