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ABSTRACT

The problem of combining coordinates in Stein-type estimators, when
simultaneously estimating normal means, is considered. The question of de-
ciding whether to use all coordinates in one combined shrinkage estimator or
to separate into groups and use separate shrinkage estimators on each group
is considered. A Bayesian view point is (of necessity) taken, and it is

shown that the "combined" estimator is, somewhat surprisingly, often superior.
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1. INTRODUCTION AND SUMMARY

Let X = (Xl,...,Xk)t have a k-variate normal distribution with mean

t P I . .
vector 6 = (6 «+56. ) and known positive definite covariance matrix i. It

1°°
is desired to estimate 6, using an estimator §(X) = (Gl(X),...,S (X))t, under

a quadratic loss
L(8,6) = (8-8)"Q(8-9),

Q being a known positive definite matrix. As usual we will evaluate an esti-

mator § in terms of its risk function (i.e., expected loss)
R(6,8) = EeL(e,é(X)).

Stein (1955) showed that (for Q==$==Ik) the usual estimator §°(X) =X is
inadmissible for k> 3. Estimators improving upon 8° for the above general
case have been found by a variety of authors. (See Berger (1980a and 1980b)
for references.) In actually selecting an alternative to &°, however, it was
shown in Berger (1980a) that prior information concerning 6 must be taken
into account (to choose the region of the parameter space in which significant
improvement over §° is to be obtained). 1In Berger (1980a) a robust general-
ized Bayes estimator was developed using, as inputs, a "prior mean" p and a
"prior covariance matrix" A. (Alternatively, u and A can be thought of as
specifying an ellipse in the parameter space in which significant improvement

over §° is desired.) The estimator is given by

t -1
B = (1, - D) G Goi)) g (47 (xop, (1.1)
() ® (rA) T (o)



where r is a certain increasing function which can be reasonably approximated

by
r(z) = min{k-2, z}.

This estimator was shown to be a very attractive alternative to 6°, but un-
fortunately is not necessarily uniformly better than 8° (and hence not mini-
max). For those desiring uniform dominance of 8°, a minimax Bayes estimator
'SMB (to be described later) was developed in Berger (1980b).

It should be noted that the above estimators, and hence the ensuing dis~
cussion, are concerned with the situation in which p and A must be determined
subjectively. 1In many "empirical Bayes" types of problems where the prior
information about 6 includes beliefs in certain relationships, such as ex-
changability, among the Gi, the observation X can be used to estimate p and A
or certain facets of them. The estimators GRB and GMB are probably inadequate
in such situatioms.

It was stated in Berger (1980b) that it might prove better, in certain
situations, to divide the coordinates into groups and use separate estimators
of the form GRB on each group, rather than combine all coordinates together
as done in (1.1). This might prove superior, for example, if the coordinates
fall naturally into two groups (éay, right and left handed baseball players).
In this paper, we investigate such a possibility for the estimators GRB and
6MB.

To our knowledge, the only previous work on "combining of coordinates"
is that of Efron and Morris (1973b). They considered use of the symmetric
Stein estimator when the ei could be divided into two groups, suspected of

having substantially different prior variances. Their conclusion was esses-

tially that it is better to use separate Stein estimators for each group.



The setting is an empirical Bayes one, however, in that, one can hope to ob-
tain fairly reasonable estimates of the prior variances of each group of ei.
It is thus natural that the separate group Stein estimators (which are the
appropriate empirical Bayes estimators) should out perform the overall Stein
estimator. Since, in this paper, we are considering the situation in which
no "empirical Bayes" type of knowledge is available, the results of Efron
and Morris clearly do not apply.

The following notation will be used throughout the paper. Suppose that

8 is divided into s groups of sizes k k (ki:i3’ i=1l,...,s), where if

l’cou, s

necessary‘the coordinates are relabeled so that the %Eh group is given by
(defining ko =0)

t
0 +k ).

gmp T lseeeeen, k0+... .

Sy = (eko+. .k

Similarly define X(z), and let Gﬁi) and G?E) be the appropriate estimator

for estimating G(Q) based solely on X(Q). The estimator GRB or GMB will be
called the "combined estimator", while §RBS - (GI({?) sese ,6%:) ) o oor
MBS (6??),...,6¥§))t will be called the "separate estimator"”.

Typically the combined estimator and the separate estimator will have
risk functions which cross, so they can only be compared in terms of an
average risk or Bayes risk. Since u and A can be viewed as prior inputs,
it is natural to incorporate u and A into a prior distribution ﬂ; and then

evaluate the combined and separate estimators in terms of Bayes risk -

r(r,8) = E"[R(8,68)].

The obvious problem is to choose a suitable m. Note first of all that GRB

was developed as a generalized Bayes rule with respect to a prior L which



incorporates u and A. The prior m_ was prejudiced in favor of "combining",

0
however, being of a form which imposed considerable dependence on the coordi-
nates of 6. We will assume that Q, i and A are block diagonal with %EE

blocks Q(l), i(z) and A ) (al1 k2 ><k2 matrices) respectively, so that the

(2
groups of coordinates are actually roughly "independent". In comparing the
combined and the separate estimators, therefore, we should choose 7 to re-
flect this independence. It is crucial to realize that w is, in a sense, an
aftifact, the only "true" prior information being u and A. Thus we will be
concerned with evaluation for a wide range of functiomal forms for .

In section 2 it will be assumed that v is N(u,A). This allows explicit
calculation of the Bayes risks of the combined and separate estimators, and
easy comparison of the Bayes risks.

In section 3, various flat tailed 7 will be cénsidered. Monte Carlo
;imulation and asymptotics (k +») will be used to compare the Bayes risks of
the combined and separate estimators. Section 4 discusses the conclusions.

In the remainder of the paper it will be assumed, without loss of gener-

ality, that ut=0. This can be accomplished by a simple translation of the

problem. (Only translation invariant 7 will be considered.)

2. SEPARATION UNDER NORMAL PRIORS

2.1 The Robust Generalized Bayes Estimator

For normal prior distributions, linear transformations of the problem
do not affect Bayes risk, It is easy to check that a linear transformation
can be made which preserves the block diagonal structure of § and A and for
which the transformed loss is sum of squares error loss (i.e., Q:=Ik). It

will, therefore, be assumed in this section that Q=1I, and w is N(0,A).

k



The calculation of r(n,éRB) is made difficult by the presence of the
function r in (1.1). We will, therefore, replace r by (k-2), and consider

the estimator

B* k-2 -1
) = (I, - —————t< )-1 1 (d+8) 7). (2.1.1)
X" ()X
, T . RB RB*

(Recall we set v =0, without loss of generality.) ¢ and § are very
similar. (Indeed they have virtually identical risks for moderately large
k.) Numerical studies in Dey (1980) (which for the sake of brevity will mnot
be reported) indicate that the separation results for the two estimators are

identical.

As in Berger (1980a), a calculation using integration by parts gives

that
* t -142 -1
R(0,5%%) = tri+ B [~ 2(k—22) [tr i2 Gyl - 2% (3+A) "% (2$+A) X )
x| %]
NS e e e sde LTV e & 219

%]

where HXJIZ = Xt($+A)_1X and tr stands for the trace of a matrix.
The following lemma then gives the desired Bayes risk.

Lemma 2.1.1. If Q==Ik and 7 is N(0,A), then
r(r, 6% = erf- L2 o P (2.1.3)

Proof. It is clear that marginally X is N(0,f+A), and hence Xt($+A)_1X has

a chi-square distribution with k-degrees of freedom. Thus it can be easily

shown that



E[ = . (2.1.4)
2 -
x|l k=2

Now let O be a k xk orthogonal matrix chosen so that
A = Ot()t+A)_l/2 $2($+A)—l/20

is diagonal, with diagonal elements Al,Xz,...,Ak. Let a random variable Y

be defined as Y =_0($+A)—l/2 X. Then we have

Ix)1? = xFg+n) "I = Yy (2.1.5)
and
k .
TV L¢PVl SR VS R G (2.1.6)
i=1
Therefore,
t -1 42 -1
XX (a7 173+ xR, _ 1 2 -1
ET il ] = facsy ), (2.1.7)

using Lemma 1 of the appendix, since Yi, i=l,...,k are independent chi-square
with 1 degree of freedom. Now (2.1.2) follows immediately using (2.1.4) and

(2.1.7), which completes the proof.H

. RB*S
For completeness, we note that the separate estimator § =

E3 *
(aﬁ),...,slzg))t is defined by

- kD)

Sy = T

- £ @+, ) Hx
t : -1 () "7 () ) (2). (2.1.8)
L Gaythay) X

RB*S

Applying Lemma 2.1.1 to each group separately and summing shows that §

“has Bayes risk



(k _-2)
RB*S, _ 3 2 -1
) fer dgy = o g Gt )

r(m,s

|
[ e IR

2=1

S
trf- z Q- kiz)tr iz(l)(i(z)+A(R))—l i (2.1.9)

=1

The major result is given in the following theorem, namely that the
combined estimator is always better than the separate estimator in this situa-
tion.

RB*
Theorem 2.1.1., Suppose Q==Ik and ™ is N(0,A). Then ¢ is better than
RB*S

8 in terms of Bayes risk.

Proof. Comparing (2.1.3) and (2.1.9), noting that ky,ik’ the conclusion

follows.

2.2 The Minimax Bayes Estimator
In this section, it will be assumed that 7 is N(0,A); that Q, i, and A

are diagonal with diagonal elements 9y di and a;s respectively, and that the

. . % % * * _ 2
coordinates are indexed so that 9 z_qz > e Z_qk, where q qidi/(di+ai)'
In Berger (1980b) the following estimator was shown to be minimax (i.e., uni-

*
formly better than 8°), and yet allowed incorporation of u and A: GMB =
* *
(GTB ,...,5?3 ), where
k + d
MB* x1 %% (j=2) Ci
§, (X) = q; Z (ai~-q, DIQ - ——4 ) (X, =u )+, 1, (2.2.1)
i i j=1 i J+} ”Xj__ujllz (di+ai) i S . §
h ij j||2—% 2/¢a t s N
where -u = (XQ-uz) ( 2+az), ds1 = 0, and (j-2)° denotes

=1
the positive part of (j-2).



A complication arises in this situation when attempting to divide 9 into
groups for separate estimation. The complication is that it is important to
retain the ordering of the qz in each group. (The qi reflect the "importance"
of the coordinates to improvement in simultaneous estimation. See Berger
(1980b) for further discussion.) We will therefore only consider groups

formed from the given ordering; i.e., the first group will be

(6

“(ay T

1,...,ek )t, the second group will be © = (8 K410t k i )t, etc.,

1 (2) 1 11k
where the ei are as above (with corresponding qi that are decreasing). Such

grouping in terms of decreasing q, is natural, in any case, since "similar"

I-':i-l-'x-

coordinates should have similar q; The following theorem shows that the

combined estimator GMB has smaller Bayes risk than the separate estimator

* & MB*
GMB S - ( ?f),..., (s)) , where 5( 2) is given componentwise as
' j-2-T " d
:J_ -
T x % < 2—1)
* - - - -
r(u;):sL qzl o (qj qj+1)[(l IIXj-ujIIZ d+a)(X woHd,
j=Tl—1+1 3
iz
where T, = k. +...+k,(2=1,...,8), T =0, |[x} -u/{|5= = (X, -u,) /(d +a,),
L 1 2 0 L,
1=T2 I+l

and (by an abuse of notation) q% +1 in the above expression is understood to

be zero for each 2.

%
Theorem 2.2.,1. In the above situation, where 7 is N(0,A), GMB has

*
smaller Bayes risk than GMB S.

Proof. For simplicity, we will drop the "*" from qz. Equation (Al) of Berger
(1980b) shows that
k k ,, vt (q,-q,
(3-2) (qJ qJ"'l)

*
r(ﬂ,dMB Y = tr Qi - 3 z "
i=1 j=1 J 94




J— -
>trQf - ¢ 1 ——d [2q.-(q,+4q.. )]
i=1 j= 9 * J 3+l
2 2
k  k ko k (qr-q.,.,)
=trQf- & I 2(q q) + I r —L I
i=1 j=i J J i=1l j=1i 93
k k q%
=trof - = 2q; + I =
i=1 i=1 %4
k
=tr Qf - ¢ q; - (2.2.2)
i=1

This inequality clearly also holds for the 6(2) » implying that

MB*S

(7,6 ) = I r(m, sE )
g=1 (2)
MB*S )
> r(m, 6(1) ) + Z {tr Q(Z)Z(l) - I qi}. (2.2.3)
2=2 i=T .+1
=1
Lemma 2 of Berger (1980b) states that
T T, q q, (i~-1)
1 13 i 1
r(m, 855y = tr Q. %, - It q -2 3t E1 o — r =1.
(l) (1) (1) i=3 1 i=3 1 (1_1) J=1 qj
Using this in (2.2.3) together with the fact that
q. (i-1)
1 (1-11) % qiz 0, i=1,...,k
(since the q; are nonincreasing), we obtain
k T q, (i-1)
*
r(r, 600y > tr Qf ~ 1 q - 2 5t —15 (1 -y f 2
i=3 i=3 =1 9



- 10 -

| v

k k q. q, (i-1)
5 = )

ter.— z q, -2 . - Ty r -
i=3 1 4=3 1 Q-1 a1 9

ot

r(ﬂ,SMB“) (Lemma 2 of Berger (1980b)).

|

This establishes the theorem.

3. SEPARATION UNDER A FLAT PRIOR

The results of the previous section are somewhat surprising. Even for
a normal prior which reflects independence of the various groups of coordi-
nates, the combined estimators seem better than the separate estimators. To
alleviate concerns that this result may be due to the sharp tails of the
normal prior, we consider in this section priors which incorporate p and A
. . . s RB* RB#*S .
but have flat tails. We restrict consideration to § and § , and again

assume (w.l.o.g.) that u=0,

3.1 Numerical Results for a Certain Flat-tailed Prior
We will assume that I and A are diagonal with diagonal elements di and
a;, respectively. Also assume that given ki’ the Oi's are independent

N(O,b(Ai)), i=1l,...,k, where the Ai's are independently distributed with

c.

, for n>0 and 0 <A <1, and b(},) =A—1- d;, i=l,....k
. i

where CH is defined here as ci==di-+ai. Thus the generalized prior demsity

density £(1) = nA™t

for 8, is
i
92
_n -1/2 _ i n-1
gn(ei) = ;%% fO (b(ki)) exp{ EB?K;T} Ai dki. (3.1.1)

It can be shown asymptotically (for large Bi) that gn(ei) behaves like

-2 . . . ;
cl(ei) n, for some constant Cl' Thus g, is a prior density with a tail con-



- 11 -

siderably flatter than that of a normal density. (This particular density
is chosen for its comparative ease in calculation.) Clearly, given ki, the
Xi's are independent N(O, ci/Ai) for all i=1,...,k. Thus from (2.1.2) the

Bayes risk of 6RBA with respect to the above prior is given as

k d2
% i _A
r(g,8 ) = tr § - 2(k-2) I _TE L —
i=]1 i 2
* T X /e,
i=1 * 7
k
T diXi/ci
+ sy g [ljlc ] ' (3.1.2)

(z X%/c.)z
i=1 * 7

where ) = (Al,...,kk) and EX!A(') stands for the expectation under the con-
ditional distribution of X given AX.
By choosing different values of n, several flat priors can be generated.

We take n=2 for simplicity. Note that

AX|A 1 X 1

EE [—E—————~—J = E] m 1 (3.1.3)
T Xi/c, z Xi/c.
i=1 + i=1 1
and
k
2.2, 2
A_X|2 o1 W 4y Kley
= I 1. (3.1.4)
2, 12 i=1 i 2, 2
(z X /c.)) (z X5/c.)
S i=1 * 7

Since the Xi's are independent and identically distributed, the unconditional

distributions of Xi/ci are independent of i. Therefore
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2
X./c
K BN 1 ] = B —t—1 . (3.1.5)
L ) koo
(= Xi/ci) T Xi/ci
i=1 i=1
Using (3.1.3), (3.1.4) and (3.1.5) in (3.1.2) we have
RB* (k—2)2
r(gy,8 ) = tr i - ——Vs, (3.1.6)
koo X 1
where V= [ d./ci and S = E7[ " ]. S can be computed by a numerical
i=1 * 2
T X./c.
. i'Ti
i=1

integration technique using Lemma 2 in the appendix. Table 1 gives the
values of S for various k. (Using the conditional representation in (3.1.3)
it is easy to see that S does not depend on the ci.)

In calculating the Bayes risk of the separate estimator, define S2 and

V2 for the %EE group as

X
s, = E SO L 1, (3.1.7)
) 2
T Xi/ci
i= 2_1+1
and
Tz 2
V= I d</c., 2=1,2,...,s, (3.1.8)
. i’7i
1=T2—1+1

where T2 is defined as in section 2. Note that S2 can be found from Table 1.

*
Now using (3.1.7), (3.1.8) and (3.1.2), the Bayes risk of 5%3) is given by

2
(k,-2)
v(g),800)) = tr i,y - -—J%;T—— V,S,s 1=L,...,s. (3.1.9)



Values of S for different values of k.

- 13 -

Table I

k S . k S
3 .38339 13 .05117
4 .23961 14 .04670
5 .17750 15 .04295
6 .13959 20 .03055
7 .11382 25 - .02366
8 .09540 30 .01928
9 .08173 35 .01646
10 .07129 40 .01406
11 .06310 45 .01236
12 .05654 50 .01020
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Then we can conclude that the difference of the Bayes risks of the combined

and separate estimators is given by

* _ *
A= r(gl’sRB ) - I‘(gl', GRB S)
(RB®. 2 RB* s (kz'z)z (k-2)*
= 18,6 - T rg8y) = I VS, - S VS (3.1.10)
=1 =1 L

Using Table 1, A can be computed for different s k,_and kz. A representa-
tive sample of such calculations is given in Table 2 for s¥2. All calculated
values of A are negative, which indicates that the combined estimator is
better than the separate estimator with respect to the Bayes risk, under the

given flat prior.

Remark 3.1. If s=2 and kl=k2, we have Sl=SZ' Then (3.1.10) reduces to

2
2 (k,-2)
A==V {(k’ § - —= S.}.

k kl 1

Numerical calculations indicate that the expression within the brackets is
always positive and it is clearly constant when kl and k are fixed. Thus
for fixed kl and k, A is proportiomal to V.
3.2. Asymptotic (as k +«) Results for Sepération

Under the assumption that i is a diagonal matrix and the prior has uni-
formly bounded tenth moments, we will approximate the Bayes risk of the com-

. . RB* ] RB*S

bined estimator § and the separate estimator ¢ for large k. Assume

that

1= diagdy,eeesd) 5eees dsennsd)
—_— S —
k k

1l s



- 16 -

and that the prior m on 6 is such that el,...,e are independent with

k

2, _ 2 2 _ .
E(ei) =0, E(Gi)—az and E(Bi—al) =v_ when T +1<i<T

¢ -1 2=1,...,s (the

X
TQ being defined as before). Suppose also that there exists a T <« such

that, for all i, E(G}O) <T and a,/d, <T. Finally, assume that 1, = lim(k_/k)
i I 2 k>0 2

exists for all 2, and that O <1'2 <1.

Theorem 3.2.1. If i and 7 are as above, then A, defined as the differ-

* *
ence of the Baves risks of sRE and sRB S, is given by
s a2 \)E—Zai s (V.-Zaz.)T.
b= I = {2(1-1) + ——— -1, I —3—"—71}+ o(l) (3.2.1)
p=1 272 (do+a)) j=1 (dj+aj)

where o(l) converges to zero as k >,

Proof. Given in the appendix.

Remark 3.2. For normal priors, an easy calculation shows that v, = ZaE.
Hence A <0 asymptotically, agreeing with the more explicit results of section

2.

Remark 3.3. If Vo=V, a,=a, and dz=d (2=1,...,s8), then

2

2 2
A =S (s—l){-—v_—zi— - 2}.

d+a (d+a)

Thus separation is asymptotically better, even in this symmetric situation,

if

v=2 2
—az > 2. (3.2.2)
(d+a)



-~ 17 -

This inequality can be satisfied for very flat tailed priors. For example,
it can be shown to hold for the truncated t priors

2

0,
ﬁ(ei) = c¢(1 +-—3'—)—(0L+1)/2

g I

{|eiIiM},
providing B and M are large enough and 4 <a<7. (The truncation at M is to
ensure that the moment assumptions of Theorem 3.2.1 are satisfied.)

This is somewhat discouraging, in that it shows that separation can be
better if the fourth moment of the prior is large enough. Trying a variety
of possible forms for m, however, will convince the reader that it is quite
rare for (3.2.2) to be satisfied (providing the appropriate numbers of
moments exist). Since it is rare to have accurate enough prior knowledge
to be able to specify a fourth moment, use of the combined estimator is again

indicated therefore.

Remark 3.4. It is natural to question the assumption that the prior
even has finite moments. Priors with very flat tails are not at all un-
reasonable. But if the prior does not have (say) finite variances, then
it is clear that the estimators considered here are all inadequate, since
(k—z)/(X-u)t($+A)-l(X~u) becomes infinitely small (with probability one) as
k +», To deal with this problem, Stein (1974) proposed (for the symmetric
case) truncating excessively large values of the Xi' Determination of
the optimal truncation point is an interesting problem discussed in Dey
(1980), Indications are however, that for properly truncated versioms,

the combined estimator is still better than the separate estimator.
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4, CONCLUSIONS AND EXTENSIONS

The results obtained in this paper came as a considerable surprise. It
was initially believed that separation would quite often turn out to be supe-
rior. Instead it was indicated that, in the vast majority of cases, the
combined estimator is better than the separate estimator. An important qua-
lification for this result must be made, however. The qualification is that
it may be desirable, in some situations, to evaluate the Bayes risks of
the various estimators for varying values of p and A. For example, suppose

there are two groups, with specified prior information “(1) and A for the

(1)

first group and “(2) and A( for the second. Suppose u(l) and A( are

2) 1)
thought to have been accurately determined (subjectively), but that u(z) and
A(2) were hard to specify and could be wrong (in terms of true prior beliefs).
It may pay to use separate estimators for each group, provided the possible

variation in “(2) and A is large enough. Another way of saying this is

(2) _
that if robustness with respect to possible misspecification of the prior
beliefs is taken into account, the separate estimator may well be better than

the combined estimator. The investigation of this will be pursued elsewhere.

5. APPENDIX

Lemma 1. If {Xi}, i=1,2,...,k, is a sequence of independent and iden-
tically distributed chi-square random variables with 1 degree of freedom,

then

L. (A1)

where the Zi are scalars.



Proof. We have

K
1
1% k 121 !
B[ — 1= 1, E ]
2 i k 2
(z X)) (T X))
i=1 + i=1 1
= —g;i— E[ 1 ] = 211
X K K(k=2)
5 X,
i=1 *

Now summing over i, the proof is complete. H

Lemma 2.

1= fg{ (l+2t)l/2 (1-3t) + 6tzsin h—l m}kdt. (A2)

c
2 i 2 2
. = i=1,....k. A, is — v.
Proof Suppose Zi Xi’ i=1, ,k. Then Zil i lS_A, X1 where X1 represents
a chi-square random variable with 1 degree of freedom. Thus given Ai’

Z./c, is ;L-xz. Hence given A,, the Laplace transform of Z, /c, is
i’ i Ai 1 i i’ 71

z.|n, -tz./c.
oehpy =t Te T - +yH2
i

It follows that the unconditional Laplace transform of Zi/ci is

_ %
1/2 Aidki = 4t fe tanh 6 sinh2 ® 4tc sinh 6 cosh 6 48,

_ 2t
o (t) = IO 21 + Xi) 0

the last step following by the change of wvariables )\ =2t sinh2 6 and defining

1 /2

% - -
8 =sinh (2v) ! . Integrating by parts gives
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* %

o(t) = 16t2 fg sinh4 5 g8 = 16t2{%-sinh3 6% cosh 6% - %-fg sinh2 6 de}
2.1, =2 /2 3.1 . 6,8%
= 16t {4(2t) (1+2¢) - 4[4 sinh 26 - 2]O }

/2

(1+2t)l - 3t(l+2t)1/2 + 6t% sinh~ T (2t)'1/2.

Now using the independence of the Zi/ci for i=1,...,k, the Laplace transform

k k 9
of T Z./c., (ox I X./c.) is given as
. i’7i , i'7i
i=1 i=1
k
-t I X?_/c:.L
Ele T°1 1= a+)? @-30) + 6t? sinn™t 20)71/2 .

Finally by Fubini's theorem,

k
—t 1 X/e,
i=1 t *

—
|

fOE[e ldt

—1/2}k

fg{(l+2t)l/2 (1-3t) +6t% sinh T (2t) dt,

which completes the proof of the lemma. H

The following lemmas are needed in the proof of Theorem 3.2.1. All relevant

notation and conditions are given in Subsection 3.2.

Lemma 3. For T2_1+ 12T

(A3)
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X . . . . .
where E” stands for expectation under the marginal distribution of X.

Proof. We have Xilei is N(ei,dl), Tz-&;ilﬂiTQ' Therefore

6. X6, 0,
X, 2 i i'vi,.2 i 2, _
E (Xi) =E E (Xi) = E “(d +ei) = dz+a

X, |e
1

i 2
We know that E 1(Xi-ei)4 = 3d2. Therefore,

X. |6,
i'vd b4 2., 2.2 4
E (Xi) = 3d24-6eid£4-ei.

Thus,
X, 4 2 2 . 4 2
™ = =
E (Xi) 3d2+6d2al+\)2+aZ (since E(ei) vgﬁ-az).
Therefore
X Xi 2 X Xi zxi “2'235
Pl - s+l =2+ ——
2L (d2+a£) 272 (d2+a2)

This completes the proof of the lemma. H

%

Lemma 4, Under the assumptions given at the beginning of Section 3.2,

2
(rf o1’
Yoy | =T, 11 7
e =E .
I, 2
kﬁ z Yi
i=T +1

(A%)

(A5)
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An easy calculation then gives that

k Y T Y T
BN ———]=1-E 2 [f— st (Yi—l)] +E (2)[1% r* (Yi—l)]z— =
|]X(£) Il ? i=T, 41 % i=T, .+l L
Observing that the Yi are independent with EY(YE) = 1 and using (A3), it
follows that
2
k v -2a
oo (R — R U A -
Iz, |12 ky (d +a )2 K
(2) 28
Hence it is only necessary to prove that e =o0(1).
Expanding the numerator in (A5) gives
z(y2-1)3 r rr-12el-n
Yy J it NONET . :
e =E 5 + 3E 5
Kool ke 1Yy
i i
Do (Y-l (¥-1) (v3-1)
Y(z) 14i¢m i J "' m
+ 6E 5
kﬁ T Y,
i
=I. +1I + I, (sav). (46)

1 2 3

(In the above expression and in the following, it is to be understood that

summations or products are only over the integers T£—1+l""’T2)'
To deal with Il, define for some a >0
t 2 2 .
Q={(YT Y. ) : = Yiia forJ=T£_l+l,...,T£},

_l+l’°”’ T

2 2 i#j
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and write (letting f(Yi) denote the marginal density of Yi)

zcyi-1)3 Z(Yi-l)3
I, = f 2 m[f(ydv.] + S = 1 [£(Y,)dY, ]
I 9 w1y 1 77 o oyt i i1
2. 71 L, 71
1 1
1.2
= Il + I1 (say). (A7)
Now on {8,
.2 .3
y2.1;
li( ;-7 (Vz—l)zlYi-ll (Yi-l)z 1
<X < T a+-=) = (Y,,\) (say).
2 = =
k, Y i kz(a2+Y§_) i Ky EA PR

From the assumption of uniformly bounded 1052 moments, it can be assumed
without loss of generality that E(Yi—l)2 < T for all i. An easy argument,
using the strong law of large numbers and the extended Lebesgue dominated
convergence theorem (see Rao (1973) for a statement of this theorem due to
V. Johns and J. Pratt), then shows that IIil = 0(1).

To deal with I2 from (A7), define

1
Q= ¥yt 2 Yi < a%},
J i#j
e TIg
observe that ° = U Qj, and note from this and the independence of
J=T2_l+l
the Yi that
2 43
2 |Yi’1| |
1yl <2/, mI£(Y,)dY,]
1k, T Y 3
e J

j#i
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igﬂEW?lP)z S

— L [£(Y,)dY, ]}
i m Sk, ¥ Y j#i 3 d
m £ ,,. 3
j#i,m
<z aelY>1]3 s , ————— T [f@)av.].
im - {3z Yi<a%} k, T Y, i#,m J
j?giamj j#i’m J

Using the fact that ag/dy,iT’ it is clear that

r(6.) (d +a) (d +a) o,
£(v.) =8 b A 22 i 2 Yy oL 2y,
i 21rd2 ZdZ i (d2+a£)l/2

(d +a )
< { 2 2 }1/2 (lz-l;T)l/Z .

— 2nd£

Together with the uniform bound T on the moments E|Yi—l|3, it follows that

(k,-2)/2
] <zorEh ¢ [, . ———— I ay,
im {z v¥i<a®) k £ Y. j#i,m J
.l . Jo J
J#l’m J#l’m
(k,-2)/2 k2'4 (kn'z)/z
-2 oy T
2 2T kgr(kz/Z)
= o(l).

To deal with 12 from (A6), observe first that

2
11 Yj

2 2 2 2
IY; Yy (z Yi)(ZYi)

i i3 1#3 i
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It follows that

o2 2,2 2 ..2,.2 2 5
Loy Z[EY@) (¥;-1) ij-l) ) EY@) (v;-1) (,Yj-l)Yi } :
2 = 2 - 2 2
i#3 k, T Y ' k(X Y)D)CEY))
Ly, 1 L., 17, 1
i#g i#j i
2 2,2 2
Y (Y,-1)"(Y.-1)Y,
=-37%Y T E ) = 5 J 23 (since E(Y%) =1).
i4] k, (T YY) .

i#] i

The argument that |12| = 0(1) proceeds as did that for I

1
The argument for 13 follows similarly after applying the identity
Y2 v
1 - 1 _ i + i
tv2 1y (rYH? (rvhieyd
. 1 Lz 1 .4. 1 .z 1 . 1
i i#j i#] i#j i

It is for this term that uniformly bounded tenth moments are required.||

Lemma 5.
2
s (v, =-2a’)
EX[ k2]=1+—§-+—1—2 ) L E2+o(%.
| x]| k° 2=1 (d +a )

Proof., Similar to the proof of Lemma 4. H

Proof of Theorem 3.2.1.

. %
Using (2.1.2) and Lemma 5 we have that the Bayes risk of SRB is

. 2 2
. s _ 2 s  d - s k, (v =2a))
r@s™) = 1 oad, KD r s da g
g=1 k 2=1 "2 % k™ p=1 (d2+a2)

(A8)

+ o(%)}.

(49)
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Similarly by Lemma 4, we have

. 2.2 2
(k -2)°d v —2a
RB* £ 2 Z £ 2 1
r(n,§ )=kd -—FF—= {1+ —+ —"—=—+4+ 0(F)}.
A 1 +
() 2% kg(dz ag) kg K (d +a )2 .
2 L R
Thus the Bayes risk of the separate estimator is
2 2 2
* s s (k ~-2) d v _=2a
r(r,s88"8) - 3 kyd, - 3 i - i {1+ ﬁ5-+ ———&———&—5 + o(ﬁL)}. (A10)
2=1 S T R 272y, 2k (d +a,) 2

From (A9) and Al0), it follows that the difference of Bayes risks is

] d2 s d§'r£ s d2: vl—Zaz
A=-4 1 Tt 4 T Tt Z T {2 + ——————75}
g=1 7% =1 7% g=1 %% (d,+a,)
2 2 2
s ZdQ'r£ s lel s (\)l—Zaz)T2
I g3a -~ 1 d +a 75+ o)
2=1 "2 "2 2=1 "8 "2 2=1 (d2+a2)
s d2 vn42a§ s (v.-Za%)T.
= I {2(,-1) + ——— -1 % } 4+ o(1),
g=1 4472y 2 (d2+al)2 =1 (dj+aj)2

which completes the proof of the theorem. H
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