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Section 0. Summary

This paper considers the problem of estimating the multivariate normal
mean vector restricted to a certain subspace of the original parameter
space after selecting the subspace from several possible subspaces (not
necessarily nested or overlapping). Results show that the usual estimator
in the selected subspace may be improved upon for the types of selection
procedures normally considered in practice provided that the chosen subspace

satisfies certain conditions.

Section 1. Introduction
The problem under consideration is that of estimating the mean vector
6 of a p-dimensional multivariate normal distribution with identity co-

variance matrix while restricting the estimator to belong to one of several

subspaces of the parameter space RP. Charles Stone (1) considered the
problem in a recent paper and the model used here is similar. (In the case
that the positive definite covariance matrix A for the random vector Y is
not the identity, define X to be A'%Y with the identity covariance matrix
and label 6 as A'%E[Y] in the discussion.) For instance, these subspaces
might be generated by requiring that certain components of the vector 6 be 0.
When these results are generalized to the non-identity covariance matrix for
X, this would correspond to deletion of certain independent variables from
the Tinear regression model. The possible subspaces are denoted Vj’
j=1,...,5 and the index of the chosen subspace is m. It is not assumed
that one of the subspaces is necessarily all of RP. Associated with each

subspace Vj is a Toss function fj(e,éJ) with 6 EVj and



fj(e,éj) = 169 - o]]% + C;

where Cj is a constant "cost" associated with choosing subspace Vj' Also
associated with each subspace Vj is a function hj(X), which may be viewed

as an estimate of the loss associated with the choice of the subspace Vj'
The choice of one subspace Vm among S subspaces V., j = 1,...,S, of

J
the parameter space is made by minimizing hj(X), j=1,...,5 at the value

X. (Clearly m =m (X).) Thus
(*) hy(X) < hs(X), 1< <s.

It is assumed that the above inequalities are all strict except on a set
of X values of measure 0.

If the selection functions hj(X) of interest don't result in a unique
minimum for "most" values of X (i.e. for all X values except those which

have measure 0 for every value of 6), they can be redefined to be
{ hj(X), if hj(X) # hm(X) for m < j
(hj(X) +1), if hj(X) = hm(X) form< j.

This has the effect of choosing the subspace Vm with the smallest index
such that

hm(X) = min hm(X).
- 1<j<S

Example. Akaike's Information Criterion (AIC) may be calculated for each
subspace and then Vm would be the subspace with minimal AIC, i.e.

hs (X) = (11P9x[12) + 2(dimension(V,)}

is minimized over j, where pJ = Ip'Pj and Pj is the orthogonal projection on Vj'



Remark. The loss function for this paper is actually

. S -

L(e,0) = T { T (h.(x))} f (o,0M(x

n1 Ujes (0, (h; m'%-67(X))
j#m

and o™ is in Vm' Observe that an estimator 5 is restricted in form.

A natural choice of estimator for 6 once Vm has been chosen is
eO(X) = me,

where Pm is the orthogonal projection on Vm. This paper is an examination

of conditions under which ég may be improved.

Section 2. Improved Estimators
The theorem of this section will detail conditions under which ég may

be improved and exhibit improved estimators.

Define V_  to be a subspace of V.. (It is ndt assumed that V_ s
my m My
necessarily one of the original S subspaces Vj’ J=1T1,...,5.) Let Pm be
0
the orthogonal projection on Vm . We consider Vm_ to satisfy the following:
0 0

Assumption I. Each of the inequalities

hm(X) < hJ.(X)

either has no effect on Pm X (i.e. it involves only random variables in-

0
dependent of P X) or is equivalent to a lower bound for ][Pm XIIZ. The
0 0 N
lower bound may be random but depends only on variables independent of Pm X.

0

Remark. Thus the S inequalities imply the constraint
2
1P, XI1Z > v(%)
0

where v(X) is the maximum of the Tower bounds for ]le X]]2 induced by the
0



S inequalities. (Note that the distribution of v(X) is independent of

P X.)
Mo
Thus we may assume that T I - (h. (X))
1ajes (p(X)52) 3
J#m
, 2
= 1 I (s. (X)) - I (11P_ X]|“) where §. (X), v(X) and
j#m {AJ,m(X)} J .M (Y(X)sm) mo _ _ J.m" » )
1<j<S ‘
Aj,m(x) are independent of Pm X.

0
The following theorem provides a large class of improved estimators if

the dimension of Vm is three or more.
0

Remark. In Section 3, it will be shown that Vm satisfies Aséumption I
0

ifV. cV.orV. <V*for j=1,...,5, where V¥ is the orthogonal
m— ] My-— J J

0
complement space of Vj'

Theorem. Suppose that Vm is a subspace of Vm with dimension 2 and that
0

a.) Vo satisfies Assumption I
and b.) 2 > 3.
Define - )

6 (X) = (Pm-PmO)X‘+'h('iPmOX|l )Pmox

where h is a nonconstant function satisfying, for u > 0,

(1) 0 < h(u) <1
and (2) g(u) = u(1 - h(u)) < 2(2 - 2) and g(u) is nondecreasing.
Define 5j(X) = é%(x) for j #m. If 6 and 60 use the same selection
function hj(X), then 6 dominates éo if the selection function chooses the

subspace Vm with positive probaBi]ity for some 6.



Remark. The proof does not require that h(-) > 0, but oM may be improved

by making h(-) > 0.

Remark. The estimators in the theorem shrink towards the subspace V; fiVm

0
where V; is the orthogonal complement of Vm

0 : 0

- Proof of Theorem. The difference in risk for 8 and 50 is

S

R(o,5) - Risud) = €[ T 1Lt 0, (5 GO0 12 18501 2]

j#m

g 3#m g 003 8,n(3DE [I<y<x>,w)<llpmox"2) '

Vm»(-)CV 1<j<S - M
. ([h(l[Pm x|12) - 17°] 1P xl|2 - 2[h(||PmOX||2) -17 -
Lo 'Ry X - (17 XI] ]) 0],

using the notation in the first Remark after Assumption I.

Thus it suffices to show that (**) is negative where

%) =gl P, XD 1P X112 = D[ 1py X112
2

-2 (h(|[P_ x|| ) = DRy 0)'By X = 117y X 1]

since y = y(X) is independent of Pmox, -

Now () = E[1, )5 0T (0E L) - 030 )62 ) - 1-02 )] |

+AE[I(Y’w)(X§+2,A)2(] - h(x§+2’x))]

(where 2 = dim V, anda= ||P GTIZ)
m my

Thus (**) = E[I(Y,w)(xi,x)[] - h(xl N2 {x2 U h(Xi’x))

- 2(1-2) - 28 3]

)2x2_, (1 - h(x2 ., )]

+ E[I( )(X 2_23}\

=2,



2

because 2AE[g(x2+2,A)] = 2E[9(X2 ) - %

20) T Xp ] - 206-2)Elg0E )T

We have (**) <

2 | o
E[I(Y,w)(XQ-Z,A)ZXE-Z,A“ - h(xg-z,x))]- E[I(Y,w)(xi,x)zxi,x(] - h(xi,‘x))]

(if u(1 - h‘(u)) < 2(2-2)) and (1 - h(u)) > 0).

This Tast upper bound for (**)is negative if g(u) = u(1 - h(u)) is non-

decreasing since

2 2

2 2
9(xy_5 3) < 9lx =9(Xy_5 ) *X5)

Ll)
and
2 . 2y 2 2
Hyi) X200 2 Ty o) O3 = Ty oy (g, + 5D).

qed.

Remark: It is clear that one may improve on 8 if there are further subspaces
Vm with appropriate Vmo.

Section 3. Selection functions

In this section conditions on Vm and conditions on the subspace
0

selection functions hj are imposed which guarantee the satisfaction of

Assumption I.

Lemma. Assume v, SV, and each function hj(x) is representable as a

0

continuous strictly increasing function of ||PJX||2. If vV Sy, then
0

the inequality
hm(X) < hj(X)
is equivalent to the inequality

[1PX] 12 5 v, (x)



where PIX and Y n(X) are independent of P .

0
complement space of Vj’ then the inequality

hy(X) < h ()
is equivalent to the inequality

2 '
IIPmOXH > Yj,m(x)

where Yj,m(x) is independent of PmOX.

If Vﬁ‘

0

€, the "orthogonal

Proof. Setting gj(llPJXIIZ) = hj(X) where 9; is a continuous strictly

increasing function implies that
hm(X) < hj(X)

is equivalent to

g [1P™112) < 95(11Px]1%)

if and only if

J

g7 (g (11P™]12)) < |[P3x] 2.

Note that Pm X and P™X are independent. (To see this note that

0
. . m _
Vm g;Vm implies that P Pm X = 0. Thus
0 0

m m m,"0
PPX = PP X+ PP "X

m

0

m

= p"p Oy,

m
Furthermore, the covariance matrix of Pm X and P"p

0

Suppose Vm c VJ.. Then Pm

0 0

0

mm
X is“P"P

0

P = 10].
o~ [03)

X is independent of pIX by the sort of

reaSoning used in the preceding parentheses. The equivalence of the

first set of inequalities stated in the corollary follows if we set



R
Suppose VmO - VJ.. Then

. L o.m
pdp x + pdp Oy
Mg

pIx

. My
PoX+ pIp VX,
0
since PY is actually the projection to VF. Note that Pm X is orthogonal

0

. m
to pIp 0X since

-
xtp Opdp X = 0.
Mo

m
Also, Pm X is independent of PjP 0X because their covariance is

0
N (1] m .
p(pdp Oyt = p p %I = [0].

Mo Mg

. m
Setting yj ntX) = 93](gm(|[Ple|2)) - ||pdp 0X||2, we have that the last

two inequalities stated in the corollary are equivalent when we substitute
. .. M .
2 0y1,2 2
Ilnbﬂl + [1PIP OX[ 15 for [IPIX]|

in the inequality
[1P9X]12 > g3 (g (1TP™X119)).

ged.

Example. Setting
jvi112
h.(X) = ||P +C.
S0 = 11PxXI|% + c
where Cj is a constant (possibly a cost proportional to the dimension of

the space Vj)’ the assumptions of the lemma about hj are satisfied. Observe

that for V, c:Vj, we have HPJXII2 5_||P1X||2 for all X and V; is effectively

removed from the set of choices unless Cj > Ci'



Example. Various forms of Akaike's Information Criterion have the form

h5(x) = r(11P9X] %) + g,

where Bj is independent of X and r is a continuous strictly increasing
function. These are continuous strictly increasing functions of []PJXIIZ,

and the previous lemma applies for the hj'

The next corollary examines the implications of Assumption I for the type

of hj's considered in the lemma.

Corollary: (1) Assume that each function h(X) is representable-as a
continuous strictly increasing function of [IPJXIIZ, j=1,...,S.

(2) Assume that Vm is a linear subspace of the subspace

0
V_ (not necessarily equal (to V_ ) such that for each j, either V_ cV,
o Mo My = J
or Vmogv\’]f, i=1,...,S.
Then if the dimension of Vm is three or more, the estimator given
0

in the theorem dominates the estimator 60.

Proof: The last Temma shows that (1) and (2) imply Assumption I and the
theorem may be applied.

ged.

Remark: These results imply the inadmissibility of the estimator 50 under
special assumptions about the relationships of the Vj's to one another.

Namely, there is a subspace V_ such that V. < V. or V_ < V¥ for
o Mg~ J Mg = J

j=T1,...,S and Vm is contained in at least one of the subspaces
0

) sV

120 Vge



10

Example: Set p = 7 and
P

let V]={961R: e1=ez=e3=0}
and
- p. = = = = =
V2 = {p€R": 93 94 95 66 97 0}
and
= p' = = = =
VmO {6 €R": 8 0, 83 e4 03.

Then ¢ =dimV_ =3 and V. <V, and V< V*.
My my = 1 Mg =
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