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ABSTRACT
VLV
In the literature on credibility theory, Jewell showed that the cred-
ible means are exact Bayesian for exponential families. In this paper we
examine the implications of the statement that credible means are exact
Bayesian for certain special forms of distributions. It is conjectured

that this statement is valid only for exponential families.

1. INTRODUCTION
LVAVAVAVAV VA VAV VoY)
As discussed in Buhlman (1970) and Jewell (1974), the usual model

of nonlife insurance assumes that each member of risk collective is char-

acterized by an unknown parameter o, called the risk parameter. For an

individual with a given value of 6, the actual risk is a random variable

X with probability distribution p(x|e), and hence the fair premium of

this individual is m(e) = E{X|e}. However, 6 being unknown, the value
of m(6) is also unknown. The risk parameter 6 is assumed to be a random
variable with prior distribution u(e), e €@ . It is usually easy to ob-

tain the information on the collective (marginal) distribution of X. In

particular, the collective fair premium (E(X) = E{m(8)}) and collective

variance (Var(X)) are assumed to be known.
The actuarial problem is to estimate the fair premium of an individ-

ual risk, given the collective distribution, and n years individual ex-

perience X = (X1""’Xn)’ i.e. to estimate E(Xn+]lx). Given o, Xi S are
assumed iid X; - p(x]e). Since E(Xn+]|X) = E[m(6)|X], the problem is to

obtain the posterior expectation of m(e) given X. The actuaries call the



‘linear Bayes estimator' of m(e) by 'credible mean'. Thus the problem
of investigating the implications of the statement that credible means
are exact Bayesian is exactly similar to that of the Tinearity of the
posterior expectation of an unknown parameter in the observable random
variable X.

There are many well known examples in which the posterior expecta-
tion of an unknown parameter in the probability distribution of the ob-
servations Xi’ i=1,...,n is a linear function of the observations, and
thus for the squared error loss function, the Bayes estimator is linear.
Jewell (1974a) showed that E[m(e)|X] is a linear function of X1|S when
p(x|e) belongs to a regular exponential family and the prior distribu-
tion of 6 belongs to a conjugate exponential family. Jewell (1974b) ex-
tends these results to the case of multidimensional risk vector X.
Diaconis and Ylvisaker (1979) also provide a rigorous treatment of these
results. Thus for the regular exponential family, credible means are
known to be exact Bayesian.

We shall now discuss the implications of the statement-
E{m(e)]X],...,X }=by) X. +a a.e. (1)

for the prior distribution u(6) and/or the distribution of the observ-
able risk X given 8, i.e. p(x]|e).

There are a few papers which characterize the prior distributions
u(e) for which (1) holds in terms of the distribution p(x|6). In the
location parameter model, where X = 6 + ¢ and 6 and e are independent,
Goldstein (1975) proved that if the posterior expectation of o, given X, is
is linear in X then the moments of the u(e) are uniquely determined by

the moments of the random variable . However, in this situation, Rao



(1976) gives an explicit relationship between the characteristic func-
tion of € and 6. In the context of accident proneness models, Johnson
(1957) assumes X to be a Poisson random variable with mean 6 and shows
that (1) implies that u(e) is a conjugate gamma distribution. For the
Poisson variable X, Johnson (1967) also proves a one-to-one relation-
ship between the prior distribution and E(6[X). The most general result
in this direction is by Diaconis and Ylvisaker (1979). They show that
if the distribution of X belongs to a regular exponential family, and a
multidimensional analog of (1) holds then, under very mild conditions,
9 has a conjugate prior distribution in the exponential family. They
suggest that perhaps one should use linear posterior expectations,

i.e. credible means being exact Bayesian, as the defining property for
conjugate prior distributions.

The next step in obtaining characterization results in the Bayesian
framework is to consider a particular type of model and show that the
linear posterior expectation of the unknown parameter implies that
p(x|e) and u(e) belong to some specified family. For example, in the
Tocation parameter model, where Ky =6+ ey, 1=1,2,...50 (n>2), ei's
are independent random variables and ¢ is independent of ei's, along with
the assumption that both ei's and 8 have finite second moments, Kagan
and Karpov show that [see Kagan, Linnik and Rao (1973) p.418, hereafter
referred to as KLR], if o has a Tinear posterior expectation given

X X ., then p(x|e) and u(e) are both normal distributions.

'I!"‘, n’

Rao (1976) and Goel and DeGroot (1980) consider the linear regres-

sion model X = Ag + e, where 8 and ¢ are independently distributed ran-

dom variables. Under various conditions on the matrix A, they show that

only normal distributions for B and ¢ have linear posterior expectation



of 8 given X. Thus linear posterior expectations in linear regression
provide a characterization of the normal distribution. In the actuarial
terminology, these results imply that if one uses credible means in a lo-
cation parameter model or in a linear regression credibility model, and
believes that they are exact Bayesian, then he is implicitly assuming
that the ebservations and the parameter are all normally distributed.
Jewell (1974b) and Sundt (1979) mention the use of regression models in

credibility theory and provide the best linear credibility estimators.

2. CREDIBLE MEANS FOR SCALE PARAMETER MODELS.
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In this section, we consider the scale parameter model

X_i = 6€.i,

i=1,2,...,n (2)
where, given g, Xi's are independently distributed positive random vari-
ables and ¢ is a positive random variable, independent of the ei's. In
the classical statistical terminology, 6 is a scale parameter in the dis-
tribution of Xi's. It is well. known {see DeGroot (1970), Jewell
(1974a)] that if p(x|e) is a gamma distribution and the prior distribu-
tion of 8 = 1/6 belongs to a conjugate gamma family, then the posterior

expectation of ¢ given X]""’Xn is of the form

n
E[cIX],...,Xn] = b % X; +a, a.e., (3)

and hence (1) holds. In order to give a more general result, we shall

not assume that given o, Xi's are iid in the following theorem.

Theorem 1.  Suppose that in the model (2), €5 and ¢ are independent
random variables with finite first moments and €1+ 5E, (n>2) are in-
dependent, positive non-degenerate random variables. If the support of

the prior distribution of 6 contains an open interval and



n
E[o|X],...,Xn] = % b.X. +a, a.e. (4)

holds then the distributions of Eils and the prior distribution of

= 1/6 must belong to the family of gamma distributions.

Proof. The model (2) can be expressed as

Yi =n + e:s i=1,2,...,n , (5)

where Yi = gnxi, n = on6 and e; = fnes. Now (4) is equivalent to

n
E[exp(n)IX],...,Xn] = ; bjxj +a,

or, equivalently

Elexp(n Z b ‘|Y1""’Yn] = a. (6)
It follows from (6) and Lemma 1.1.1 in KLR, page 11, that
n
E{[exp(n) - 2 b X Jexp(i Z thj)} = aE[exp(i } thj)] . (7)
1

On substituting for Xj and Yj in terms of n and e, and using the

mutual independence of N>€750 0585 (7) can be written as

n n n n

(7 6510 o5(t)-5( ] t5-IL T b

AR i ‘P-(tj'i)kgjcpk(tk)]= (8)

g
n n
agq( ]ZtJ 1]I<Pj(tj),
where @O(t) = E[exp(itn)] and ¢j(t) = E[exp(1te )1, j=1,...,n. Note
that Imj(t-i)]t<.m, since o and €15+ €, have been assumed to have
finite first moments.

For some & > 0, and all Itj[ < 8, (8) implies that



tj) =1, (9)

e3>

—_—i~ S

b.e.(t.) +

i 585(t5) + au(
where yp(t) = wo(t)/mo(t-i) and gj(t) = cpj(t—i)/¢j (t), j=1,...,n.
Since ¢ and Ej are continuous functions, it follows from the Corollary
to Lemma 1.5.1 in KLR and (9) that

bjgj(t) =cy ¥ vt for all |t] <&, j=1,...,n. (10)

If Fj is the distribution function of ej, then (10) is equivalent to

j'exp[ej(]+it)]dFj(ej) = €5~(cj+Yt)f exp(itej)dFj(ej), (11)

for all |t| < ¢ and j=1,...,n. It follows from Lemma 6.1.2 in KLR that
(11) holds for all t. Now Corollary to Lemma 6.1.6 in KLR implies that
the probability distribution of e5 is a gamma distribution G(Cj/Y,Y/bj).
Therefore, given o, X],...,Xn are independent gamma random variables and
the distribution of the sufficient statistic g bixi belongs to a gamma

. ‘ o n-
family with scale parameter o. Hence E[) bixilo] = co, where. ¢ is a con-
1

stant. Since (4) implies that E[¢]) bixi] =7 bixi + a, it follows from
1 1
Theorem 3 in Diaconis and Ylvisaker (1979) that the prior distribution

of 1/6 must also be a gamma distribution.

Remark 1. If in (4) all the bi's are equal, then each € has a gamma
distribution with the same scale, but they don't have to be identically
distributed. However, if €; are identically distributed then all bi‘s

are equal.

Remark 2.  Sections 7.12 and 7.13 in KLR give various theorems on the
n

admissibility of } bjxi, for squared error loss, in the class of all un-
1

biased estimators of ¢ implying that Xi’ given 6 are gamma variables.

However they assume that E(X?) < o,



Remark 3.  Theorem 8.5.4 in KLR, page 285, shows that the sufficiency
1 N

of X=—-7 X; for the family of scale parameter models, under certain
1

n
conditions, implies that Xi's have a gamma distribution. However, the
random variable X, given 6, has been assumed to have all the moments

(see Lemma 8.5.1, KLR p. 285). Furthermore, the sufficiency of X does

not imply (3) and (3) does not imply the sufficiency of X in general.

Theorem 1 shows- that in the scale parameter credibility models,
credible means are exact Bayesian implies that p(x|e) is a gamma distri-
bution and that the u(e) is an inverted gamma distribution (i.e., 1/e

has apriori a gamma distribution).

3. CONCLUDING REMARKS
Given o, let X]""’Xn (n>2) be iid random variables such that the

cdf of X; belongs to a family & = {Fe(-),965®}-where ® c R. This rules

out the family of distributions defined by Dirichlet Process prior,

since it cannot be indexed by a real valued parameter o. Furthermore,

let E[Xile] = m(e) be finite. If (1) holds and m(e) is a location or

a scale parameter in this family, then it follows from the discussion

in Sections 1 and 2 that X is the minimal sufficient statistic for the

family F (since p(x|e) is either normal or gamma). In general, if the

posterior expectation of m(s) depends only on X, it is clear that X is

a function of the minimal sufficient statistic for &. However, an in-

teresting open problem is "Does (1) imply that X is a sufficient sta-

tistic itself for &?" If the answer is yes then it will also imply

that & is a regular exponential family. Thus, from Diaconis and Ylvisaker

(1979) result, u(e) is also in the conjugate exponential family. After

searching the literature on Bayesian estimation extensively, we have



not found any example of a non-exponential family distribution p(x|e)
in which E[m(e)]X],.;.,Xn] is a linear function of X. So we believe

that the following conjecture is valid.

CONJECTURE: If (1) holds, then the distribution of X.'s belongs to a
VAV AVAVAVAV VAV Vol 1
regular exponential family. In the credibility language,credible means

are exact Bayesian only for regular exponential families.
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