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I. INTRODUCTION

Let 7 s M be k populations associated with unknown param-

1
1,...,ek € 2c R. Let eo € Q be a given control value

such that every LY with ei > eo is assumed to be '"good", and "bad"

eters 9

otherwise, i = 1,...,k. We consider the problem: how to find the
best population (i.e. that one associated with the largest param-
eter) among the good ones (if there is any} in two stages by
screening out non-best (or bad) populations in the first stage.

Assume that samples {X..}

i5%5=1,...0n and {Yij}' can be

j=1,...,m

drawn from m,oat the first and the second stage, respectively,
i=1,...,k, which arc mutually independent. Let Ui and Vi be
real-valued sufficient statistics for ei with respect to these

samples which have densities fe and 8y » Tespectively, with
i i
respect to the Lebesgue measure on R, i = 1,...,k. The families

{fe}eEQ and {ge}eEQ are assumed to be known and to have monotone

1This research was supported by the Office of Naval Research
Contract N00014-75-C-0455 at Purduc University. Reproduction in
whole or in part is permitted for any purpose of the United States

Government .



non-decreasing likelihood ratios (MLR) . Finally, let Wi =
T(Ui’vi) be a real-valued sufficient statistic for ei with respect

to (Ui,vi), which has a density he with respect to the Lebesgue
i

measure on R, where the family {he}GEQ also has MLR. For nota-
tional convenience, let U = (Ul,...,Uk), and let V, W etc. have
analogous meaning.

In this paper we will study a certain class of 2-stage proce-
dures (S,d), defined as follows. Let S denote any subset selec-
tion procedure based on U, i.e. S: Hlk > {s]sgg {1,...,k}}
measurable with respect to Borel sets in nzk, where an empty sub-
set is admitted. S acts as a screening procedwre in the gt

stage. Let d = {cls}s c {1,...,k) with dﬂ = 0 and d{i} =i, i =

1,...,k. Moreover, for every s < {1,...,k} with size Is] > 2, let

ds: H{k X Hlk <+ S, where ds(g,y) depends only on variables us and
vy with i € s, and where d_ is measurable with respect to the
Borel sets in their joint space BIZISI. d nepresents the set of
f4nal decisions at the first stage and the second stage, respec;
tively. The introduction of the (at the first sight) somewhat
complicated looking structure d will prove to be very convenient
in the sequel. Now we are ready to define our 2-stage procedures

in a concise way.
Definition 1. 2-stage procedwre (S,d).

Stage 1. Take observations (i.e. the X-samples) from
myse--sM . Select all populations m. with i € s = S(U). If
s = @, stop, and decide dﬂ = 0 (i.e. '"no population is good'").
If s = {i} for some i € {1,...,k}, stop, and decide d{i} =i (i.e.

"m; is good and the best one"). If |s| > 2, proceed to Stage 2.

Stage 2. Take additional observations (i.e. the Y-samples)
from all populations TS with i € s and make the final decision

dS(U,V) {(i.e. ”ni is good and the best one", if dS(U,V) =i
=Y 0 M
say, for some iO € s.).

O’



Throughout this paper we will restrict consideration to proce-
dures (S,d) which are completely (i.e. with respect to both, S and
d) invariant under permutations of the k populations Myseees s

In Section 2 it will be shown that under any reasonable loss
structure the optimal final decisions are always the natural ones,
i1.e. are associated with the largest sufficient statistic among
those coming from the populations which still are eligible. This
result can be derived from Lehmann's [10] version of the "Bahadur-
Goodman-Theorem". In Section 3 a natural type 2-stage procedure
will be studied which screens out in the first stage by means of
-a UMP-test ("¢ i.eo" versus ''g > 60”) at a fixed level, which is
applied separately to Ul""’Uk’ respectively. Finally, in Sec-
tion 4 it will be shown that under a fairly general loss structure
(cost for sampling plus loss for final decision) and for every
i.i.d. prior there exists a Bayes 2-stage procedure which is
completely monotone (i.e. where also the subset selections are
made in terms of the largest observations), provided that a cer-
tain condition (Assumption (A) or (B)) is satisfied. This result
will be derived by a two-fold application of Eaton's [3] more gen-
eral version of the "Bahadur-Goodman-Theorem'. Throughout the
following we shall repeatedly study, as an example, the case of k

normal populations with unknown means 81,...,ek and a common known

. 2
variance g > 0.
II. OPTIMALITY OF THE NATURAL FINAL DECISIONS

In this section we assume that a loss structure is given which
we will specify only with respect to final decisions, and without
reference to the control 6y- This allows us to state the results
in a more general setting including also the non-control (''finding
the best population'') problems such as those studied by Tamhane

and Bechhofer {14].



Definition 2. Loss structure L. ,

Let us assume that for every procedure (S,d) subsequent deci-
sions § = s and dS =1, i € s, result in a real-valued loss
L(s,i,8) at § = (61,...,6k) € Qk, which is integrable and has the
following two properties: .

(a) L is permutation invariant (i.e. L(ﬂs,ni,ng) = L(s,i,6) in

the sense of Eaton [3] for all permutations 7), and:

(b) For every 6 € Qk and i,j € {1,...,k} with ei < ej,
L({i},1,0) > L({j},3,0); and s < {l,...,k} with i,j € s im-

plies L(s,i,g) z_L(s,j,Q).

The risk of a procedure (S,d) at 6 € Qk is given by

M 7y(5,0) = B LW, dgy U, 9)

It

L($,0,0)P {S(U) = 9)

+

k
) L3}, 1,00P {S(U)={i}][S(U) [=1}P (|S(U) |=1}
=1 J -

1

+

) L(s,1,0)P,(d (U,V):iIS(U)=s})Pe{S(g)=s}-
s, |s|>2 i€s -2 s - Y

Our first result is with respect to final decisions at Stage

LEMMA 1. [let (S,d) be a 2-stage procedure and Let S be the
same procedure as S with the only modification that gorn all
ue RS with S =1, §u) = {1} implics u = max u,
B - B j=1,...,k
L€ {1,...k). Then 1,(5,d) < 1,(5,d) for atl o € o~

Proog. For a fixed (S,d), let A = {u € nzkl [s(u)| = 1}.

Let S Qk with Pe{y € A} > 0. The conditiona} distribution of u,

given U € A, has the following density w.r.t. the Lebesgue measure
) k
(2) P {U€ A}_1 m £, (u,) I,(u), ue B(k.
6 - i=1 Bi i A= .



Since by the invariance of S, A is permutation symmetric and
moreover, P {U € A} is a permutation symmetric function of IS Qk
(2) is of the form assumed in Lehmann {10]. Also, L({i}, 1,9)
satisfies the monotonicity property (5) of Lehmann [10]. Thus by
his main result the first sum in (1) is for (S,d) smaller or equal
to that one for (S,d). Since all other terms in (1) are the same
for both procedures the proof is completed.

The proof w.r.t. final decisions at Stage 2 is similar but a
bit more complicated. For simplicity, let us assume from now on
that the mapping (u,v) - (u,T(u,v)) for (u,v) in the interior of

8= U (support(fe)x support(ge)) is one-to-one and continuously
BEQ
differentiable. Thus we have a function T with (u,v) =

(u,f(u,T(u,v))), (u,v) € 9 with analogous properties.

LEMMA 2. For every o € 0, s = {i),...,i} and Borel set

AC R* with P{UEA} >0 which i s-permutation symmetric (L. e.

L, ueRrR, i symmetric in (U »--eou; ) as well as in the

1 t
k-t rnemaining variables), the conditional distribution of W, given
UE€A, has a density w.n.xt. Lebesgue measure of the type

~ k
hei(wi) pw), we€R",

= =
jan

(3 c(e)

i
whene c: Qk > R, = {g]g > 0} {8 s-perwmutation symmetric, he:
R ~ IR, 44 measurable, p: RN S R, 48 measurable s-permutation

m h MLR.
Aym ezn&c and { e}eEQ has
Proof. Let g € Qk and A C H(k be given as stated above. Then
the conditional distribution of (U,V), given U € A, has the fol-
lowing density w.r.t. Lebesgue measure.

k
-1
(4) P@{g €A} W fy (ui)gei(vi)IA(g), u,v € R

i=1 1

k



Since Wi = T(Ui,Vi) is sufficient for ei, i=1,...,k, by the
factorization theorem there exist non-negative measurable func-
tions Be and G with fe(u)ge(v) = ie(T(u,v))G(u,v), u,v € R,8 €Q.
After inserting this into (4) and after a standard change of vari-
ables, we see that the conditional distribution of (U,W) with
Wi = T(Ui,vi), i=1,...,k, given U € A, has the density

Lk . a%(ui,wi)
(5 PylU €70 Ry (W )GCuy, T (uy,wy)) |~ 1, (u),
- 1=1 “i i
u,w € sz.

Thus by integrating out the variables u € B{k we see that the

conditional distribution of W, given U € A, has a density of the

form (3) w.r.t. the Lebesgue measure.  Here c(o) = PO{Q € A}_l
which, apparently, is s-permutation symmetric. Moreover,
k ~ a"f‘(ul,wl) k

(6) p(w) = [ T G(u,,T(u,,w,))|—=—2"| du, w€ R ,

- . 1 171 oW. - -

A 1=1 1

which also is s-permutation symmetric. Finally, since by
assumption the family of densities for Wi = T(Ui,Vi),
i=1,...,k, {h.} has MLR, {h_} has also MLR. This com-

B eER’ SIS

pletes the proof of Lemma 2.

COROLLARY 1. Fon every ¢ € Qk, s = {i;,...,i.} and Borel

set A C R K with Pe{l_J € A} > 0 which 45 s-permutation symmetric,

the conditional distribution of (W]. ,...,Wi ), given U € A, has a
1 t
density w.n.t. the Lebesgue measure of the type

~ t
hei (E;j)pg.(g), £EE€ER,
j

(7 (o)
j

=
p—

where ¢ and {h } are the same as in (3), o' = (0. ,..., )

6.
8 0EQR - i It
with {il,...,it} U {jl,...,jk_t} = {1,...,kg, and pg,(g) L5 permu-
tation symmetric in 0' as well as 4in £E€R".
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Proof. This follows from Lemma 2 by integrating out in (3)

the variables w, ,...,w. . Especially thereby we get for
J1 Jk-t
(o, 5oooom; ) € RE
1 t
k-t_

(8) Por(w, ,..o,w, ) = { Th, (w,)ph,,...,w)

8y i, B{k—t r=l ejr ip k

dlw, ,...,w. ),
1 Ik-t

which now can be seen to have the Symmetry  properties stated

above. Thus the proof is completed.
Now we are ready to prove the main result of this section.

THEOREM 1. [Let (S,d) be a 2-stage procedure and Let S be the
modigication of S {given in Lemma 1) which uses the optimal final

decision at Stage 1. Let d* = {d¥}, c {1,...k) be the set o4

natural §inal decisions, i.e. where fon every s € {1,...,k} with

|s| > 2,1¢€s, u, v € Hlk and d;(g,y) = i Amplies T(ui,vi) =

max T(uj,vj). Then re(é,d*) j_re(S,d) for all S Qk.

Jj€s

Proof. Let ¢ € Qk be fixed. 1In view of Lemma 1 we only have
to show that re(S,d*) :_re(S,d). Thus by (1) it suffices to prove
that for every s < {1,...,k} with [s| > 2 and Pe{S(g) =s} >0,

(9 L L(s,i,8)P {d*(U,V) = i|S(U) = s)
i€s -

< ) L(s,i,0P, {d_(U,V) = i|S(U) = s}.
i€s -
Let s € {1,...,k} with |s| > 2 be fixed. Let

A= {ueg Dile(g) = s}. By the invariance property of S, A iss-
permutation symmetric. In the conditional situation, given

S(U) = s or, equivalently, given U€A, Wis sufficient for



o € Qk. This can be seen from (4) and the sentence following (4).
Thus, similar as one concludes in the theory of selection proce-

dures, if s = {il,...,it} with 1 < i, <...< i < k, say, then we

1 t
can assume that d_(u,v) is a function of (T(u. ,v, ),...
s =22 i7,
,T(ui Vs }J). By Corollary 1 the conditional distribution of
t t

(Wi ,...,.Wi ), given U € A, has a density w.r.t. the Lebesgue
1 t i
measure of the form (7) or, respectively,

t
~ t
(10) Cor(8, ,...,0. ) Th, (£)p,,(&), £ € R,
ey froge1 Oy T
J
where Cor’ Qt > R, and»pe,: rRE S R are permutation symmetric
functions, Pyr is measurable and {He}eea has MLR. Therefore this

distribution satisfies all conditions assumed by Lehmann [10].
Since moreover, L(s,i,@), i € s, satisfies the condition (S) in
his paper, it follows from his version of the "Bahadur-Goodman
Theorem" that inequality (9) holds. This completes the proof of

the theorem.

Remark 1. Let (S,d) be any 2-stage procedure. Then, after
having made a decision S = s, say, the final decision d = i, say,
can be viewed as being a partition (s\{i}, {i}) of s into two
subsets of sizes [s|-1 and 1, respectively. If, more generally,

partitions into q subsets of s of fixed sizes r .,T_ are to be

made, where q, rl,...,rq depend on [s|, then thi more general ver-
sion of the '"Bahadur-Goodman-Theorem" by Eaton [3] can be applied.
Thus, if the loss structure in this setting is compatible with the
one assumed by Eaton [3], then the set of natural partitions in
terms of the ordered Wi's_is optimal.

By Theorem 1 we know now especially, that after having made a
decision S(U) = s, say, it is always better to make a final deci-

sion in terms of the largest Wi among the Wi with i € s, than to
0



make it in terms of the largest Vi among the V; with i € s. This
0
fact appears to be interesting enough to be formulated in a

slightly more general form in the following Corollary 2.

COROLLARY 2. Fon every 0 € Qk, s c {1,...,k} and s-pewmu-
tation symmetric Borel set A C RE with PolUg A} > 0 the follow-
Ang holds true. Let e, = P {W. = max W,|U € A} and £, =

1 0 1 . j'- 1
- j€s
P {V, = max vj}, i€s. Then the e;'s and f;'s are ordered 4n the
- j€s
same ornder as the 6;"'s with i € s and, moreover, the vector of
e.'s majonizes the vecton of f£.'s.

Proog. Without loss of generality, let s = {1,...,t} with

t>2andopc€ Qk with 6, Seee< 8, If Ac Hlk has the properties

stated above, take any permutation invariant S with S(g) = s if
u € A and with |S(u)| < 1 otherwise. Let r € {1,...,t-1} be fixed
and take any loss structure L with L(s,i,8) = 1(0) if i < ()r,’
i € s. Let ds(g,y) =1iif vy = max v, i € s, where ties are
j€s
broken at random. Then by Theorem 1 we get re(S,d*) f_re(S,d)

or, more specifically, by inequality (9) we get fr+1 oL+ ft-i
C el *...* €., since, obviously, we have f1 oot ft =€y t...t
e, = 1. Moreover, that fl 57"f-ft holds is well known. Finally,

€ S-S ey follows from Corollary 1 and Lemma 4.1 of Eaton. Thus

the proof is completed.

Example (Noimaf Case). Let us look at the special case where

Tys oy m are normal populations N(el,oz),...,N(ek,oz) with

: . 2
unknown means ¢ .,ek € R and a common known variance o¢° > 0.

17
Let Ui and Vi be the arithmetic means of the observations in

samples {Xi5hiaq, . n @0 Oy 0

1,...,k. In several parts of this paper we shall return to this

, respectively, i =

special case which henceforth will be denoted as the noxmal case.
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Thus we have Ui N N(ei,p) and Vi n N(Bi,q), i=1,...,k, which

are mutually independent, where p = 02/n and q = oZ/m. Let Wi be
the overall arithmetic mean for LT i=1,...,k. Then

W. _1)—102), and

1

V.
i

T(ULV;) = (@U; + pY)/(a+p) ~ N8y, (@1 + p

n
i

f(ui,wi) W+ p‘lq(wi-ui), i=1,...,K.

Since all our assumptions concerning the underlying distribu-
tions are satisfied, all results derived so far are valid in this
case. And from Corollary 2, one can derive interesting inequali-

ties.

Remark 2. Without going into details it should be pointed out
that analogous results to the ones derived in this section can be
obtained in more gencral sequential settings, provided that the

stopping rule is permutation invariant.
III. A NATURAL TYPE 2-STAGE PROCEDURE

In this section we will study 2-stage procedures (S,d) from a
non-decision theoretic point of view. Let a correct decision (CD)

at 6 €0 bed=0 (. S=g) if 815-++»8) < 8y, and be d = i if

ei = max ej > 60, otherwise. Let us assume that the experi-
j=1,...,k

menter wishes to have a procedure (S,d) which at Stage 1 has a

small expected number of selected bad populations, denoted by

Ee(Nb) (a small expected overall sampling amount or a small sim-

ilar measure of economical performance), and a large probability

of a correct selection Pe(CD) at points 6 € Qk where

max eJ. > 8y, subject to the basic P,-condition
j=1,...,k

inf{Pe(CD)lg € Qk, 615-++50 < 0645} > P,, where P, is a prespeci-

17

fied constant with 0 <P, < 1.
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The following procedure may, sometimes, be applied in prac-
tice. The experimenter takes the UMP test for H: o < 60 versus
K: 8 > 6y at level o = l—Pl/k and selects all populations ™.
which are shown to be significantly good by statistics U i=
1,...,k. His final decision may be the natural one based on the
Vi's associated with the populations which are selected at Stage
1. From Corollary 2 it follows that this procedure can be im-
proved with respect to Pe(CD) without any changes in the expected

number of selected good populations Ee(Ng), E,(N.) and P{S(V) =

f}. This procedure P will be studied now in more detail. For
convenience, let us define it without using the terminology of

hypothesis testing.

Definition 3. Procedure P. Let P be the 2-stage procedure
(S,d*) with S(u) = {i[ui >a, i =1,...,k}, where a € R is deter-
mined by P_ {U, <« a}k = PpP_.

g 1 — *

That @ satisfies the basic P,-condition follows from the fact
that Ui is stochastically non-decreasing in ei €Q, 1=1,...,k,
which in turn is a well-known consequence of the MLR property of

{fG}SEQ

In the next two steps we establish formulas for the distribu-

tion of final decisions under © and derive a basic monotonicity

property.

THEOREM 2. Fonr eveny 6 € Qk

k k
nmPp {U. ia} = (-00) i = ’
j=1 % 3 J=1 eJ
(11) P {d (U,v) =i} = k
S == / (DAFy (M), 1 = 1,...,k,
R j= l 63 1

j#i

where fon 6. €0 A€ R U {-»}, r =1,...,k,
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~r

(12) Fer(k) - Eer[I(—oo,a] )+ (I—I(-m,a] (Ur))I(-“’,A](wr)]'

Proog. For r € {1,...,k} take the improper random variable

defined by Zr = - (Wr) if Ur < (>)a, which obviously has the
distribution function Fe (M), € R U {- »}. Now, for i =
T
1,...,k we have
(13) {Z. = max Z., and Z, > - «}
i i
j=1,...,k :
= {W, = max{ijUj >a, j=1,...,k}, and U, > a}

Therefore, in view of the independence of Zl""’zk’ (11) fol-
lows for i = 1,...,k. The proof of (11) for i = 0 is straight-

forward.

THEOREM 3. {Fe}eég’ as given Ln (12), 44 a stochastically

non-decreasing family of distribution punctions on R U {- =},

Proog. Let x € R U {- «} be fixed and let Ha N be an auxil-

iary function defined by
(14) Ha,A(u’V) = (1-1(_m’a](u))(l—I(_w,A](T(u,v))),(u,v) SEPUR

By the'assumptions made in Section 1 we can assume that T(u,v) is
a non-decreasing function in u as well as in v, (u,v) € 8. Thus

Ha,A has the same monotonicity properties. Now by Wl = T(Ul,Vl)

and (12) we have

(15) Fo (A) = 1-E [A-T_, 4yUIQA-I (W3]

) Ol

1 ('°°J)\]

= l-Eel[Ha’A(Ul,Vl)], 8, € Q.

Since U1 and V1 are stochastically non-decreasing in 0y €Q
and independent, E, [H (U,,V.)] is non-decreasing in 6, € Q.
6, %a, 2 1711 1

This follows from Lehmann [8]. Thus the proof is completed.
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" From Theorems 2 and 3 several desirable properties of proce-
dure f can be derived. Properties 1-4 can be proved with standard
techniques (especially integration by parts) from single stage
selection theory. The masses in {- =} have to be taken into con-
sideration, but they cause no serious problems. Thus, we omit the

proofs for brevity.

PROPERTY 1. For every i € {1,...,k}, Pe{dg(u)(g,Y) =i} 4s
non-decreasding in 0, and non-Ancreasing Ln ej, j#i, 08¢ Qk.

PROPERTY 2. For every 6 € & with 6] <+v-< By,

P_e{dg(l_J) (U,V) = i} 48 non-decreasing in i € {1,...,k}.

PROPERTY 3. For every non-empty set M c {1,...,k},
Pe{d§(u)(g,y) € M} 48 non-decreasing {non-increasing) Ain 05 with

ieMlEgM), 8¢ Qk.

PROPERTY 4. Ee(Ng) (E4(Ny)) L8 non-decreasing 4in 0, with

P20y < 8,

Po{S(U) = P} Zends to 1 for Lange n. For every 9 € 2 with

PROPERTY 5. For every 6 € ok with o

< 08 < t € {1,...,](}, Pe{s(g) =

91""’ek—t 0 <'ek—t+l""’ek—1 ek, 6
{k-t+1,...,k}, dg(U)(g,y) = k} Zends to 1 fcrn Lange n and m.

Proog. The first assertion follows from the well known con-
sistency properties of the UMP-test mentioned at the beginning of

< B. < B

. . k .
this section. For 9 € @ with ¢ 0 Keta+l? "2

TEEITL A
By _1 < B, t € {1,...,k}, by the same reasons, Pe{S(g) =

{k-t+l,...,k}} tends to 1 for large n. Since, moreover,

Pe{Wk = max Wj} tends to 1 for large n+m (see Miescke [11]),
o j=1,...,k

the proof is completed.
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Next we like to show along the lines of Tamhane and Bechhofer,
in an informal way of proof, that procedure P is preferable to the

corresponding l-stage procedure PO’ say, from an economical point

of view. Let 61""’Gk be of the same type as Ul”"’Uk’ but
based on samples of size ny from AR Then PO decides as

follows:

a8 s, = - SN
{i} if U, = max U. and Ui > a

>
5=1,...,k 0

where a_, is determined by P {6 < a }k = P,. The version of ¢
0 b 1 — 70 * 0
in the nonmal case was studied by Bechhofer and Turnbull [1].
Now, if an optimal allocation of observations is derived subject
to a criterion which can be met by the use of monotonicity prop-

erties of Pe{final decision is "i"} in el,...,ek, i=1,...,k,

then the allocation problem has to be solved for both, @ and PO’
at the same points 6§ € Qk. Since then P can be viewed to be a
special version of P with n = n, and m = 0, we conclude as
follows:

PROPERTY 6. 1In eveny allocation probLem subject to a cniten-
Lon which can be met by the use of monotonicity properties of

Polfinal decision s "i"} in 0y,...,08, 8 € 05, 1= 1,...,k @ is

at Least as economical as o

Finally, let us consider the class C of procedures which are
of the same type as { but use another level o test at Stage 1.

Then by the properties of the UMP level o test we get

PROPERTY 7. For every fixed n, m and o (0k P,, respectively),
£ maximizes {(mindmizes) Ee(Ng) (Ee(Nb)) within the class C, uni-

gormly 4in o € Qk.



To summarize the results so far derived, and especially in
view of Properties 4, 5 and 7, P appears to be a reasonable proce-
dure if the experimenter wishes to screen out the bad populations
at Stage 1, to keep the good ones (if there are any) at the same
time, and finally to select the best population (if it is good).

On the other hand, let us look at the case where the experi-
menter is looking for the best population (if it is good) but
wishes to keep the expected overall sampling amount small. Then
at points 9 € Qk where more than one population is good, P might
possibly not very effectively screen out. Here an additional
screening mechanism seems to be appropriate, i.e. a subset selec-
tion procedure for the first stage, which has to be combined with
a procedure of the type S considered so far.

In the nonmal case, analogous to what Tamhanc and Bechhofer
[14] proposed in the non-control setting, a natural choice for the
additional screening mechanism could be Gupta's [5] maximum means

procedure. This leads to a 2-stage procedure PA = (SA,d*) with

and u; > max u.—pl/zA

(17) S, (W) = {iju, > a
8= . j=1,...,k J

>

A

where A > 0 is fixed and a, has to be determinéd such that SA
meets the basic P,-condition. Note that for A= 0 (=), PA is of
the type Py®).

Since we again have enlarged the class of 2-stage procedures,
we are led to a more economical type of procedure in the sense of

>

Property 6. Moreover, for A > 0 and 9 € Qk with 60 < j=1 max kej

the probability of making a correct final decision at Stage 1
already, tends to 1 for large n. But, on the other hand, PA for

0 < A < »is much more difficult to implement in practice. The
problems arising here are of the same type as discussed in Tamhane
and Bechhofer [14], Gupta and Miescke [6] and Miescke and Sehr
[13].
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IV. BAYESIAN 2-STAGE PROCEDURES

From now on let us assume that the parameters 0O = (01,...,Ok)

vary randomly according to a permutation invariant product prior
T on the Borel sets of Qk. We will study the form of

Bayesian 2-stage procedures under a loss structure L given by
0 if s =9
(18) L(s,1i,0) = 2(84-8,) if s = {i}

c|s|+g(eo—ei) if |s| > 2

i=1,...,k, 9 € Qk, where ¢ > 0 is a constant and ¢: R - R is
non-decreasing, integrable, with 2(0) = 0. The overall Bayes risk

is given by

k
(19) [ LY 2(0,-8.)P {S(U) = {i}} + (c|s| +
K Ly M7 15 s,|§]32 |
+ ] 24089-0;)P {d (U, V)=1[S(U)=5})P {S(U)=s}]dx () .
i€s CX Y

By Theorem 1 we can restrict our consideration to Bayes proce-
dures (SB,dB) with d® = d* and the property that u € Hlk and
SB(P) = {i} implies u; = max - ug, i =1,...,k. Therefore at
j=l, ...,k
every point u € ]Rk an optimal subset selection procedure SB de-
cides in favor of a subset s < {1,...,k} which is associated

with the smallest of the values given in the following scheme.
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s Posterior risk at u € Sk, & = U support (fe)
BER
[/ 0
{i} E{2(8 —O.)IU = u}, u, = max u.
0 "i7t- - S 1 D S
{i,. il tc + E{  min E{l(eO—Oi.)]Q = u, V}U = u},
j=1l,...,t j
1 <1y <l <k, t>2,

Note that in the last expression the inner conditional expec-
tation is viewed as being a function of V, and that the outer one
is the expectation with respect to the conditional distribution of

V, given U = u.

Definition 4. A 2-stage procedure (S,d) is called monotone if
(S,d) = (§,d*) in the sense of Theorem 1 and, moreover, if for
every u € nzk, i,j € {1,...,k} with u, < uj, i€ S(g) implies
j € s(u. ‘

Next we wish to find sufficient conditions under which there
exist Bayes 2-stage procedures which are monotone. For this pur-
pose let u ¢ Sk with Up <e-e2 Uy and t € {2,...,k-1} be fixed. 1In
Goel and Rubin [4] an optimal s with |s| = t could be derived
directly from Eaton's result. In our situation this is not possi-
ble since now the conditional expected loss, given U = u, does not
éimply depend on S(u), but also on u. Let us now try to find suf-
ficient conditions under which the posterior risk at u is minimal

for the set {k-t+l,...,k} among all sets s < {1,...,k} with

[s| = t. An optimal s with |s| = t minimizes
(20) E{min E{2(8, - 0.)|U = u, V}|U = u}
j€s !
k
= [ min [ 4(e, - ej).Hlfei(ui)gei(vi)dT(g)dY B(u),

B{k j€s Qk i=
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k

where B(g) = (f Il fe (u.)dr(e))_1 is of no relevance for our
ki=1 i Y7
Q
problem and thus can be ignored in the sequel. From the remark
following (4) we see that the integral on the }.h.s. of (20) can
be rewritten as
k k

(21) / ) min [ 2(85-0,) M hg (T(u;,v;))de(e) M Gluy,v, )dv.
R j€s Qk i=1 i r=1

A change of variables W, = T(ui,vi) (or v, = T(ui,wi), respec-

tively) modifies (21) to

k _ k
(22) [ min | Q(eo'ej).n he (wi)dr(g) 1 G(ur,T(ur,wr))
sz j€s Qk i=1 "i r=1
aT(ur,wr)
—_— | dw.
ow -
T

Now we are in a position to apply Eaton's main result itera-’
tively, first to the inner integral (i.e. the 2nd stage scenario),
and then to the outer one (i.e. the lst stage scenario). Let LS:

H{k +~ IR be defined by

k

k
I .

1h6i(wi)dr(§), W€ R

F23) L (W) = min [ z(eo-ej)1

j€s k
J Q

LEMMA 3. For every w € RK, s < {1,...,k} with |s| = t,
i€s, jed{l,....,k} Ns, s = (s~{ihD U {j} and Wy 2wy Amplies
Le(w) <L (w).

Proog. Let r € {1,...,k} and w € B{k be fixed. Then except
for a normalizing factor depending on W,
Rr = sz(eo-er).n he'(wi)dr(g) can be viewed as being the poster-

=1
Q i i

ior risk (w are the given '"observations' and 6 are the



"parameters") for decision {r} in a fixed size 1 subset selection
problem of the type treated in Eaton [3]. The loss function here-
by is i{i}(g) = Z(GO—Gi), 8 € Qk, i=1,...,k, which clearly sat-

isfies the monotonicity and invariance properties (3.4) and (3.5)

of Eaton [3]. Thus by his Lemma 4.1 we know that Rl""’Rk are
ordered in the reverse order to Wis oo e s Wy This completes the
proof.
In view of Lemma 3 we know now that an optimal s with |s| = t
minimizes
k i 3T (u, ,w;)
| i=1 i

R

which can be viewed to be (except for a normalizing factor depend-
ing on g) the posterior risk (9 are the "observations" and w the
"parameters") for decision s in a fixed size t subset selection
problem of the type treated in Eaton [3]. The loss function Ls(y)
hereby satisfies (by Lemma 3) the monotonicity property (3.4) and,
obviously, also the invariance property (3.5) of Eaton [3]. Thus
by his Lemma 4.1 we see that the following Assumption (A) is suf-

ficient for the existence of a monotone optimal s with Is| = t.

Assumption (A). The distributions are as stated in Section 1,
and the function G(u,f(u,w)) Qzégiﬂl (E,n) = (u,w)’
(u,w) € {(u,T(u,v))|(u,v) € 8}, has MLR.

THEOREM 4. Unden Assumption (A), fon every Loss structurne L
0f type (18) and every pemwmutation invariant product prion T,
Zhere exists a 2-stage Bayes proceduwre (SB,dB) which s monotone.

It is now of interest to find simple sufficient conditions for
Assumption (A) to hold true. For exponential families we get the

following.
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Assumption (B). The underlying distributions for all observa-

tions from 7w Ca Ty belong to an exponential family with densi-

10"
ties a(8)b(x)exp{ox}, x € R, 06 €9, w.r.t. the Lebesgue measure
on IR, where the function b(x), x € R, is log-concave (i.e. the

densities are strongly unimodal.)

THEOREM 5. Assumption (B) Amplies Assumption (A).

n m
Proof. let U, = J X.., V.= VY. andW, =U, + V.,
1 s 1j 1 L1 1 1 1

i=1,...,k. Thus we have T(u,v) = u+v and T(u,w) = w-u,

u, v, w € R. The density of Ui is a(ei)nb*n(u)exp{eiu}, u€ R,
and the density of Vi is a(ei)mb*m(v) exp{eiv}, veER, i=

1,...,k, where b*n(b*m) denotes the n-fold (m-fold) convolution of
b with respect to the Lebesgue measure on IR. Tt follows that

(25)  G(u,T(u,w)) 2LL&n) " (w)b* M (w-u),

an | (En) = (uuw) =P
u,w € IR.

Let the function b(x), x € R, be log-concave. Then by
Ibragimov [7], the function'b*m(x), x € R, has the same property.
But this is equivalent for b*m(w-u) to have MR in w € R w.r.t.
u€ R (cf. Lehmann [9], p. 330), and therefore it is also equiv-
alent for Assumption (A) to hold true.

Remark 3. It is not difficult to see that in the general case
the following conditions are sufficient for Assumption (A) to hold
true: T(u,v) = €U + g,v, u,v € R, €1:€5 > 0, and {ge}eeg is a
family of log-concave (i.e. strongly unimodal) densities. This
follows directly from the factorization identity f (u)g (v) =
h (T(u v))G(u,v), u,v € R, 8 € Q.

For the remainder of this section let us consider the nommal
case in more detail. Here, Assumption (B) is satisfied with

b(x) = exp{—xz/zoz}, X € R, and thus Theorem 4 is valid in this

20



case. Let us assume that apriori 0 -, 0, are independently

12"
identically distributed random normals with mean 69 and variance

r > 0. Then at u € B(k with Up <e..<uy the optimal procedure

selects at Stage 1 in favor of the smallest value in the following

scheme.
S Posterior risk at u € H{k with u1 i:..f_uk
p 0 ‘
) E° L2 (0, (B -0 ) + Q)]
20 Tk 1=0

. 0
{k-t+1,...,k} [tc + E[_ min FE (2(aZ(GO—uj)+a3Qj+a4Q0))], t> 2,
j>k-t+l

where QO’QI""’Qk arc auxiliary random variables which are inde-

pendent standard normals, EO denotes expectation w.r.t. QO, and

-1,1/2

(p(p+r) ™)™, oy = r(prr) ™, ag = prli(prr) (paspreqr)] /7,

“1
ay = [tpa/ (pqspreqr) 1L/ 2.

Similar to what was done by Goel and Rubin [4], let us show

next that the Bayes solution at u € B(k with Uy <-..<u can be

determined in the following short way. Let r, denote the poster-

ior risk for decision s = {k-t+1,...,k}, t = 0,1,...,k. At first

one computes rO, rl. Then r2,r3,... are computed successively un-

til rio-i ri0+1 occurs for the first time. If now ro(rl) =

min{r, ,r.,r. } then s = ¢ ({k}) and otherwise, s = {k-i +1,...,k}
0°"1 i, 0

is the final decision. This mecthod is justificd by the following

result.

LEMMA 4. Let u € i K with up << u, be fixed and Let o

STy be defined as stated above. Then Ty = Tg>Ty =T, >...
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Proof. Let Zl,...,Zk be random variables defined by

[aN]
It

0 L.
-E (z(az(eo-uj) + ast + a4QO)), i=1,...,k. Then by

1 Sl and the fact that ¢ is non-decreasing we have

Zl-i Z2 < ...< Zk (where "'< " denotes stochastic ordering).

st st st st

Moreover, r_ = tc - E( max (Z.)), t =2,...,k. Thus, for
t . J
Jzk—t+1

t > 2, by Chernoff and Yahav [2] we get

r, - T = E( max Z.) - E( max Z.) - ¢
t t+l i>k-t J i>k-t+l J
= | mo - P{Z. < AIP{Z . > A}dA - c,
R j>k-t+1 7
which clearly is non-increasing in t, t = 2,...,k-1.

Let us finally take a brief look at the special case of a
linear loss function g(¢) = ag, £ € R, a > 0, where we can
choose a = 1 (since other values of a can be compensated in the

cost c¢}. Then the decision at Stage 1 is based on the following

scheme.
[ Posterior risk at u € H{k with Uy ff"f-uk
@ 0
{k} az(eo_uk)

. -1
{k-t+1,...,k} QZ(GO_UR)+tC_a2h(_ max (u.—uk+a3a2 Qj)), t > 2.
j>k-t+1

Lower and upper bounds for the expectations in this scheme
can be found in Miescke [12] to approximate the Bayes procedure.

Note that if for a t € {2,...,k} tc > ag E( max Qj)’ then at
j=1,...,t '

most t-1 populations are selected at the first stage. Thus in the
case of 2c > a3”—1/2 the Bayes-procedure is of the type PO (cf.
(16)). And for the case of k = 2 populations the Bayes-procedure
is of the type PA (cf. (17)), except for an area in the

| —
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neighborhood of (00,60) where the Bayes-procedure selects both

populations.
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