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Abstract

In simultaneous estimation of normal means, it is shown that, through
use of the Stein effect, surprisingly large gains of a*Bé@es}an nature can
be achieved, at 1ittle or no cost if the prior 1nformatioﬁr}s misspecified.
This provides a justification, in terms of robustness with respect to mis-
specification of the prior, for employing the Stein effect, even when com-
bining apriori independent problems (i.e., prob]ems—iniuhich no empirical
Béyes effecfs are obtainable). To study this 1sshe;iq_c1ass of minimax

estimators which closely mimic the conjugate prior Bayes estimators is in-

troduced. -

Key Words and Phrases: Bayesian robustness, Stein effect, simultaneous

estimation, risk, Bayes risk.



1. Introduction -

Suppose that it is desired to simultaneously estimate 61,...,ep on
the basis of independent observations Xi ~ 7 <ei’°§)’ where for simplicity

we assume the 0? are known. The loss in estimation will be assumed to be

the sum of squared errors, i.e., in estimating 6 = (61;1fi,5p)t

t 2 _ P 2~ :
§(x) = (6](x),...,6p(x)) » L(8,8) = |e-8|° = .Z](ei-ai) . (If L(s,6) is
1=

a weighted sum of squared errors, the problem can be easily transformed

into the above situation.) James and Stein (1961) showed (for o? = 02)

by

that the usual maximum Tikelihood estimator for 0, ﬁaméJy Go(x)=x=(x],...,x'p)t
has larger expected loss or risk (risk of § = R(e]d)ig_Eé[e-s(x)lz) than
the estimator

IS, . (p-2)c°

§77(x) = (1- =57 )x (1.1)

x|

when p > 3. This effect, that one can improve upon the standard estimators
of "independent" problems through combined estimation, will be called the
Stein effect.

Though at first treated wifh skepticism, the Stein effect gained con-
siderable acceptance when explanations of it were~givgn in Bayesian and
empirical Bayesian terms. Thus if the 6, are thoggh% to be related in
some fashﬁon, not completely known, then information about ej could con-
ceivably Be 6btained from the other Xi‘ For example, a common situation
considered is that in which the 6; are thought to arise independently from
a prior distribution G, but that G is not completely known'. A complete
subjective Bayesian treatment would put a prior u on G, the result being
an overall prior density (we will talk in terms of densities for conve-

nience)
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Alternatively, an empirical Bayes approach could be taken,rw%f@.yncer-
tainties in G being estimated from the data. In either case, a]i of X be-
comes involved in the estimation of each 0.5 and the Stein effect is in-
tuitively plausible. (See Efron and Morris (1973a) for analysis of the
above situation when G is assumed to be a normal distribg;ion.)

Suppose, instead, that the o, are (apriori) completely unrelated. A

Bayesian could model this, in terms of a prior density for 6, as

T
: ﬂ-'l(e'l) s ) i

W () =
1

I =20

where the superscript "T" is used to indicate that ggis is the "True" prior
density, which to a Bayesian could be obtained by 1nf{;1te reflection on

the problem. Saying that the b; are apriori unrelated also means that there
are no suspected relationships among the nl; so in determining ng knowledge
of ej or n} for j#i would be of no use. It follows that the Bayes estima-
tor of 61( with respect t0~wT) will only depend on Xi' ~Thus formal Bayesian
reasoning supports the intuition that if the 6, are unrelated, then it does
not make sense to use an estimator for 0 depending on all of X. This

point was made quite vigorously by several of the discussants in Efron and

-~

Morris (1973b) and also in Copas (1969). Theseréomﬁéhts piqued our curi- B
osity, in essence posing the claim that the Stein effect is of use only
in empir?ca]ABayes types of situations, and not when dealing with apriori
independent problems. Considerable evidence will be presented that this
is not the case.

The weak point in the above Bayesian argument is,-;;»course, thé assump-
tion that wT is obtainable. Even a total Bayesian will acknowledge that,
in a finite amount of time, only subjective approximations to nT can be

constructed. It is thus natural to desire an analysis which is robust with



respect to possible misspecification of ﬁT. It will be seen;in*this‘
paper that the Stein effect can be of almost aétonishing behé;?tfjn the at-
taining of such robustness (even when p=2). Indeed the Stein effect can

be used to achieve most of the potential Bayesian gains available, at no
(or 1ittle) cost in terms of robustness.

In the process of examining the above issue, a neW“eias; of Stein-Tike
estimators is proposed. These estimators seem better ab]e:;O take advantage
of prior information than the usual James-Stein estimators.

Section 2.discusses methods of measuring Bayesian robustness and
Bayesian gains of estimators. Section 3 indicates fhefhegree of robustness-
obtainablelif the Stein effect is not employed. In'iggt%ons 4 and 5, the
new estimafors are presented, and their robustness and Bayes risk 1mprove-.

ment ana]&zed and compared with other estimators. Section 6 presents con-

clusions.

2. Measures of Bayesian Robustness

Bayesian robustness has been considered by a variety of statisticians.

References and an extensive discussion can be found in Berger (1980a).

The usual approach is to consider, instead of a singie selected prior, a
class T of possible priors which is felt to contaiﬁfghegérue prior ﬂT.

For example, suppose it is felt, in the situation of this paper, that 68%
(subjeciﬁve) confidence intervals for the 6. are ((TPELI u;+7;), and that
each n1 is symmetric and unimodal about My Further subjective features
of nT may be deemed too difficult to determine, in which_case it would

be reasonable to consider

“i(ei)’ where (for i=1,...,p)ni is sym-

metric and unimodal about w and fl ms(0;)de,=.68}. (2.1)
8511274



We will consider this situation throughout the paper. Cie

Ideally, a procedure should be sought with good performance for all
T € F; How'to measure performance, here, is a matter of some controversy.
Although posterior measures (such as posterior expected loss) are natural
to a Bayesian, it is argued in Berger (1980a) that they.are incapable of
sufficiently distinguishing among procedures. Instead, méﬁ%dres based on
the frequentist risk R(6,8) or overall Bayes risk r(m,5) = E"[R(6,8)] are
advocated. Although these involve averages over the sample space, they _
can be of meaning to a Bayesian in a megaproblem sense; indicating the over-
all performance of their Bayesian methodology. In tﬁg situation of this
paper and (2.1), for example, the "standard" Bayesian methodology is to
pretend that ”I is 7 (ei,r§) (denote the resulting prior wN) and then use
the Bayes rule (the posterior mean) given coordinatewise by

2
N

M0 = 0= S e,

1 s DI (2.2)
oi¥Ty

1

If one faced this situation repeatedly and always assumed a normal prior,
but encountered 0, occurring according to, say, the Cauchy prior (nC) in
r (not at all unreasonable), then an easy ca]culatiqﬁ’shﬁWs that the over--- -

all average loss would converge to

- s = RGo,6M] - =

(Of course, real losses are bounded, but significant harm could occur for
many reasonable losses.) Thus the Bayesian methodo]ogy{gf assuming norma]
priors in this situation is contraindicated, at least as the standard meth-
od to be employed automatically in, say, computer packages. (Ideas similar

to the above are presented in Hill (1974).)



A very strict robustness requirement is to insist that;:%briapproprir
ately small C,

' | R(6,8) < C, (2.3)
in that this is equivalent to insisting that r(w,s) < C for all =. Al-
though this is stronger than usually needed, we will conslder it here,
partly because the resulting problem is tractable and parfi&»because (2.3)
is a condition that many frequentist decision theorists would demand.

While desiring robustness in the sense of (2.3) to protect against
prior misspec{fication, we want an estimator which perfgrms well if the
prior specification is accurate. To measure this; wg{y111 for calcula-
tional ease consider r(nN,G), since estimators satisfying (2.3) will have
similar Bayes risks for all m €T when C is small (i.e., close to R(e,ao) =
_E o?). In interpreting numerical results it is easier to use a normalized
J;lsion of r(wN,a), namely the relative savings risk of Efron and Morris
(1972), defined by

RSR(H,5)=[r(n,s(’)-r(n)J(—)w,a”)-r(n,a)J:r(w,s())-rm (2.4)
r(m,s )-r(m) r{r,s)-r(m)

where r(g) is the Bayes risk of the Bayes estimator. *Thj§ is the propor-
tion of the possible improvement over 50 that is”gaé;ificed by use of §
instead of the. (theoretically) optimal Bayesrrule:

It {é simi]ar]y convenftent to evaluate the robustness of § by a scaled

version of sup R(6,5), namely

e .
| P
[sup R(6,6)I-[sup R(s,6")] [sup R(6,8)1- c?
o(me8) = —2 0 0 =8 5 =1 (2.5)
r(m,s")-r(n) r(my6 )-r(r)

This is the maximum possible harm that could be encountered by using § in-
stead of the "most robust" (i.e., minimax) estimator 60, relative to the

potential Bayes risk improvement over 60. The idea here is that one might



be willing to be worse than 60 only in proportion to the poféﬁ;ia] gain
obtainable in using the prior information.

‘As mentioned earlier, all computations will be done with respect to
wN, the product of % (ui,rf) densities. Ideally, we hope to find estima-

tors § with small values of both RSR(nN,d) and p(wN,G)v.;?

3. _Robustness for Coordinatewise Independent Estimators

Since the 6, are, apriori, thought to be independent, it is natural to
see if Bayesian robustness can be achieved with coordinatewise independent -

estimators, i.e. estimators of the form

$00) = (80xq ) ap (X DT

Since sum.of squared errors Toss is being considered and we are assuming

that the prior beliefs are approximated by the normal density

w'(e) = N

WN(@.) (n?(ei) is % (u_i,’r
1

LR S

3o

R(e,8) and r(wN,é) will be simply the sum of component risks for such esti-

mators. Hence it suffices to consider a single component, say, ;.

One possible formulation of the robustness problem stated in section 2

is that of minimizing (over the choice of estimaibr-éi) the quantity
RSR(w?,ﬁi), subject to the constraint p(ﬁ?,di) S_M. Such a §; would be the
"optima]J-Bayesian estimator having the desired degree of robustness. This
problem was introduced by Hodges and Lehmann (1952). An exact mathematical
solution is very difficult, but Efron and Morris (1971) EPOW that a very

close approximate solution is given by the "limited translation ryle”

X H I/ (0542515 4F (xgmug )<= D(oZ4e8) 13702

;) ={ sl(x;) i [xgoug <2562, (3.0)

Xm0 () TZ 4F (xguy)>TM(oB+2) T30
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where 6?(xi) is the Bayes estimator given in (2.2).  Efron anﬁiMeris
(1971) prove that

My 2
sup R(6,,8;)-0] o2ao?

v r('ﬂ'.i:(s.i)'r('ﬂ'.i"s.i) G_i'O‘_iT_i/(O'_i T_l)
and that T

RSR(r3,84) = 2[(M+1)(1-¢ (D) -Me(M)]

where ¢ and ¢ are the standard normal c.d.f. and density function. (It is
interesting that neither ‘RSR nor o depend on 0? and—rf.l The following

table gives some typical values of RSR. =

Table T. RSR and p for Limited Translation Rules

[s0]

M(i.e. p(ﬂ?,é?))‘0‘.002,.02..]0‘ .2‘ .4' .6< .8,1.0]1.4’ 4 ‘ 5 ’ 6
|

RSR (), 61) 1'.93 .80’.58',46'.32'.24’.18‘.16].iO‘.O]]S,.OO6’.0035‘O

The numbers in Table 1 are not extremely encouraging. For example, if

M=.2 (i.e., one is unwilling to "risk" being more than 20% worse than 60,
as measured by p), then 46% of the possible Bayes. risk improvement over 60

must be sacrificed.

4. Robustness Using the Stein Effect: Symmetric Case

In this section it will be assumed that o? = 02 and T§ = 12 for i=1,
.»p. This is not the usual empirical Bayes situation in which the 0.
are thought to haVe the same r2, which can then be esti&gzed from thé data,
in that the T? are apriori thought to be unrelated. We are simply imagin-

ing that independent subjective analyses for each of the 0, just happen to

. 2 . . . s
result in equal i This, of course, is rather unrealistic, unless a large



number of independent 6, are being considered and can be grddgédiaccording-
to their prior variances. (Note that one cannot simply rescale to make
the f? equé], since rescaling would alter the c? and the weights in the loss
function.) Realism aside, it is likely that the symmetric case is most
favorable to the Stein effect, so the results of this -section can be view-
ed as indicating whether or not the Stein effect is of poféhfia] usefulness
in attaining Bayesian robustness. Some partial results for the nonsymmetric
situation will be given in the next section. _
For this symmetric situation and p > 3, Efron and Morris (1973a) show -
that the relative savings risk of the James-Stein‘esijmator,

.
8500 = (1- ey vy, (4.1)
| x-u

(which shrinks towards p = (u],...,up)t) is

JS)

RSR(xN,695) = 2/p .

JS

This is of great interest, since § ~ is also minimax, implying that

p(ﬂN,SJS) =0 .

Thus, if p=5, only 40% of the Bayes risk improvement- is-sacrificed, while _
total robustness is achieved. .

The_Stein effect can be used to even greater benefit, however, in more

sophisticated estimators. Consider first the positive part versions of the

James-Stein estimator, namely

2
7 x) = (1 - =) (x-w) +u (4.2)
|x-u]

IS for ¢ = (p-2). The following theorem,

whose proof is given in the appendix, provides a formula for RSR(wN,6C+).

which is known to be better than s
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Theorem 1. If p >3, X ~ 72p(6,021), and =" is 72p(u,r21),ftheﬁ

cHy - 2 (1Hp/2)g-c/2(THR) (1+A)

N C
™ ,8 + { £ - _ }
: I‘(]+p/2)[2(1+a)]p/2 Y (p-2) p(p-2)

RSR(

2
2 2
+{1-A%- 25 5‘(;:)-_2)‘}[]"”(p+2~)(ﬁ$-_Aﬂ . (4.3)

where A = Tz/o2 and wv(-) is the c.d.f. of the x2 distribution with v

degrees of freedom.

Corollary 1. If p=4 in Theorem 1, then - .

N ¢t 2

RSR{w ,6 ) = A

v (1-R2- %?)e'clz(%if);_ (4.4)

This is minimized when c = 2(1+A° V).
Proof. éimp]e calculation shows that

1 - ug(b) = (1+b/2+b%/8)e™0/2

which, together with (4.3), immediately yields (4.4). Differentiating in
(4.4) with respect to c demonstrates the optimality of c = 2(1+A']). |
As an indication of the improvement obtainable through use of the

positive part rules, Table 2 gives RSR for p=4, various values of A, the

—~

usual choice ¢ = (p-2) = 2 in (4.2), and the optimaT choice c* =
min{4,2(]+A_])}. (Restricting ¢ to be no 1argerhthan 4 = 2(p-2) ensures

that 5C+-1sAminimax, and hence that p(nN,6C+) = 0.)

Table 2.  RSR(x",s¢%), p=4

A 0| .11].5] .81]1.0] 1.5 2.0] 4.0] T0 | 50 | o

RSR for c=2 |.368].369|.378{.388].394(.407{.417|.444}.472|.494).500

RSR for c=c* [.135/.138|.184|.232|.264|.325|.361].424|.468|.493|.500
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Since 5JS has RSR = 2/p = .5 in this situation, it is c]ear”fﬁ§t7the posi-
tive part rules can be significantly better. Furthermore, choosing ¢ ac-
cording to the prior information can be of substantial benefit. (These im-

provements are less significant when p is larger.) Compare, also, Table 2

with Table 1 (recalling that p(nN,6C+) = 0), to see the.benefits of the

Stein effect.
To obtain the full value of the Stein effect in the Bayesian framework,
1t seems plausible to use estimators which mimick the Bayes rule GN (as did

the Timited trans]atidn estimators). Thus consider estimators of the form .
2 .
) =,

(again letting A = rz/o

‘ﬂu)=u-ﬁ%UMww+u it [x-ul? < c(14A)

SR =1, (4.5)
[a- Sl ¢ it |xeul? > c1+)
X-u

This estimator has the intuitive justification of being the (normal prior)
Bayes estimator when the prior information is supported by the data (lx-ul2
small), and being a James-Stein estimator otherwise. Using Baranchik (1970);

it is easy to verify that SC’A is minimax if ¢ < 2(p-2), and hence that

~

o6 ) = 0 if ¢ < 2(p-27. (a.6)
of course;mfot these estimators and the positive part estimators values of
C greaté; than 2(p-2) could be used. The value of p(nN,a) would then be
greater than zero, however, and would have to be determined numerically.

c,A

To calculate the relative savings risk of §°°, we will-use the fol-

lowing theorem, the generality of which will be usefu1~1éter.
2 N . 2 .
Theorem 2.  Suppose p > 3, X ~ 7 p(e,o I), and = is 72p(u,r I). Define
Ry = t/os A= <'/a%, and
A= (1+A0)/(1+A) .
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Then -

N c,A

RSR(w ', 8 0)

2
= [1- ] +{1- ——“*—Tﬁ—gy -[1-A7 ] H1- w(p+2)(CA)

2 1 (p+2)/2xp/2e—CA/2. (4.7)

¥ 2'p/2[r(%”*1)]-]f6 SR =Rt

=>

Proof.  Given in the Appendix. || =

Corollary 2. Ifp>3, X~7 p(e,czl), nN is 72p(u,T21), and A = 12/02,

then

2
2c .

+ 2'p/2[r(%+-|)]'] é_(p;%g_) .(p+2)/2 'C/2 . (4.8)

RSR(V,56°R) =

Proof. Follows directly from Theorem 2, since x=1. ||

Corollary 3. If p=4 in the situation of Theorem 2, then

RSR(x N 5C A) —CA/Z[%_+ 1%552__ j? ]

Proof. Direct calculation, as in Corollary 1. ||

The choice of ¢ which minimizes RSR in (4.8), subject to (4.6), can

be seen to be c* = 2(p-2). Table 3 presents RSR(nN,ac*’A) for various

~

values of p. (Observe that, as for the 11mited’t¥aﬁé1at%5n rules,

RSR(w N s A) does not depend on A.)
Table 3.  RSR(n\,5¢"R)
p l 3 l 4 ' 5 l 6 ' 7 , 8 , 9 l 10 | 15 l 20 |

The values of RSR in the above table are startling. When p=5, for ex-
ample, one can achieve total robustness (i.e., minimaxity) with only a 7%

decrease in possible Bayes risk improvement over 60. This is overwhelmingly
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superior to what can be achieved using coordinatewise indepen&égt_ru]es,
and lends strong support to the claim that the Stein effect can be of great

benefit in obtaining Bayesian robustness .

c*,A

The estimator § also seems to be considerably better than the

usual James-Stein or positive part estimators, as can be seer by comparing

JS

Table 2 with Table 3 for p=4. In a sense, §"> and the usuadT positive part

estimator tend to pull in too much for small |x-u|, but not enough for

A

*
large |x-u|. (See also Leonard (1976).) To a Bayesian, s¢ would also

be appealing from the viewpoint of posterior expected loss, since it coin-
cides exactly with the normal Bayes estimator over a?Ja;ég range of x.
We conclude this section with a discussion of tﬁevgituation when p=2.
Of course when p=2 it is no longer possible to require that p(wN,a) =0,
since only do(x) = x is minimax in two dimensions. Nevertheless, the Stein
effect can still be useful in achieving increased robustness. Again consider-

ing the estimators 6C’A in (4.5),-a calculation similar to that in Theorem

2 verifies the following result.

Theorem 3. If p=2, X ~ 7 ,(6,c°I), n" is 7 o(1, 7). and A = <2/02, then

g

2 o T .
RSR(xM,6€*M) = (1- %Je'c/z + S vy leVay . (4.9)
c/?

The following is a brief table of RSR for various c. (Again, RSR is

independent of A.)

Table 4.  RSR(n",6S*My, p=2 . -

c IO' .2 ' 4 l .6 | .8 ' 1.0| 1.2, ].4| 1.6‘ 1.8' 2.0| 2.5| 3.0‘ 4.0| 5.0‘ 6.0|w

rsk|1].833].704.600].515].443].383|.332|. 289 .251|.219] .157] . 114] .061] . 033]. 018]0
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Values of p(nN,dc’A) for various c and A are given in Table S:j%(Ihese values -

were found by simulation. The standard error of an entry is less than or
equal to the unit of the last digit; e.g., for A = 1.0 and ¢ = .8, the stand-

ard error is less than .001.)

=

Table 5.  o(rV,6S°R), p=2

ANEl0].2 |.4 [.6 |.8 1.0(1.2]1.4]1.6|1.8/2.0|2.5|3.0| 4.0| 5.0| 6.0]«

.1 |0].002(.007).018|.035{.054].07].10|.13[.16}.20{.30(.41| .68} .97|1.28|=

.5 [0{.003|.017|.024|.042].065|.09].12.16].19] .24 .34|.46| .74|1.04[1.38|x "

1.0 {07.003|.012(.026|.047|.072(.10|.14|.18|.22|.26{.39|.53| .83|1.16{1.50 o

P

2.0 [0].004{.018{.038].063(.096|.13|.17|.22|.27|.32|.45T7.61| .93|1.29|1.65|«

4.0 |0].008{.028{.055(.090|.13 |.18].23|.28|.37|.39|.53{.70(1.04|1.41|1.81|=

10.0|0].01 (.04 |.07 {.12 |.18 |.23].29|.35{.42].48|.65{.84[1.22|1.62|2.04|~

A comparison of Tables 4 and 5 with Table 1 shows the value of the Stein

SC’A loses 44% 1in

effect in two dimensions. For example, if A=1 and c=1,
possible Bayes risk improvement over 60, but is only 7% worse than 60 in -
terms of robustness. In-contrasf, the Timited translation estimator must
sacrifice 20% in robustness to achieve a loss in Bayes_ risk improvement of
46%. For smaller A the advantage of GC’A is even”ﬁoéé pronounced. A care- :
ful examination-of Tables 4 and 5 leaves a strong %ee]ing that one should

use Stein ;fféct estimators even in 2 dimensions. Using the estimator with

c=1, for example, can provide significant Bayesian gains over 60 at negli-

gible cost in terms of robustness.

5. Robustness Using the Stein Effect: Nonsymmetric Case
In this section we will consider the more general situation where

X~ 9 p(e,ﬁt), wN is 7 p(p,A), and the loss is L{e,8) = (e—a)tQ(e-a). The
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vector y and the positive definite matrices %, A, and Q are*éTﬁ;qssumed to-
be known or specified. Again it is desired to make both p(ﬂN,G) and
RSR(WN,G) sma]1, through use of the Stein effect.

A natural modification of the estimator in (4.5) is

00 = 4 T )+ w1 T el |2 < c
GC,A(X) B

-1 2 (5.1)
(I-HJﬁF¢WM))um)+u if [|x-u[|” > ¢,
X=u

where ||x—u||2" (x-u)t($+A)'1(x—p). (This is closely related to the esti-

mator discussed in Berger (1980b).) Using results in Berger (1976), the

>

following Temma is easily established.

Lemma 1. The estimator GC’A is minimax (so p(WN,GC’A) = 0) if p > 3 and

-1
¢ < ZEri30i(4+A) Lo (defn.) .« (5.2)
ch oy ($Q3(3+A) 71

where "tr" and "chmax” denote trace and maximum characteristic root, re-

spectively.

Theorem 4. For the above situation and p > 3, RSR(wN,sg’A) is given by

(4.8) of Corollary 2. For p=2, RSR(r",6*") is given by (4.9) of Theorem 3.

Proof. ~Given in the Appendix. ||

Example 1.  Suppose p=4. Then from Theorem 4 and Corollary 3 (with a=1)

N c,A) _ .-C¢/2

it follows that RSR(w ,& e If, for instance, $=QﬁI and A is

the diagonal matrﬁx with diagonal elements {2,3,4,5}, théﬁ ¢*=1.70 and

C*,A)

RSR(7N, s - 427,

Example 2.  Suppose p=8, $=Q=I, and A is the diagonal matrix with diagonal

elements {2,2,2,4,4,4,5,10}. Then calculation give c*=7.145 and (from

c*,A)

(4.8)) RSR(m\,s = .108.
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It is clear that the Stein effect can be of considerab]e:bgngfit in
C,A o

nonsymmetric problems. Actually, the estimators ¢ are not necéssari]y
even close to optimum in the nonsymmetric situation, so the Stein effect
is potentially of even greater benefit than indicated here. There are

many reasonable alternatives to 6C’A

» such as the minimaxsBayesian estima-
tor in Berger (1980c). Calculation of RSR for these estimafors is diffi-

cult, however.

6. Conclusions and Comments

Comment 1. For the situation considered in this paper;=the improvement

iﬁ Bayesian robustness that can be obtained by usé 6?*thé Stein effect is
startling. The same should be true for more general or other simultaneous
estimation'problems, and also for different measures of Bayesian robustness.
In particular, for simultaneous estimation of normal means it is well known
that estimation of the o? or changes in the loss function do not significant-
ly affect the benefits of fhe Stéin effect. Thus the Sfein effect can be
an important general tool to the Bayesian seeking robustness. It appears
that combining unrelated estimation problems can definitely be of benefit.
Comment 2. It should be emphasized that the risk improvements obtained
through use-of the Stein effect are improvements in total risk, and not
necesséfijy improvements in each of the coordinatewise risks. Thus the re-
sults are formally applicable only when it is reasonable to add the losses
from the component problems, such as when a business must simultaneously
make estimates in p problems. If it is also desired toweﬁsufe that compo-
nent risks are not excessive, componentwise Timited translation Stein ef-
fect estimators could be employed. (See, for example, Efron and Morris
(1972, 1973a) and Shapiro (1972, 1975).) Of course, the estimators consid-

ered in this paper are, coordinatewise, considerably more robust than is
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the usual conjugate prior Bayes estimator, GN. ' '“:?:1
Comment 3. The purpose of this article was mainly theoretical; tb estab-
Tish the importance of the Stein effect in nonempirical Bayes situations.
Nevertheless, the estimators (4.5) and (5.1) are very attractive in their
own right, especially when substantial subjective prior information is avail-
able. Even in standard empirical Bayes situations these estimators can be
superior to the usual empirical Bayes estimators, particularly if p is fair-
ly small. Considgr, for example, the simple empirical Bayes situation in
which Xi ~ 7 (e},oz), i=1,...,p, are independently obser¥gd, and itris
thought that the 9; arise independently from a common%ﬁ (Q,Tz) distribution.
(It is common to also suppose a common prior mean ug fg} the 855 and then
estimate uo.from the data. This can also be done for the estimators (4.5),
however, and hence does not qualitatively affect the results below.) The
usual empirical Bayes estimator in this situation is the positive part James-
Stein estimator in (4.2) with ¢ = (p-2) (and u = (0,...,0)% ). Note. that
this estimator does not require a subjective specification of 12, as does
the new estimator (4.5). It is nevertheless somewhat surprising that, if
p is fairly small and 12 is specified correctly, then the new estimator does
much better than the positive part estimator. (C6mde; Table 2 for c=2 with
Table 3hfof 5=4:) Of course, the obvious question is - how badly does the
new estimator do if <2 is misspecified?

Theorem 2 can be used to answer this question. Indeed, suppose that

c,A
the subjective estimate for TZ is TS, so that the estimator ¢ - 0 in (4.5)

el

would be used (AO = Tg/cz)- Theorem 2 gives RSR for this éstimator aﬁd

the "true" prior nN, which is 7zp(0,T21). RSR depends only on c¢ and

A= (1+AO)/(1+A) = (02+Té)/(02+12). Table 6 gives some typical values of

RSR when p=4 (see Corollary 3) and ¢ = 2(p-2) = 4.
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4,A, =
), Misspecified Prior Variance-=__

Table 6. RSR(xV,s

A IOj.] I.3 |.5 ‘.7 l.9 l].O 1.1 [1.5 |2 3 |5 !6 I]O 100+@

RsR|1].764|.444] .264].174] .139] .135|.138|.189] . 282 | .450| .640] .694| .810] . 980]1

4,7
Comparing Table 6 with Table 2 (for c=2) shows tha§4§ -0 is superior

to the positive part estimator for a surprisingly wide range of A. For ex-

. 4R

ample, if A= t"/o" = 4, then & will be superior provided (roughly) that

.3 <A <3, or (equivalently) .5 < Ay = 14. Thus the subjective estimate,
N 4,A

0

Tg, need only be in the ballpark for s to outpeﬁforh the usual empiri- -

cal Bayes estimator. (Note that both estimators are=minimax, so p(ﬂN,a) is

2(p_?)5A0
over the posi-

zero in either case.) The range of dominance of &
tive part estimator will decrease as A becomes small or p large, but for
moderate p and A typically encountered in practice, there may be real ad-

2(p_2)3A0
vantages to using § .

2(p-2),A

Actually, ¢ 0

and the positive part estimatdr are at two ex-
tremes, the first using an entirely subjective estimate of rz and the second
an entirely empirical estimate. The optimal estimator is probably a Bayesiaa
compromise between the two. The main value of thjs_gﬁscussion is thus the . .
indix:affb?mthat,for small or moderate p, subjective prior information
shou]dwnai be ﬁgnored even in standard empirical Bayes settings. (Of course,
it may be appealing to some to give the appearance of objectivity by us-

ing the positive part estimator, which does not formally incorporate sub-
jective prior information. If appearance, instead of aee&raéy, is important,
so be it.)

Comment 4. When not in an empirical Bayes setting, it is probably unwise

to simultaneously estimate a large number of coordinates. If faced with a

large p, it would probably be best to divide the coordinates into similar
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small groups, and use the relevant robust Bayesian estimators:bp.each groub.5
Indeed from Table 3 it seems that there is little reason to combiﬁe more

than 5 or 6 coordinates (in the symmetric case). The danger of combining
more is that the true prior probably has fatter tails than wN, and

RSR(n,ac’A) can be shown to increase with p (for p beyondssome moderate value)
if = has fat enough tails. Material relevant to this issu€ can be found

in Efron and Morris (1973b), Stein (1974), Dey (1980), and Dey and Berger
(1980).

Comment 5. The Stein effect can be used in conjunctioa‘with Bayes estima-;

tors other than 6N. The idea is the same: if the-Baxgs estimator is s",

S

select a Stein type (often minimax) estimator GS, and use §" or §° accord-
ing as to whether the observation, x, does or does not support the prior
beliefs. Unfortunately, for nonsymmetric situations it is not clear how

to choose 65.

Comment 6. The new estimators in (4.5) and (5.1) are not admissible, since
they are not analytic. (Brown (1971) establishes that analyticity is need-

ed.) Nevertheless, as with the'positive part James-Stein estimator, it is

unlikely that admissible improvements are significantly better.

-~

Comment 71 7 This paper has, for the most part, been addressed to Bayesians;
attempting to demonstrate the power of the Stein effect in achieving
Bayesian_?obustness. Non-Bayesians, however, should take note of the ex-
tent to which it is possible to satisfy (perhaps repressed) Bayesian urges

at no cost, and of the great gains that can be achieved in doing so.
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APPENDIX ' —E

Proof of Theorem 1.

By making the Tinear transformation Y = (X-u)/o (also transform e and
the loss), it is easy to see that we may assume that u=0, X ~ 72p(e,I),

>

and ﬂN is 7 (0,AI). Observe that

r(aN,5¢%) = EMOET(8IX) 1Tt (x) |2 (A1)

. N A . . . . .
where w(6|x) is m{)(s (x), TT1K7'I) (the pqster1or distribution of e given
x; see (4.5) for a definition of 6N(x)), and m(x) 15'7z&j0,(]+A)I) (the mar-
ginal or unconditional distribution of X). Adding aﬁd subtracting the pos-
terior mean 6N(x) in (A1), and then expanding the quadratic, gives (since

the expectation of the cross product term is zero)

r(ﬂN,GC+) - Em(X)Eﬂ(elx){Ie-GN(x)|2+|6N(X)-6C+(x)]2}
- e 00 N st 2 (r2)
Now
M) N (x)-6SF (x) |2 (A3)

2 - .

A 2 1 C 12,2
= [ Ix|'m(x)dx + [ T - 1% |x|“m(x)dx
ST e

T e ety -~ 12— n(dn

Y %o TR " 1027 7 (en)?

S T 2{1+A) K }yP 2 Yay . .

ey ol Y - 20T 1= 7

Expanding the quadratic expression in the integral above and using the identi-

ties (valid for p#2)
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g y(P-2)/2=y4, o o 2 yp/2g-b P/2eYqy , 7-

200
p e gy

Y

o “— 8

(p-2) p(p-2) ° © 7 p(p-2
a little algebra shows that - F

_ ?ﬁi . 2C(p+2)/ze-c/2(]+A) {-g q ]
R L2 [21+a) 1P 2 (1en) P (P2) 0 p(p-2)

2 ®

(0-4)/2gygy - - 2 (2)/2gb_ & yp/2-b, & [ /2y

(Ad)

+ - 2. 2c c 2 , yp/ze_ydy . (A5)

" Blp2) TN TAY )

Noting that r(nN, O) N N)

p, r(w ,6 ) = PA/(1+A), and

[r(14p/2)]"" z PRy =1 -y 05 (46)
)

is as in (4.3). ||

Proof of Theorem 2.

The proof-is exactly analagous to that of Theorem 1. Equation (A3)

is instead

2
2(1+A) (A'AO)

- C -
* c(1+A 172(1+A) r(p/2) {[(1+A) 2(1+A)y:I (]+A0)2(]+A)2}

‘H

yp/Ze-ydy i

(A7)
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while the analog of (Ab) is

5 :
LA A-A
Co ,Em(X)IaN(X)'GC O(X)IZ - p( 0) 5
(1+A)(]+AO)
C(p+2)/2e-c(1+AO)/2(]+A) 1+, 0 2 (1+4)

+

- C
2(P=2)/2, 52y (14A) Cyan 77 - (p-2)6+A,) - p(p-27"

2
2c . @ (A-Aq) 2

{1- £+ -
+ D p(p-2) (]+A0)2} r(p/2)(1+A) c(1+A0){2(1+A)

yp/ze'ydy . (A8)

Recalling that X = (1+A0)/(1+A), using (A6), and observing that

(A-A)2/ (14A,

0

. )2 = [1-1_] 2, the conclusion follows. -]| -

Proof of Theorem 4.

The p}oof is analogous to that of Theorem 1. We will do only the case
p > 3, and will again assume (without loss of generality) that p=0. Note
that w(e|x) is ”p (dN(x), ($'1+Ai])_1) and m(x) is 77p(0,$+A). Equation
(A3) should be replaced by4 |

A= Em(X)ISN(X)'(SC’A(X)IZ - tY‘Q(i--I'l'A-])--I

z 1 -1
+ (zﬂ)—p/Zli_*_A'-g f (-I_ H Cl|2)2[Xt($+A)']¢Q§:(i_j_iq)‘]xz]e'ﬁxtd:+A) de.
IxlBe 11X B -

Wi

Now make the transformation y = o (§+A) % x, where ¢ is an orthogonal matrix

such that
_x -1 t
o ($+A) = 101 (3+A) 20~ = D,
D being a diagonal matrix with diagonal elements {d1,..7§ﬁp}. Then (A9)

becomes,

2
S S MR CH L SN CR L SV MV

?
ly| i=1

2
ly|">c
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By symmetry, : =

2 2
A ,E] y2reI7/2qy
iy|%c 1Yl ly%e WY i=
so that
3 2
T O T e T L™
yiPe M
_ =T, ,=T4-1 (tr[)) < 2.p/2 -
=trQ (3 +A ) 4 ) e %dz .
i B c7r2 (P/Z)

The Tast integral above is exactly the integral in (A7):w1th A= AO’ so the-

result of that calculation yields A

NN tr0)g(pac)

where g(p,c) is the function in (4.8).

= trQ ($_1+A

To complete the argument, observe that r(wN,aN) = trQ (i_]+A"])—] ,

r(a,60) = trQ4, and trD= tr¢Q$($+A)']. It follows that

N 5C> A) triQi(i+A)']

RSR L
[trQf-trq (37+a7 )71

g(p,c) .

Use of the matrix identity

R I R (TR

establishes the result. |
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