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ON THE EXACT NON~NULL DISTRIBUTION OF WILKS' LVC
CRITERION IN THE COMPLEX CASE

1.  INTRODUCTION AND SUMMARY

Let 7y, Z -» Zy be independent complex normal random p-vectors

Zos -
with mean vector £ and covariance matrix I, i.e., Z;~CN(g, I).

~

Let Z==(Z], Zz’ ...,ZN). Then Z~CN(Z; w, L), (see Goodman [4])

where the complex multivariate normal distribution is defined by
_ _ y=pNj =N -1, — |
eN(Z; 0 2) = (M) PNz Nexp(-trg ™ (2- (T (1.1)

and yu=(&, &, ...,g) is a pxN complex matrix. Let us define

~

z, and S= J(Z,-Z0(Z; - 7" - (1.2)
~ ~og=p vt YA

_1
Then N &(ZO-g)-vCN(Q, Z) and S has an independent complex

Wishart distribution which is defined by

Ci(ss po 8, 2) = [y (m 17 517" 5| Pexp(-tr's) (1.3)
with n=N-1 and fp(n) is defined in the next section. £ and §$
are Hermitian positive definite matrices of order p. In this paper,"
in order to study the structure of the covariance matrices of the

complex multivariate normal populations, we derive the exact non-null

moments and distribution of the Wilks' [12] LVc criterion for testing



H: §==02[(1- p)I+pee'], o and p unknown against the a]ternagfve
A#H; p unknown and ¢'=(1, 1,...,1). We derive the distribution
of ch‘ in three series forms and compute powers for p=2 for
various values of N and the parameters involved for 5% significance
level based on the null distribution and the percentage points of

LVC obtained in Singh [II]. In Section 2, we give some definitions
and lemmas which are needed in our derivation. In Section 3, we obtain
the non-null density of ch as a series of Meijer's ['7.] G-functions
using Mellin [19] integral transform. Some special cases have also
been discussed which are used to compute powers for the case p=2.

In Section 4, we obtain the density in an alternative series form
using the method of contour integration[8] and in Section 5, the
non-null moments ‘of the criterion are used to obtain the
distribution as a chi-square series employing methods similar to those

of Box[1]. In Section 6, we tabulate the powers for various values of

N and p for the case p=2.

2. SOME DEFINITIONS AND RESULTS

We now give some definitions and lemmas of interest for the
following derivation.

Definitions: Let k be a non-negative integer and let

k =(kys kos ...,k ) be a partition of k such that
1”72 P’ p
k]zkzz---zkpzo, 1_Z]k1.=k and let
[a] = 1 (a-i+1)" =T (a, )/ (a) (2.1)
= - b= , a .
aI< -i=]a 1 ; pa K P

(a), = (a)(a+1) ... (a+k-1) and (2.2)




7 (a) =P(P-1)/2
p

o

ra-i+1) = J |§|a-p exp(-trS)ds (2.3)

1 St=$>0

.i

Also the hypergeometric function of a matrix variate is defined

by (see James [5]),

~

pF (a;5 ay, SREL bys by, ,,bq; Z)
- ‘[31]K . [ap]K C (2)
F ] 3 (2.4)
k=0 « [b]] . [bq] ,
K K

Where cK(;) denotes the zonal polynomial, a symmetric function in the
characteristic roots of the hermitian matrix Z (see James [5]) of

degree k corresponding to the partition «. In particular we have

7

I1-2|™° (2.5)

~ ~

Z) = exp(trz) and ]?O(a; Z)

0 0(~

Lemmas: We now give some lemmas which will be used in the sequel.
Lemma 2.1. Let R be a complex symmetric matrix whose real part is
positive definite and let T be an arbitrary complex symmetric matrix.
Then

| exn(-trR9) 51" (sThds = Byt ) IRITE (1)

5=3'50
the integration being taken over the space of positive definite
Hermitian (p.d.h.) mxm matrices.

We now define the Laplace transform of a function f(S) of the

2

p.d.h. mxm matrix S

~

9(z) = J exp(-trSz)f(S)dS where Z=X+1iY (2.6)



is a complex symmetric matrix; X and Y are real and it is assuméa
that the integral converges in the "half-plane" R(§)==§:>50 for
some positive definite 50. (See Constantine [2]). The following
theorem will also be needed.

Convolution Theorem, If g](Z),, 92(2) are the Laplace transforms of

f](§) and f2(§), then g](g)gz(g) is the Laplace transform of

R
fR) = |7 F(9)FR-9)s,

the integration being over the space of all § for which 0<S<R

Lemma 2.2. If R and $§ are mxm p.d.h. matrices, then

~ t-m u-m x _x ~ ~ o
[ 8™ 51 € (RS )es = (6B ()T, (R) /Ty (k)
5=5'>0
Proof: Let
! t-m u-mx
FR) = [~ 1815 (ks)as (2.7)
S=§l>9 K

then F(R) is a symmetric function of R, i.e., F(R)=F(U'RU)

~ e

for all U s.t. UU'=1. Therefore, we have

F(R) = F(I)T _(R)/C (1) (2.8)

In order to complete the proof, we need to show that

FII/E (1) = T (¢, ©F (u)/F (t+u, «)

_1 21 .
Make the transformation S-R ‘QIB /2. The Jacobian of the transforma-

tion is |R|™ . . Under this transformation, we have from (2.7)



. R _ _ ) .
FCR)R M = J~- TEPR-TIMTE (TaT (2.9)
T=T'>

e

Taking the Laplace transform on both sides of (2.9) we have

f F(B)|3|t+u'mexp(—trRZ)dR =

~ ~

R t-m B
f J - 1TITR - TIC (T)dT |exp(-trRZ)dR (2.10)

After using (2.8) and lemmas (2.1), L.H.S. of (2.10) is given by

L.H.S. F(I)/C (I)I‘ (t+u, )|z~ t+l‘)c z ) _ (2.11)

t-mx u-m
Let f](I) = |T| CK(I) and f2 = |T| and g](Z),_ gz(g)
be the Laplace transforms of f](I) and fg(I) respectively, then
using (2.3), lemma (2.1) and the covolution theorem, we have R.H.S. of

(2.10) 1in the form

RH.S. = 9,(2)g,(Z) = T (t, )T (u)|Z] (tH)g () (2.12)
which proves the lemma.

3.  EXACT NON-NULL DISTRIBUTION OF LVC

In this section we derive the non-nul! density of LVC as a
series of Miejer's G-functions [7 j using Mellin-integral transform
[9]. As in Pillai and Singh [10]usingTemma (2.1) of [10], the test of

H: I = 02[(1- p)£4-pgg'] reduces to that of H: I= 02

1 0 ;




ays 02:>0 and unknown, against the alternatives A#}{;p2==p—1.

The likelihood ratio criterion is based on the statistic

Lye = ISI/Bq1(trSpp/p,) “] (3.1)
where
S.511
s = 1200 with n=N-1,
222

N being the size of the random sample from CN(g, g), =% >0.

Furthermore, we make use of the transformation ‘5{] Xq/04 1

.
%9 Xo/05 1Py

Under this transformation the problem of testing H versus A reduces

to the problem of testing H]: L= é ? —] versus A] #H], where
 ry

1
1 212/0']0'2
L= g1s Oy positive and unknown.
t
L12/019 Ipp b,

From now on we assume that this has been done and we are testing H]
versus A]. We now define

57 (3.2)

-t 1 =
T =511 2 222 212 %1

11 =12

S..
=2

Then the statistic LVC can be written as

o
Lye = 18901 (1= T)/(trS,,/p,) 2 (3.3)

We now need the following lemma.




Lemma 3.1. The joint p.d.f. of I, S11» S99 is given by

P P o -tre s )
F(T. S17» Spg) =UPys Pps M E)ISyy] l§22l expl-tri; »311

-1 - n-p,=p - 17
57! 8s,08t (5 )7 1SeT) | (3.4)
y.282208 11 2/ 213l 3.4)
where
i} 1=,
B2 T Bt Bialaalie
51 T Bp BioBite
B = I, 50,
B = L2y
{"11 212|Py S12 |P1
and S =
Lo 2P $57 [Py

and Py*P,=P> Przpy2 1 without loss of generality.

= /2 _] ci --!2 1
T = 5177 S12 Spp 5105477

14

-1 _ ~ _ n n |
U (p]s pza n, g)"rpz(n)rp](n'pz)’z]ZI lgzzl 1-‘p](pz)

311> 9pp and T are p.d.h. and 0<T<I.

-1z
$11- 812 S50 390

and (§]2, S,p) are independently distributed and

Proof. Let S] o= =S It is easy to prove that §] o

1.2 7 CH(Sy 25 Pys n=pps 2y o). Also

-'I-, . 1= - . .
S12500812 " CH(S12599%123 P1oPpily 0 B3pp8') given 3y, iee.,

3



§]2522312 has noncentral complex Wishart distribution with mean matrix -

?f— , where F is s.t. F (E ) S,» given S,,, where non-
central Wishart density is given by (see James [5])

1« o R
CH(S155795193 P1s Pps Iy ps BSyoB') = exp(~triy ,85,,8")

-~ L1 - =] -l= -1 ‘]"‘l-
071 (P23 2y 2B398' Ty 23128093150 exP(-trZ; 581555581 ,)

IS]Z 222 ]2| /[Ig].zlnfp](Pz)] (3.5)

. . ‘L. . . . -1z
Now, the joint conditional distribution of §].2 and 512322 12

given §22 is given by

] 1 "'-I -]'| )

dH[Sp5 = Uptpys Pps ms Z)oF1(Pys 27 585,585 551085081,

"P17P2 -1 ¢ 2P
1372 exp(-trry o8y plexp(-triy 23522B )[512522 2I
exp(~ trz11251252; $12)d(8y 2)d(§,,8, 22 $15) (3.6)
-1 _ .
UL Py Py 13 2) = |2 " I P, 2)Fp](n- Py) (3.7)
We now make the following transformation
S..=S. . +5..§ola
211 727,27 212822372
- o Y,
T = 871281,855805(51 )" (3.8)

|§]1[ 1 (see Khatri [61]).

Hence, the joint conditional density of T, and 517 given S0

The Jacobian of the transformation is

is given by



< - A 1 A
- n-p n-p.-p Po-p - -
expi-try ! Syl =T AT 1exP("tfé'§1].2E§zz) i

Also §2251Cw(n, Pys Zoo)- If g(§22) denotes the density of $,o»
then the joint density of S;i» S,,» and T ds h(Sy;, T1855)9(85,)

which will be the same as (3.4) after using the identity

-1 S .
Top * B'Iy 08 =I5 g

Now we need the following theorem in order to derive E(ch)h.

Theorem 3.1.

t~18

h h ®
E[exp(-t trS,,) S, (1-T)"1 = Us(p,s 0> Z, h) } §

§=0 J k=0 ¥

‘Pz(h+n)+k+3) ~ -1 - -1=, )

(3.9)

(t+1)

where
: = ot n
Us(p,» ns I, h) = rpz(n- 1+-h)/[rp2(n— D1z,,0"1 . (3.10)
h

Proof. Let Y = exp(-t.tr$,,)|$ Now using lemma (3.1)

22I
with P =1, we obtain

1 . nth-p
E[V] = U(], Pz, n,z)J J (S”)n ]|§22| 2
5171751770 $pp78p%0  T'=I>0

i . -p n-p,-p,th
exp(-trZ]Tzs1])exp(-tr(gZT]4—t { 559 lTl P2 ] !

-1 -1

~ _1/ / .
kZO CASyT Iy o BSpoB' Iy o STHL)/ULppl Ki)dsy 43y, (3.11)

7 0~

Using the monotone convergence theorem, the interchange of the integral



10

and summation sfgns is valid. Now using lemma (2.2) in order to

integrate with respect to T, we get from (3.11)

T n-1 nHh-p, -1
E[V]=u, Z ) J J s17 1S90l exp(-trz; , s17)
k=0 « >0 '3, =S
11 22 =22

-1 ~ . '
exp(-tr(t 54-22_])§22)CK(S]]§ gZ].2§22)/(k![n+h]K)ds”d§22 (3.12)
where

U = U (1, P, 1, g)f(pz)f(n- p2+h)/f(h +n) (3.13)

Now using lemma (2.1) to integral with respect to 522 and then in

turn using monotone covergence theorem and the relation (2.5), we get

(n+h) n-1 -1 . Y
(VI=Uy [t T+ ) fs 511 exp(o(zy Bt IHE, )
1

—
B'Ly plsyyldsyy  (3.14)

where U4=U21~‘p {(n+h): Now integrating with respect to 51 and -
2
using relation (2.5), we get

E[V]=U(p2,n h)[t1+221| [tI+>: 5.1 BBZ] 2| (3.15)

where U3(p2, n, %, h) is given by (3.10).

Now adding and substracting I 1inside each of the two determinants

and using (2.5), we have

—pz(h+n) ~

Folhs (1) (1-55"))

E[V]=U3(p2, n:ZI, h)(t'ﬂ) 10 1

Folns (t+1)° (I—z£]+z{z B'8)). (3.16)

1 O(

which can be expressed as (3.9) after using (2.4).



1

Theorem 3.2. For any finite p the p.d.f. of ch is given by

p(ch) =D1(py n’§)kch)ﬂkp2+])k§6 E jZo § pz“(k+j)
20, 0 | c1, Cos ey cpz; dy» dy, ...,dp2
B(J5 k5 Pps s E)GZPZ 2p bye a1s Ay, ...,apz; bys bys ...,bp2 (3.17)
where .
0, (b p) = 2m) T2 o /(E P(n- 1) |Z5,]")
B(d, ksPpsns 3) =[n_JJr<r{p2+ c+3)C1-27 Jey02T + T BUR)/KIGE (3.18)
2.19~72.1 1.2
ai=p2+n—i‘, by =py=1+1+k, (3.19)
Ci=p, -1, di=pytn+(kej+i-1py's 1=1,2, ..,p,

Proof: First, we evaluate the h-th moment of LVC as the method of
derivation of the density of LVC depends on lemma (2.4) of:Pillai and Singh
{107, concerning the Mel11in transform. Integratingboth'sides of (3.9)

with kespect to t, p2h times under the integral sign and putting

t=0 1in the final result, we get

h o
h P2 ~ -1\ -1
E[L 1 =U,(p,>n, Z,h)p ) ? [n],[h]C(I-2,,)C(I-¢
+ 371p B')/ (g +is D)y KLY (3.20)
Let p2
D(pys 1y ) = 1/([Zpp|" T T(n-1)) , (3.21)

i=1



then
) o poh P2
E[L, 1 =D(pysnsZ) F 7 1 I BUskspynsLlp,” X '(h+n-1)
3=0 J k=0 k i=]
P2 , ,
m(h-1+1), . /T(p,(h+n)+k+3j) (3.22)
i=1 ki’ "re

where B(r,«, Pys N5 £) s defined by (3.18). Now using Mellin
integral transform on both sides of (3.22)

we get the density of LVC in the form

p(ly)=Dlpgsm2) I T 1 E B(J.k,pysn, Z)

J=0 J k=0
P, |
) h+n-i) I (h~i+1)
_ C+iw _ p.h P2 r{ . .
(2mi)7! { (L) (h+])p22 T 1= p! dh. (3.23)
C=ioo i=1 P(pz(h+n)+k+j)

Now applying the transformation h—+h-+p2 and using Gauss - Legendre's

multiplication theorem (see (3.22) of [10]) on F(pz(hﬂ'n)+l<+j))

we get
‘(p2+'l) ot ©
p(L,.) =Dy(p,>n, Z)(L, ) Y ¥ T IB(,,p,sn,E)
e 172 ve 320 § k=0 « 2
Py Py
o I I(h+p,-i+1+k.) I T'(h+tn+p,~1)
p—(k+j)(2“1)—1jcl+1 L )h il 2 i 2 i
2 | e P2 P2
Cymie T D{h+p,-i+1) T T(h+p,+n+(k+i+i-1)/p.)
=1 & =1 2 2
(3.24)

where C,=C+p, and D](p2,11,§) is given by (3.18). (3.24) can

also be written as



(L,.)=D( ) (L )H('pzmof ) of ) B(J r)
P, = P ’n’g ! 4 \ .:Kap !nQN
ve 12 ve J=0 J k=0 « 2 ‘
'z i ( )
. I I(h+a.) T T(htb,
__ Citiw . - it i
~(k+3) 1o s "]J ! wh A 1 3.25
P, (2mi) c.-im»LLVC) by b, dh (3.25)
1 T T{htc,) T T(h+d,)
i=1 i=1 1

] .
a: , by, c? , and d? being defined in (3.19). Noticing that the
integrals in (3.25) are in the form of Meijer's G-fqpction (see (2.4)

of [10], we can write (3.25) in the form (3.17).

Special Cases. We now discuss-the cases p2=] and p2=2.

p, = 1. Putting P, = 1 in (3.17), we obtain

(L )2 2 0 1 n+k+1

Plyc) = Tty kzo Lt k) C1o12/(- 1019463 YL el aq  |(3-26)

-
1 p o _
where = 1541, lo|™ = pp .

Now using (2.5) of [10], (3.26) can be put in the form

p(L ) - (ch)n—z 3‘:’ I'(n+k) (-lplz/(l- Iplz))k
O r(n-1) 0 k50 k!
2F](n,—k,]; 1 -LVC), O<:LVC<1. (3.27)

In particular, under the null hypothesis, H,:

1 p=0, the null density

of LVC is given by

pily) = (L, ) n)/r(n - 1), o<l <t (3.28)

13



14

p,=2. In this case I = |l P12 Coyal » C=03/0,
P11 hys

Copz Cppz  C

L -l

’

Now putting P, = 2 in (3.17), we obtain

P(n)lgzgl—n

22 pl2n iyl 3°§zzz (k)
F(n—2)F2(n) j=0 =0 k

p(L,.) = L

- x . 2 -1 - .
[nJgr(2n+k+3)C (L2, )€y~ By g + 2y, B'B)/KLJ!

s ol o, e dy, d
: L A g

ve
4 4 a5 a5 bl’ b2

(3.29)

where

a]=n+1, a,=n; 1=2+k], b2=1+k2
C;=2, cy=1; dy=2+n+(k+j)/2, dy=2+n+(k+j+1)/2
Also under the null hypothesis we have

-3 2 0 2+n, n+3/2

G L

p (L) =m" 2 212 n) (- 2 D)6 Nyl

(3.30)

which after using the duplication formula of gamma functions and (2.5)

of [10], can be written as

I'(n)T(n+ %)

(L, ) = (Lye)
Piitve I'(n-1)T(n-2)T( %) Ve

Bt ) F (%1, s 1-L )
ye! 2 1M722 e (2 Ve

(3.31)

O<L <1
vC



Using the relation 2F](_a,b, C; 1)=r(C)r(C-a~b)/T(C-a)T(C~b)

(see_Erde]yT (3)), it can be checked that
1

jpl(ch)dch =1
0 .

4.  THE EXACT NON-NULL DISTRIBUTION OF LVC CRITERION THROUGH

CONTOUR INTEGRATION

Starting from (3.23) of Section 3, we have

o« [o0]

p(L,) =D(pysn, 2) sz § kZO E B(J, k5 pys s Z)
Ctiw o.h T r(h+n-1) T (h~1+1)k_
(zni)‘1[ (L, (M2 sl 1= 1 dh (4.1)
C~foo F(pz(h+n)+k+vj)

For simplifications, make the transformation h+n-h. Then (4.1) can

be written as

o0 (o) -]
p(L, )=D(p,,n,Z) T T T T B(J,k,p,sn, )L, )"
ve 2 1320 J k=0 & 2 ve
' 2 ( )Pg( )
. IM{h-1) T (th-n-1+1
TPy (Gt Poh h 4= i=1 ks -
p, “(2mwi) (L,o/Pp)" ) - dh  (4.2)
C ~jw m(poh +k+])
|
where C] =C+n and
1 P2
-— n .
D " (pysnsZ) = |Zpyl 1E]F(n— i)
. N .
B(J> ks ppsns 2) =[] T(npy tk+3)C (1-257) (4.3)
E(1-t ! B'B)/kIj!
J\=TE2.172%1.2 e

15
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Let

P _ b
Ly =L,o/Py° (4.4)

then (4.2) can be written as

_ s . n-1_""P2
pil ) =0(pysn, Z) jZO § kZO E B(J,K, Py, Z)(L,L)T TPy TFIL ).
(4.5)
where
] _-l C~I+-i°° )
ety =2t aten (4.6)
» < Cy-iee

and b, P,

_ ~h . . ]
GJ,K(h) = (L) 121 I'(h -1)121(h -n-i +1)k1/r(p2h-+k-+3) (4.7)

3.6 8¢ RJ’K will be

written as f, G, R respectively throughout this Chapter.

For ease in typing, the functions f G

We now consider a special case.

po=1. We have from (4.2)
Pllye) = ety Wy L T (-[of /1 - [ol9))"

Cqtioo
‘]j 1 )Pr(h= 1) (h - ) /7(h + K)dh (4.8)

The integral in (4.8) will be evaluated by contour integration. The

poles of the integrand are at points
h=-2, £=-1,0,1,2,... (4.9)

The residue at these points can be found by putting h=t-£ 1in (4.8)

and taking the residue of the integrand at t=0. The integrand is



given by

)-’t+l7,

G(t-2)= (ch r(t-2-1)(t-2¢- n)k/F(t-ﬂd-k). (4.10)

To evaluate the integral in (4.8), we need to consider separately,

the cases (A) £<k (B) &=k,

CASE A: f<k; £=-1,0,1,...,k=-1. 1In this case, after expanding

the gamma functions (4.10) can be written as

£+1
,t+1)(_t-£—n),k/(,tn (t-6)r(t+k-2)). (4.11)
§=1

\
G(t-4)= (LVC)"t‘%r(

The integrand G(t-£) 1in (4.11) has a simple pole of first order at

t=0, and the residue at this point is given by

R,=Tim t G(t-£) ,

£ 0
and

2 (_])£+]

Re= (LVC) (—ﬁ-—n)k J(e+1)r(k-2)). (4.12)
CASE B: 2=zk; 2=k, k+1, ... . After expanding the gamma
functions in (4.10), we get
G(t-2)= (LVC) (t--- n)k T (t-68)/ 1 (t-6). - (4.13)
6=1 8=1

The integrand in (4.13) does not have any pole at t=0.
Thus from (4.12) and (4.13) and using Cauchy's residue theorem,

the integral in (4.8) for this case is given by

)¥ ) Rp (4.14)



and the density (4.8) is given by

(L, )2 T(n+k) {742 kk (-L, )Y (-y-n+1)
p(L. )= —& ) - -1p] ve_ = K,
ve I(n-1) k=0 K Lpp[gJv0  viT(k#T-v)
/ ' 0<ch<1 . (4.15)

which after using Vandermonde's theorem (see Erdély; [3])
pFp(ems by es 1) = (e-b) /(c),  c#0,-1,-2, ... (4.16)

and for other b and c, reduces to (3.27) of Section 3. This form of
the density has been used for power computations, which are presented
in Table (2.1).

Now for‘finding the density of LVC for pzzzz, we still use the
method of contour integration but the density now will involve psi
functions and their derivative. We will make use of Temma (4.1) of
Pillai and Singh [10] in this connection. Throughout the rest of this paper

n

all empty products .H (+) and empty sums J (-) for m>n will be
i=m i=m

treated as 1 and 0 vrespectively.

Now from (4.7), the poles of the integrand G(h) are at points
h=—£,£=-'p2, -p2+],...,—1,0,1,2, (4.17)

To compute the residue at thése poles, we put h=t-£ in (4.7) and

find the residue at t=0 ¥ £. Now, (4.7) can be written as

B=
N

P2
(t-£-n-1 +1)K. T T(t-£- i)/r(pz(t-- L) +k+j)
1 i i=1 (4.18)

-t+
) t+L

G(t-2)= (L]
1'

[{ =]

- Let C=k+j-pyL. Two cases arise: (A) £=0 (B) £<0.
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Let
P2
GP(t) = .H]r(‘_t ~£-1)/T(py(t-2) +ktJ) (4.19)
1=

The poles of the {ntegrand in (4.18) are the poles of (4.19)

CASE A: £20. Two subcases: (A1) c<0 and (A2) c>0.

SUBCASE Al: £20 and cx<0. Expanding the gamma functions in (4.19)

we obtain

~(p,~1) - P2 e+t
I (tp,-6)/(P(tp,+1) T T (t-6))

p
6P(t) = py(r(t+1)) %t
§=1 i=1 8=l
(4f20)

Thus for £20 and k+j<p,f, the pole of the integrand G(t-2)

is of order p2-q1.

In the following the functions A, GP, B, C, G, R depend upon j and
k, but for the ease of typing the subscripts Jj, k will be

supressed. Now using (4.20), (4.18) can be written as

-(p,-1)
- £ 2
G(t-2) = (L]) ayt Aj’k(t) (4.21)
where
kti=py(p,y+1)/2 P2 P2
ag=(-1) Cpp(-e)t M (-L-n-i+1), /T (2+1)) (4.22)
. i=1 i i=1
"2 ki1 , Pé -c
Alt)=(L)" 1 1 (P+t/(6-£-n-1+1))(r(t+1)) m (1 -tpy/8)/
i=1 6=0 B =1
P2 g |
(P(tp2-+1) n] m(1-t/8)) (4.23)
i=1 §=]

The residue of order p2-1 at t=0 1is given by,

P2“2
Ry = (L)) a3/T (0, = 1) [ ] g expUT0BACL)) . (4.24)
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Using (4.36), (4.37), (4.38) of [10], we can write Tog:A(t) as

TogA(t) = a]t-ba2t2/2!-ba3t3/3! + o, (4.25)
where
Pp ky-1 —c Py g+
ay=-logly+ J ) 1/(§-n-L-7+1) - ) (py8)+ [ [ (1/8)
! i=1 6=0 §=1 i=1 &§=1]
(4.26)
and for q=2, we have
Py ki—]
= - q H ‘ - q+l ] q
3,7 (P = PR)ug ¢ (1) + (q-T)! _Z Z (-1)" /(8-n-£-i+1)
i=l  §&=0
-C q P2 g+ q
- L 89 1 T (e) |
i=1 i=1 &§=1
Using (4.25) in (4.24) and lemma (4.1) of [10], we get
R, = (L])zaéDpz_Z(L]; a)/r(p,-1) (4.27)
where
a, -1 0 0
a 2a a “en 0
. R 2 1
Dpz_Z(L], a) (4.28)
apz_2 [pz—B]ap2_3 {p2—4]ap2_4 cee Ay
: 1 2
where aés are defined in (4.26).

SUBCASE A2: £z20 and ¢>0 J.e., k+j >pZK. Expanding the

gamma functions in (4.19), we get



2]..‘ffw :

-p, P2 a4
/(1 1 (t-6)r(pyt+c)) (4.29)
i=1 6=1

6P(t) = (P(£+1)) 2 ¢

Thus in this case we have a pole of order Py at t=0. Using (4.29)
/

in (4.18), we have

~p
G(t-2) = (_L])Z £ ¢ by exp(logB(t)) (4.30)
where
2p,tp,(p,+1)/2 P2 P2
b = -1) _ I bﬂ-n-i+1h{/n(z+1ﬂ (4.31)
=1 i =1
and
Py Ky~ p
B(t)=(L)7" 1 T t/(s -2 n= 1+ 1)) (r(E ) 2/(r(tp,+c)
i=1 &=
P2 o+i
m o n(1-t/8)) .
i=1 6=1

Using (4.36), (4.37), and (4.38) Pillai and Singh [10], logB(t) can be

written as
logB(t) =-logT'(c) + b]t+b2t2/2!+b3t3/3!+--- ; (4.32)
where
Py Ky-1 Py g+
b, =-logl, + YY) 1/(s-n-L-4+ l)i—pz(w(1)-¢(c))-+ Yy 1 (1/8)
i=1 &=1 i=1 &=1
(4.33)
and for gq=2, we have -
q Pl q
b = 1) - +(gq-1)1 N s -4+
q = Po¥q-1 (1) - Py le) +(a-1) ﬁZ] 520 (1) /(8 =n i+1)

P2 2+ |
+y ) (]/6)%}

i=1 6=1
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using (4.32) and lemma (4.1) Pillai and Singh [10], the residue at t=0 is

given by
- 2, )

Rp = (L) bODpz_\](_L], b)/T(py) » (4.34)

where
b0==b0/r(0) (4.35)
and bé is given by (4.31) and bés are given by (4.33). The
determinant Dp ‘](L]; b) is equal to the determinant on the right
2

hand side of (4.28) with po=1  rows and aqs replaced by

bqs; g=1,2, ..., p2—1 .

CASE B: £<0 i.e.,.£=-p2,—p2+],...,—2,—] . For this case, (4.19)

after the expansion of gamma functions can be written as

—(p2+£+1 p2+£+1—£—1
6P(t) = (t) (rit+1)) T T(E-2-1)/(rtep, + )
. ']:
Po p+i
1I I (t-8)) (4.36)
i=1  &=1]

Thus in this case, we have a pole of order pZ-FK-Pl at t=0.
Using (4.36) in (4.18), we have
- ( p2+'?—+] )

6t~ £) = (L) e () c(t) (4.37)
where
(p,+2) (p,er1)/2 P2 P2
Cy=(-1) M (=L-n-i+1), / T (L+7)! (4.38)

i=1 i i=-
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Py Ky -1
. -t : . .
C(_t)_=(_L])_ I 0 (I+t/(8-L-n-i+1)) I I(t-£-1)
i=1 6=0 i=1
p+e+] P2 o+i |
(ree+1) /(r(tp,+c) m 1 (1-t/8)) (4.39)
R S .

Thus the residue at t=0 1s given by
po+e
2. (d)?
R, = (L]) Cy aTJt exp(]ogC(t))/P(p2-+,K+ 1) (4.40)

where after using (4.36), (4.37), and (4.38) of [10], C(t) can

be written as

logC(_t)=C5+C]t+CZt2/2!+C3t3/31+-~- (4.41)
where
-(£+])
Cp = Tog( m T©(-£-1)/T(e), where c=k+] - Pt (4.42)
i=1
Py Ky~ P2 et
C=-logly+ [ ] 1/(6~L-n-i+1)+ | J 1/8
i=1  §=0 j=-£ &=1
- (£+1)

+.Z] W(-1-2) = p(©) + (py + £+ 1)p(1)
1:

and for q=2, we have

(~2-1)-pg Vgople)t(pytlt )y, (1) +

[Py ki1 Po o+
G- T T O Gs-een-ie T T (1/6)8
i=1 §=0 i=-f §=1



24

and let

—_ lao 13
CO = C0 exp(CO)

Now appealing to lemma (4.1) of Pillai and Singh [10], and using
(4.41) 1in (4.40), we have
)KCODPZH,_(L]; e)/T(p, +£+1) (4.43)
where the determinant Dp2+£(L];C ) is equal to the determinant on
the right hand side of (4.28) with aés replaced by
C&s, g=1,2, ..., p2+-£ and have p2—+£ rows. Hence, for any
P,z 1, we have from (4.5), (4.6) and Cauchy's residue theorem, the

non-null density of LVC in the form

8

p(LVC) D(p,, n, L) Z

i1 0~3

1B, Kk, » Pos Vs %)
0J

k
-p
_ -np 2
(L, ZI‘ L R, (4.44)
N £20

k+Jsp2 k+j>p2£

0«

where Rés are given in (4.27), (4.34), and (443). If we put p,=1
in (4.44), we get (4.15).

5. DISTRIBUTION OF ‘ch AS A CHI-SQUARE SERIES

In this section, we express the density of LVC as a chi-square

series using methods similar to those of Chapter I.

Let A=(L )n and A*=-2plogh, where p is chosen so that

vC
the rate of convergence of the resulting series can be controlled,

020. Let¢(t) be the characteristic function of A*. Then
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)"21 tpn

ve) (5.1)

o(t) = E(L

In Section 3, we obtained the non-null moments E [ch]h for integral
values of h. But the result (3.22) can be extended to any complex

/number h by analytic continuation. So, we have for any complex

number h
h 00, o0
E[L,. 1 =D(p,>,n,Z) ¥ ) 1 1BEk,p,,n,Z)
N = 2
p,h ) P2
p,2 I T(h+n-1i) T (h-i+1), /T(py(h+n)+k+3) (5.2)
i=] i=] i

where B(J, K, pz,r1,§) is defined by (3.18). Using (5.2), (5.1) can

be written as

$(t)=DlpyonsZ) I ] 1 L B(J Kk, pys s Z)
j=0 J k=0 k ~
—2np2p1t Po P2
p2' ) (1-—21tpn-—6)k 1 F(n(]-21tp)-6)/P(np2(]- 20it) +k +j)
§=1 § &=1
(5.3)
1 -1 -1

Note that ¢(0)=1 (using 252 =I,1°L,

"’I.

8'g) and for t#0,

~

(5.3) can be written as
o(t)=D(p,,n,2) 1 T I I B(Jk,pysn, L)exp(logG(t)) (5.4)
= = K

where Gj k(t) is denoted by G(t) and is given by

~2np,it P2 . Py |
Py I I'(np(1-2it)-8+n(1-p)) X T(np(]_—21t)-+k5-+1-6-np)
6(t) = o 8=1
P2
F(npyo(1-21t) +k+j+p,n(1+ o))al_I]I‘(npU ~2it) +1~6 -np)

(5.5)
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Throughout this section functions G, W, w, R all depend upon Jj and
k, but for simplicity of notation the subscripts or the superscripts
j, k will not be exp]iﬁit]y given unless necessary. From (5.5) taking

logarithm on both sides, we get

Py
log G(t) = —anzit Tog Pyt Y 1ogI'(np(1-2it) - §+n(1-p))
§=1

)
+ ) 109F(np(l—21t)+—k6+] -§-np) - logF(anp(l-Zit)4-k+j
=1 |
P2
+ pzn(]—p))- ) TogT'(np(1-2it)+1-6-np) (5.6)
8=1

Using the expansion (5.7) of Pillai and Singh [10], for each of the

gamma functions in (5.6), we obtain

logG(t) = (p2 -1)/2%og2m - (k+j+ p2n-5Q) log P,

mn
- (54 py+ (p5-1)/20g (np(1 - 2it)) + ] (ont1 - 2it))"w,
r‘:

0 (mt) ((5.7)

* Rm+]

where the coefficients w,. are given by

p p
2 2

= - — - - —-— g 1 — Y‘
W, = {;Z]Br+](1 S -np) 6Z]Br+](]-+k6 S np)+-Br+](k4-J+-p2n(] p))/p2

P2

- L8 (01-0)-0) 0o 1) (5.8)

Thus G{t) 1is given by
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(py-1)/2 ~(34p H(p5-1)/72)  ~(kitp,n-Te)

G(t)=(2m) (np(1 ~2it)) Py

(n, t) - (5.9)

oy : -r
PZOWV((]— 2it)en) "~ + R,

where wr is the coefficient of ((]—v21t)pn)"r in the expansion
m :

of exp( } ((1- Zit)pn)“rwr).
r=1

Let u =p2-+p§/24-j— Y». Then (5.9) can be written as

(py=11/2 = (ktjtp,nath) = _
6(t) = (2m) 2 g, 2 T (- 2it)en) (T aRe (n, 1)

r=0
(5.10)

Hence the characteristic function of A* 1is given by -

o(8)=0,(ppune D) T 1 T 1Bk pyns i)
= =0 g

j=0 J k=0
- k+. ht - - + 1.1
! J)rzowrm -2it)on) W e Re () £).(5.11)
where
(p,-1)/2  (Yo-np,)
Dy(pys M E) =D(ppymuZ)(2m) & p,

Since (1-1i8t)™® 1is the characteristic function of the gamma

density ga(B,'x) , where

9,(8, x) = [8% 1()] &7 eXE (5.12)

Thus the density of A* can be derived from (5.11) in the form

) (k+3)
0Jk

Ito~1 8
nNe~1 8

p(x*) =Dy(pys 1, T) E B(J, K, pys s Z)p,

J 0

T (on)™ Wy g

0 r r+u(2’ M)+ Ry
r=

v (n) (5.13)
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Hence the probability that A* {s larger than any value, say Ag s

P[k*’>kO] =D](p2, n,z) § 1.1 Y B{J,x, Pps s §)P2L 3)
" 350 J k=0 «
D ten™ g (2, 3g) + Ry o), (5.14)
Y‘:
where
Gr+u(2,'A0) = j gr+u(2’ x)dx (5.15)
Ao
and
. _.l e ol [eo]
Ro(n)=(2n) "Dilp,,n,2) J ¥ I 7 B(J,x,p,,N,E)
" 172777 520 § k=0 « 2

p;(k+j) J j Sitar ; wr(pn)'(r+u)(]-Zit)—(r+u)[eXp(R%;](n))-lldtdk*
_ r=0
}\O -0 ' (5.]6)

From (5.14), we get the distribution of A* as a series of chi-

square distributions. Now
P[A*:>AO]==P[-2plog(ch)n > agd = PIL, < exp(-2g/2n0)] (5.17)

Therefore, once we know the distribution of A*, the distribution of

LVC can be obtained by using (5.17).

6.  POWER COMPUTATIONS OF LVC CRITERION

Powers have been computed for p=2 wusing (3.27) and (4.15) which
have been tabulated in Table (2,1). The computations were carried
out on CDC 6500 computer at Purdue University Computing Center. Before
computing the power for specific values of the parameter the total

probability for that case has been computed and the number of decimals
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included in the tables were determined depending upon the number of
places of accuracy obtained in the total probabilities. From Table
(2.1), we observe that power increases with the sample size N as well

as the parameter |p].



Power Computations For Wilks' ch

Table 2.1

Criterion

30,»‘

p:

\Riﬁlfo“1 .01 .0%1 .0%5 .01 .1 15
3  .05000095 .0500095 ,050095 .05048 .05096 . 06047 .06655
4 .050002 .050023 .05023 .05117 .05236 .07670 .9301
5 .050004  ,050038 ,05038 .05191 .05385 . 0047 .1228
& .050005 .05005 .05053 .05266 .05537 L1136 L1542
7 .050007  .050068 ,05068 .05342 .05691  .1331 .1866
8 .050008 .050083 ,05083 .05418 .05846 .1531 .2195
9 .0500097 .050098 ,05098 . 05404 .06002 1735 .2528

10 .050011  .05011 .05113 .05571 .06158 L1942 .2861

15 .050019 .05019 .05188 .05956 .06952 .2993 A 69

20 .050026  .05026 .05264 L06347 .07762 4026 .5877"

25  .050034  .05034 .05339 L06741 .08589 4992 .7022

30 .050041  .05041 .05415 .07140 .09429 . 5864 .7905

Lo  .050056  .05056 .05568 .07950 .1115 .7284  .9028

50  .05007 .05071 .05721 .08774 .1292 . 8290 .9579

60  .05009 .05086 .05874 .09614 L1473 . 8960 .9827



Table 2.1 (Continued)
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el

.25 .3 .35 A 45

3 .07331 .08089 . 08944 .09916 .1103 .1232
Lo .1117 .1332 .1579 . 1864 .2192 .2572
5  .1553 .1926 .2352 .2835 .3377 . 3980
6 .2010 .2543 .3138 . 3794 4502 .525
7 .2477 .3160 . 3905 L4695 .5512 .63
8  .2946 . 3765 U631 .5515 .6387 .73
9  .3409 347 . 5306 .6245 .712

10 .3863 4901 . 5924 .6883 .77

15  .5891 L7141 . 8147 .88

20 . 7409 . 8524 .923 .99

25 . 8441 .9284 .99

30 . 9097 .967

35  .9494

Lo  .9724
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