ADAPTIVE PROCEDURES IN MULTIPLE DECISION
PROBLEMS AND HYPOTHESIS TESTING*
by

Andrew L. Rukhin
Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #80-30

September 1980

*Research supported by NSF Grant MCS 78-02300



ADAPTIVE PROCEDURES IN MULTIPLE DECISION
PROBLEMS AND HYPOTHESIS TESTING
by

Andrew L. Rukhin
Purdue University

ABSTRACT

Necessary and sufficient conditions for the existence of adaptive
procedures for identification of one of several probability distributions
or for testing a simple hypothesis against a simple alternative are ob-
tained. .These procedures exhibit the same asymptotic behavior for sev-
eral parametric families as optimal (minimax) estimators for each of
these families. The proofs are based on the multivariate version of
Chernoff's theorem which gives asymptotic formulas for probabilities of
large deviations for sums of i.i.d. random vectors. Some examples of
adaptive procedures are considered, and the non-existence of such rules is

established in certain situations.
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1. INTRODUCTION

We start with the simple multipie decision probiem where both the ac-
tion space and the‘parameter space coincide and are finite, say,
® = {0,1,...,m}, m> 1. Thus a family of (different) probability distri-
butions P = {PO,...,Pm} over a space X 1is given, and statistical infer-
ence about the finite-valued parameter is desired on the basis of a random
).

If §(x) is an estimator of this parameter, then the probability of

sample x = (x],...,xn
incorrect decision Pe(s(g) # 0) is the most important characteristic of

the procedure s. The asymptotic behavior of this probability for minimax
estimator s* was studied by many scholars (see Bahadur (1960), Krafft and

Puri (1974), Ghosh and Subramanyam (1975)). The main result here has the

form
) 1/n . Pe t -t
Tim max Py (s*(x)#e) = max 1inf E “p (X)Pe (X)
Moo 6 nfe t>0 n

max inf f pt(x)p]_t(x)du(x) =p(r), (1.1)
nfe t>0 Z M °

where Pq is probability density of the distribution Pe’ 6 €@ with respect
to a g-finite measure y on Z . HNotice that p(#) < 1, since all elements

of ® are distinct. It follows from (1.1) that for any procedure §

Tim inf max P;/”(a(g)#e) > o(P). (1.2)

N->00 ]

A parallel result holds for hypothesis testing problems. Let us con-
sider the case of testing a simple hypothesis P against simple alternative
Q. It is known (cf. Chernoff (1956), Bahadur (1971)) that if a, = an(qD*)
denotes the minimal size of the most powerful test ®*(x) under this hypoth-

esis which has a fixed power g, 0 < B < 1, then



o)M= [P % (01 + expt-k(Q.P)) (1.3)

Here K(Q,P) = 2 log —%%— (X) is the Kullback-Leibler information number
(see Kullback (1959)). Moreover, for any test ¢ of the same or larger

power

Tim inf o}/™(® ) > expt-K(Q.P)} . (1.4)

N0
Formula (1.3) has been generalized to the case of testing a finite hypothe-
sis versus a finite alternative by Plachky and Steinebach (1977).
The proofs of both mentioned results are closely related to Chernoff's
theorem (Chernoff (1952), Bahadur (1971)) and can be obtained with its help.
Formulas (1.3) and (1.4) as well as (1.2) and (1.1) Tead to the fol-
lowing question. What are suitable conditions on two pairs of distribu-
tions (P],Q]) and (P2,Q2) such that there exists an "adaptive" test ¢ pos-
sessing the following properties. Its power as a test of P] against 01
and as a test of P2 versus 02 is equal to a fixed number g8, 0 < g < 1 and
its Tevel behaves asymptotically as that of the most powerful test for

both testing problems, i.e. for i=1,2

and

P.
[E e (017" > exp(=K(0;,P;)3 -

In this paper we obtain a necessary condition and a sufficient condi-
tion for the existence of such an adaptive test. These conditions can be
interpreted as an expression for the degree of closeness .between
(P],Q]) and (PZ’QZ) in terms of an information type divergence.

In the multiple decision problem we will be interested in ‘conditions

on two (or several) parametric families P] = {Pé]), 6 €08} and



P, = {Péz), 6 €®} under which these exists an adaptive estimator &, i.e.

2
such that for i=1,2

max[P{ ) (s (x)#6)1" =+ o (o,
S

) .

In other terms an adaptive estimator & serves both families Pq and
Py in an asymptotically optimal (minimax) way. The existence of such an
estimator in the case, when ¢ is a real location parameter and asymptotic
optimality is defined by means of asymptotic variance, has been established
in different settings (see Beran (1974), Sacks (1975), Stone (1975)).

The definition of adaptive estimator and all results of this article
are valid if one replaces the probablity of incorrect decision by arbitrary
risk, R(e,5) = Eew(e,a(g)), where W(6,6) = 0 and W(e,n) # 0, 6 # n.

In Section 3 we give the necessary condition and the sufficient con-
dition for the existence of adaptive procedures in multiple decision prob-
lems and hypothesis testing problems. These conditions are obtained by
studying most powerful tests and minimax estimators for the model describ-

ed by a mixture of densitiées of Pé]) and Péz).

This study is performed in
Section 2. The basic mathematical tool needed is multivariate Chernoff's
theorem, which provides an asymptotic formula for probabilities of large
deviations of sums of i.i.d. random vectors. In Section 4 we jllustrate
the necessary condition and the sufficient condition (the gap between which
seems to be difficult to fill) for the existence of adaptive procedures by
several examples. Typically adaptive estimators do not exist if the mea-

k)

sures Pé1) and P( i#k, 8 #n are more "similar" than the distributions

(1) (i)
Pe1 and Pn1 .



2. THE ASYMPTOTIC BEHAVIOR OF OPTIMAL PROCEDURES FOR MIXTURES
In this Section we will be interested in the asymptotic behavior of

statistical procedures based on a 1ikelihood function of the form

n n
Wy ? f](xj)+w2 ? fz(xj) where f] and f, are probability densities, and.

w]+w2 = 1. We start-with the following key result.

LEMMA. Let Co> n=1,2,... be a sequence of positive numbers such that
nf] Tog-cn converges to a finite limit L. Then if fi,gi; i=1,2, are strictly
positive probability densities, Wy and W, are positive numbers, Wi, = 1,

and for all a, b > 0, atb =1

Pr(a log fléE;- + b log f](X) >L)>0 (2.1)
g; X 9,(X)
and
Pr(a Tog fg%?% + b log RN L) >0, (2.2)
9 9,(X)
then

]/n n n n n
Proi%w, ? f1(xj)+w2 ? fz(xj) > ¢ [w, ? 91(xj)+w2 ? gz(xj)])

> max inf e'(S+t)LEfi+t(X)g{S(X)gét(X).
k=1,2 s,t>0

Proof. Notice first of all that

. n n n n
Pr(2 max[w] ? f](xj),w2 ? fz(xj)]z_cn max[w1 ? g](xj),w2 ? gz(xj)])

n n n

n
> Priw, ? fy (x5 ) 4w, ? fa(x;)>c Lw, ? gy (x; )+, ? 9,(x;)1)

n n
i_Pr(max[w] I f](xj),w2 I f2(x
1

n n
] j)122¢, max[w, ? gy (x;) 5w, ? 9, (x5)1).

(2.3)



One has

n n n n
Pr(max[w] ¥ f](xj),w2 ? fz(xj)]z_Zcn max[w1 ? g](xj),w2 ? gz(xj)])

-1
)chnw'l W2 gz(xj))

n n
= Pr(m f1(xj)32cn ? g](xj),¥ f](xj

—e

n
+ Pr(¥ f2(xj)3_2cnw]w2 ¥ g](x.),¥ fz(x.)EZC ? gz(xj)) R

so that

1/n n n n n
Pr (max[w] ? f](xj),w2 ? fz(xj)]z_Zcn max[w1 ? g](xj),w2 ¥ gz(xj)])
1n, " n n g

~ max[Pr /" ( ? f](xj)zzcn ? g](xj), ? f1( J)ZZC Wy W, ? gz(xj)) ,

n n n
-1
( ¥ fa(x;)>2¢ wyw, I 97 (x;) I falx;)22¢ I 9(x;0)1

1/n

To find the asymptotic behavior of latter probabilities we use two-
dimensional Chernoff's theorem (see Groeneboom, Oosterhoff and Ruymgaart
(1979), Bahadur and Zabell (1979) or Bartfai (1978)). According to
this theorem if (Y],Z1) (Y2 22) .. is a sequence of i.i.d. random vec-

tors in R2, then

1/n -sy-tz_ sY+tZ

n
z Y 2yt N Z ijz+sn)-> inf e Ee . (2.4)
1

s,t>0

Here a, > 0, By > 0, and y and z are real numbers such that

Pr(sY+tZ>sy+tz) > O (2.5)
for all nonnegative s, t, (s,t) # (0,0).
(The Tatter condition guarantees the continuity in y and z of the

right-hand side of (2.4). It implies that (y,z) is an inner point of



the set {v €R2, inf[Eq(X)Tog q(X): [xq(x)dx>v] < =}, which is demanded

in Theorem 5.1 of Groeneboom et al (1979)).
1

We apply this theorem with y = z = 1im n" " Tog <, L and Yj =

TogLfy (x;)/91(x;) 15 Z5 = T0glfy(x;)/9,(x;)]1, or for Yy = Toglf,(x;)/9,(x;)]
Z. = 1og[f2(xj)/g2(xj)]. In both of these cases condition (2.5) is met

J
because of assumptions (2.1) and (2.2).

Thus
1/n, " n n q !
Pri/ Y ? f1(xj)32cn q g](xj), q f](xj)zznw] W ? 92(Xj))
> inf e STILEES T ()gTS ()5t x)
s,t>0
and
i/n, " 1] n n
Pr'/ Y ? f2(xj)3_2cnw1w2 ? g1(xj), ? fz(xj)32cn ? gz(xj))
» inf e STHLERS T x)g-S (x)g5E ().
s,t>0
Therefore
1/n n n v n n
Pr (max[w] ? f1(xj),w2 ? fg(xj)]Z?Cn max[w] ? g](xj),w2 ? gz(xj)])

> max_ inf e'(S+t)LEf§+t(x)g;S(x)ggt(x),
i=1,2 s,t>0

and the left-hand side of (2.3) has the same limiting value. Thus the

Lemma is proven.

Remark 2.1. The generalization of the Lemma to the case of arbi-
trary finite mixture of positive densities is straightforward. Multivari-

ate Chernoff's theorem shows that if w1,...,w > 0, w]+...+wQ = 1, then

L



/n L n 2 n
Pr ( kZ] Wkl-} fk(xj)icn z Wkl_-l[ gk(X))

k=1 J
-(sq*+...*s )L s.+...+s % -s.
> max inf e | = YX) 1 g (X
1<k<g SqseersS >0 i=1
—_— 2,_
o e BRI
Here L = 1im n * log Ch and the probabilities Pr( E oy log §ETYY > L)

are assumed to be positive for all GUpseeesly > 0, a]+...+a2 = 1.

Remark 2: If, say,

n

1 n n
fz(x.)>2c WW, T g](xj), q f2(xj)32cn ? gz(xj))

Pr( Jj’="n"1 1

n
i
1
n n n n
? f1(xj)3_2cn ? g](xj), ? f](xj)i?CnW] Wy ? gz(xj))

then condition (2.2) can be omitted.

Indeed in this case

_ 1/n n n n
llg Pr (max[w1 ? f](xj),w2 ¥ fz(xj)]32cn max[w] ? g](xj),w2 ¥ gz(x.)])

_ 1/n, " n n
= Tim Pr /7 ¥ f1(xj)3_2cn ? g1(xj), ? f1(x.)32c

n
-1
o> J 1 W2 ? gZ(Xj)) '

If for some a, b > 0, atb =1

P(a 1 F (%) 1 Fp (%) L) = 1
a log + Tog <L)=1,
g](X) QZ(X)

then

~SHILEES T (0075 (05 ()

0< inf e 5

~s,t>0

< inf e SLEFS(X)g1 25 (gt (X) = 0,
s>0

and the assertion of the Lemma  holds true.



Notice also that under the conditons of the Lemma

]/ﬂ n n n n
Pr (W ? f](xj)+w2 ? fz(xj)zﬁn[w] ¥ gl(xj)+w2 ? 9,(x;)1)
n n n n
~ Pr]/n(w

17 fy (x5 )+, I fa(x;)>c [y I gy (x;) 4w, I 9,(x;)1) .

(k)

Now Tet Py = {Pe R e'GCLhP(k) # P(k) for 8 # n, k=1,...,2 be g para-

0 n

metric families given on Z . Also let WpseeosW, be positive probabilities,
w]+...+w2 = 1 and assume all measures Pék) to be equivalent. The next re-
sult gives an asymptotic formula for the probability of incorrect decision
for minimax procedure &* based on an observation x = (X1""’Xn) with a

n
density W, I pk(x.,e), where pk(-,e) denotes the density of P(k).
kK <1 % 0

THEOREM 2.1. If all densities pk(-,e), k=1,...,2 are positive and

§* is minimax estimator, then

Tim max[ } kaék)(a*(g)#e)]]/n
N 8 Kk

Tim max[Pék)(s*(g)#e)J]/n

nso 6,k
i
S
_ . (k) T TSy
= max max inf Eq [pi(X,n)] I P, (X,8), (2.7)

1<i,k<t o#n S],...,szzp r=1

(k)

where Ee

stands for expected value with respect to Pék).

Proof. We prove Theorem 2.1 only in the case 2=2. The general case
is quite similar.
Let & be maximum likelihood estimator. We shall see that if § is not

uniquely defined, i.e. when ties occur, then the asymptotic behavior of this



9

estimator does not depend on the way in which these ties are broken. Thus

for k=1,2
p{) (B (x)70)
(k) n n n n
= Py’ (wy ? P](Xj,n)+W2 ? PZ(Xj,n)>W1 ? p](xj,e)+w2 ? pz(xj,e)
for some n # 6)
(K) (y, 7 o, 1P (x4 20) 0, 1 po
< Poo/(wy I py(Xssn)tw, T py(Xsan)>wy T pqe(X.s8)+w, T p,y(x.,6))
nir#o ] 1 1 1Y% 2 1 2\ 1 ] 1Y% 2 ] 2'\"j
(1) max PRV b (xsan ), T by (ks an)owy T po (s 58) 40, 1 po(x:50))
< (m- max Wy T pi(Xsun)tW, I py(Xssn)>Wy T py(X.s0)+wW, T pr(X.,0)).
nin# 0 1 1 1Y% 2 1 2'"] 1 1 1'% 2 1 2 "]
Also
P{) (5 (x)0)
P 1 by (ky an) 4, T By (X an )5ty 11 b1 (X130 )45 T po(x:50))
> max Wy T pq(Xsan)tW, T Po(X.on)>Wy T py(X.,0)+wW, T pr(Xx.,6)).
nin#e 1 1 1Y% 2 1 2\ 1 1 1Y% 2 1 2'\"j

Thus because of our Lemma

1imP{K) (5 (x)0)11/"

N0
= pk(e)

max  max inf E(k)p§+t(X,n)p?s(X,e)pét(x,e). (2.8)

ninfe  i=1,2 s,t>0 ©

Notice that conditions (2.1) and (2.2) are satisfied since

P{)(a Toglp, (Xan)/p; (,6)1#b TogDp, (X,n)/p,(X,6)150) > 0

if and only if

Pﬁi)(a ]og[pi(X,n)/p1(X,6)]+b 1og[p1(X,n)/P2(Xse)]>0) > 0.

The latter inequality must hold since for all a, b > 0



10
Egi)[a109[p1(X,n)/p](X,e)]+b Toglp;(x,n)/p,(X,8)I11 > 0.
It follows from (2.8) that

Tim[w
N>

P{ (B x)20)4u,p 2D (8(x)20)T1/™ = max(o,(8) .10, (0)).

1 26

Thus if 8* is a minimax procedure then

Tim sup max[w]Pé])(6*(5)#e)+w2Pé2)(6*(5)#6)]1/n 5_km?x2 max pk(e). (2.9)
9 =1,2 o

Assume now for concreteness sake that max p](e) > max p2(9) and
6 )

(1) s+t

max py(e) = max inf ELpITH(X,0)plS(X,E)p5 " (X0E)

9 i=1,2 s,t>0
In this case we define the prior distribution » to be concentrated on
{g,z}x(g) = a(zg) = 1/2 and Tet §p be the corresponding Bayes estimator.

Then for any procedure §

max[w]Pé])(6(5)#e)+w2Péz)(6(§)#e)]
6

> 270 [P (s0022)+0 () (5 () ) T [P L2) (6 () 26040 (B (6 ()2 10

> 270y 1 (s 00e)+p (1) (5 () 0) 1wy [P 12 (85 () 6040 (2) (5, ()00 10,
Using the Lemma again we see that
[p{) (sg000)71/"

= 1p{M (o5 (0)=0)1 "/

[P(k)(w E (X:,z)+w ; (x;,2)>w g (x:,8)+w ; (x «S))]”n
£ 1 1 p] jsC 2 1 p2 j’c ¥ 1 p] j? 2 1 p2 j?

> max inf Eék)p?+t(X,C)P;S(X,E)Pét(XaE).
i=1,2 s,t>0



11

Also
P o001/ > max in EXpSTEXLE)p7S (0020 (x)
i=1,2 s,t>0

and for any §

(2) (s (x)10)11/"

() (s ()0 )0

1im inf max[w]Pe

N> 0

max_ max(1inlP{K) (55 (026)7 /", 1imlp{K) (55 (x)20)1V™)
k=1,2 Now  © - Now  ©

| v

max(1infP{1) (s, (x)#6) 177, 1imlp () (s, (x)22)11/™)

n->°°E l"l—>°°C

max max pk(e).
k=1,2 6

This inequality combined with (2.8) proves the Theorem.

Corollary 2.1. Under the assumptions of Theorem 2.1 for k=1,...,%
S]+...+S 2: -S

o(P) ) < max max inf Eék)[pi(X,n)] Yo P, "(x,8). (2.10)
i n#e s],...,szgp r=1.

Now we assume that m=2 and the hypothesis testing problem is consider-
ed. Let ¢ * be the most powerful test of the simple hypothesis
n n n n

Wy ? p](xj)+w2 ? p2(xj) against the simple alternative Wy ? q](xj)+w2 ¥ qz(xj).

Theorem 2.2. Assume that ¢* has a fixed power g (independent of the

sample size n) and Tet u: denote its level. Then

P

[a;]]/" > max inf e (S¥EIKg 1'qﬁJ“t(x)p;S(x)pét(x), (2.11)
1<i,k<2 s,t>0
where
K = max(Kl,KZ) R
K. = min(E ' Tog — (X), E ' log — (X)), i=1,2, (2.12)

! po P
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and it is assumed that Ky > K, implies T > wy > 8, and K; < K, implies

1> Wy = ]-wz > R.

Proof. It is well known that the most powerful test ¢ * of our
hypotheses is given by formula

n n

with some constants ¢, > 0,0 <y, = 1. Thus

0, %,
Wi Te* (x)HWoE T9F (x) =

and

It follows that
121 ) W Q. (wy ? ap (x; )+w2 ? a5 (x5)>c, [wy ? Py (x)+w, ? pp(x;)1)
o n n n
ses Lo wiQy(wy g (xg) 4, m 9p(x5)2¢ [wy T py(x;)4, T py(x5)])
i=1,2 1 ] 1 1
As in the proof of the Lemma one has for i=1,2
n n n

Q; (2 max[w, ? q1(xj),w2 ? qz( .) 1>, max[w, ? Py (x -),wz ? pz(xj)])

n
Q; (Lw, ¥ ay {x;)4w, ? A, (x5)1>¢, [wy ¥ Py (x; )+, I P, {x;)1)

n n n
> Q; (max[w, I Ay (x5) 5w, ? ay(x;)1>2¢, max[w, 11 Py{x;) 5w, ? Pa{x5)1)
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so that

!

i=1,2

W [Q; ( H ay (x;)>2¢, ? Py(x;).1
n 1 n n n

+ 0, ( ? Ay (x;)>2¢ wyw, Xj)>2¢, ? pp(x;))]

n n n n
-1
J0.(2 . .),2 . .
<B< TZ],Z W.l [Q'l( li[ q'| (XJ )f_cn %I p](XJ) l'-|[q.| (XJ )chw] Wzli[pz(x\]))

n n n n
-1
21 Ay (X )2c wyw, I Py(x5),2 I ay(x;)>c I Py (x:))] .

+
O
—_
N
==

J

Let Yj 1og[q](xj)/p1(xj)] U. = Togl[gy(x )/PZ( )1, V

_ -] -
1ogla, (x5)/py (x4)1, W, 109[q2( 3)/Pa(x5)15 vy = 377 Togley/2], uy =
j—] 1o (wf]w ), V. =y.ti "1 J0g (Wqw 1) '=1 2,... . Since n”! g Y. con-

g 'I 2 3 j yj\] g 'I 2 DJ 3590 0 i ] J'

. Q.
verges in Q1=probab111ty to E 1Y],

n n
lim inf Q, ( % sznyn, ; szpu

N>

)

n 0,

Q. Q;
if y = Tim sup Yy = 1im sup U, > min(E Ty E U]),and

3
N N->o0 i

n n
11 . Y. . U. = ,
lim sup Q; ( ; P ; 52 nug) =1
if
o . o, ¢
= Tim inf y_ = 1im inf u_ < min(E Y1,E U]).

Since at least one of the probabilities in the right-hand side of

(2.13) does not tend to zero we conclude that

Q Q; Q; Q;
y < max [min(E ' Y],E U1), min(E V],E w])] = max(Ki,Ké) ,
i=1,2
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where

Q. qQ; Q q Q. 9, Q. q
' 109 —l-,E 1 ]og~—l ), min(E ' log —g-,E ' 1og —g-)),

K: = max(min(E
1 ( ( p'l p2 p'l p2

We prove that K% = Ki’ where Ki is as defined in (2.12). Let us show
for instance that

Q q Q q Q q Q q
min(E ' Tog =, E ' Tog — ) > min(E | log -2, E | Tog -2 ).  (2.14)
p'l Py © — p] Ps

O Py
If E  log — < 0, then
p'l -
Q q Q q
E 1 log 2 E 1 log 2
Pp — P2
and
Q q Q q
E ] log —l-< E 1 log al
Pp — Py
But
Q q Q q
E 1 log — 2 < E 1 log — Lk
Py ~ Py’

so that in this situation (2.14) is true.

Q p
The case E 1 log 5Z-> 0 can be treated analogously. Moreover
1
Q a, Q q Q q Q q
min(E 2 log — Z ,E 2 log _2_) > min(E 2 log 1 2 log 1 )
Py ° P2 © ~ Py’ P2

so that K% = Ki’ i=1,2.
It follows from (2.13) that

n
W Tim sup[Q. ( ] Y ;2nu, Z Sl )0, ( Z V>nu, Z W >nu)] < 8.
1

i=1, N-w



15

If u < K and, say, K] > K2, then

n n
Tim sup Q]( YY.>nu, YU, >nu) =1,
N T 9 T

which is impossible because of (2.13).

Therefore u < K and

limn™! Tog ¢ = limy. = Tim u. = Tim Vo= K.
N> n N> N> N>

Now we study the asymptotic behavior of the level u; of test ¢ *, 0b-
serve that
n n n n
WP (wy ? q](xj)+w2 ? qz(xj)>cn[w1 ? p](xj)+w2 ? pz(xj)])
n n n n
*
<a¥< ] wiPo(w ? ay (x; )+u, ? Ay (x4)>c, [y ? Py (x;) 4w, ? pp(x;)1)
Since all measures Pis Qi 1=1,2 are equivalent and for a, b > 0,
atb =1
Q; P Q; q;
aE ' log —- + bE ' log —- > K, ,
09 Py g P, > K
one deduces
Pi(a log 5;—+ b log BE-> Ki) > 0.
If for k#1i and all a, b >0, a+b =1,

Pi(a log 5;-+ b log BE-> Ki) > 0,

then we can use the Lemma to derive the following limiting relation

]/n n n n n
Pi (W] ? q1(xj)+w2 ? qz(Xj)iﬁn[W1 ? p](Xj)+W2 ? pZ(Xj)])

P.
> max inf e_(s+t)KE 1qi+t(X)P{S(X)P£t(X).
k=1,2 s,t>0



16
If, say, K] > K2 and for i=1,2, a+b =1

9 9
Pi(a log B?-+ b Tog BE-> K]) =0,

then for all sufficiently large n

n n n n
-1
P.(2 ? qz(xj)zpnw1w2 ? p1(xj),2¥q2(xj)zpn ? pz(xj
n _1n n
< P2 ? q](xj)zpnw1w2 ¥p1(xj),2¥q1(xj)zpn ¥ Po(x

Remark 2 shows that (2.11) holds in this case as well, and therefore

Theorem 2.2 is proven.

Corollary 2.2. If Ky > K

'K(Q],P]) . -(S+t)K1
e < max inf e E P
k=1,2 s,t>0

Indeed it follows from the proof of Theorem 2.2 that K] > K2 implies
Q P Q
E Zm* ~ 0, E 2 1

¢* > 0 and E "9* » w;] < 1. Thus ¢* is a test of hypothe-

sis Py versus Q, of asymptotic power at least g because of (1.3)

'K(Q]:P]) P]
e < 1im[E "¢*]

N0

1/n

But it also follows from the proof that

p -(s+t)K, P
[E ]q,*]1/n +  max inf e T ]q?+t(X)p{s(X)Pét(X) .
i=1,2 s,t>0

Q.
If Ky=Ky, then for i=1,2 Tlim inf E '¢* >.0, and

-(s+t)K, P, L P. -K(Q; ,P.)
max inf e 'E 1qz+t(x)p{s(x)p2t(x) = Tim(E 1(P*9/n > e L
k=1,2 s,t>0 N->oo
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3. NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF ADAPTIVE
PROCEDURES
Let Pk = {Pék), 6. €0}, k=1,...,2 be & families given over the
same space X and indexed by a finite parameter 6. An estimator s(x) bas-
ed on a random sample x = (x],...,xn) is said to be adaptive for these

families if for all k=1,....2

max[P{K) (6 (x)20)1/" > o (e, ). (3.1)
0

Here o(p ) is defined by formula (1.1) and (3.1) means that s(x) is

asymptotically minimax with respect to all families Py -

Theorem 3.1. If an adaptive estimator exists for families
Kak = {Pék), o €0} with pairwise equivalent distribtuions then
max o (@)
1<k<s
S &  -S
> max max inf Eék)[pi(X,n)] " P, Y(X,8), (3.2)
1<ifk<q o#n 51,...,5230 r=1

where pi(x,e) denotes the density of Péi). If for all k=1,...,2

i (k) Zsr 2 -SY‘
p(avk) > max  max inf Ee [pi(X,n)] 1 P, (X,0), (3.3)
irizk 6#n s],...,sgzp r=1

then an adaptive estimator exists.

Proof. Let WysenssW, be positive probabilities. Also let 8*(x) be
n
minimax estimator based on the density AT pk(xj,e). Then if & is an
1

adaptive estimator,

(k) (5% (x)z0) .

(k)(6(§)#e) > max Zkae

max max Pék)(a(g)#e) > max ZwPg
1<k<s 6 6 6
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Theorem 2.1 and formula (3.1) imply that

.max p(Pk)
1<k<g
. (k) ZSP % _SY‘
> max max inf Ey [Pi(X,n)] 1P, (X,0). (3.4)
1<i,k<2 6#n S],...,S >0 r=1
—_— R QI_
But
S, % -S
max inf B Gn)TTT 1 e "(xke)
8#n SyseeesS >0 r=1
2_
<max inf ESDpS0n)prS(X,e) = o (p ) (3.5)

6#n s>0
so that (3.4) is equivalent to (3.2).
If condition (3.3) is met then the estimator §*(x) is adaptive. In-
deed it follows from the proof of Theorem 2.1 that

s L =S

max(P{) (55(06)7 /" > max max it EMpmI T on b, Tixse).
6 1<i<¢  6#n S],...,szzp r=1
But because of (3.5) the latter relation implies that
Tim max[Pék)(s*(g)#e)]]/n <e(®Py) s
6
so that §* is adaptive.
Corollary 3.1. If an adaptive estimator exists then (3.4) is actual-

ly an equality (this follows from Corollary 2.1.).

Corollary 3.2. If g = 2 and for some 6 # n P](x,e) = pz(x,n), then
adaptive estimators do not exist.
Indeed in this case

inf £ pS T (n)p;S(60)p;E(a0) = inf SV (,0)p5E0,0) = 1,

5,t>0 t>0 °
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since Eg])p$(x,e)pét(x,e) is a convex function of t and its derivative

at zero is positive,

E$T) TogDpy (x,0)/p, (%001 > 0.

It follows from Theorem 2.1 (see (2.8)) that the maximum Tikelihood
estimator § or the Bayes estimator Sp corresponding to the prior concen-
trated at two parametric points {£,z} are asymptotically minimax for
kil W ; pk(xj,e). Therefore under condition (3.3) both estimators are
a&aptive.

Another example of an adaptive procedure under (3.3) is the overall
maximum 1ikelihood estimator §(x): 6(x) = n iff

n n
mix ? pk(xj’”) = mgx mix ? pk(xj,e) .
with ties broken in any (random) way.
~ Clearly
n

mgX[Péi)(E(g)#e)]]/n ~ ggﬁ[Péi)(mﬁx $ P (x;5m) > max ? pk(xj,e))]

1/n

1S _
>  max  max inf Eg [pk(X,n)] I P, (X,8)
1<k<2 6#n S],...,szzp r=1
= max p.(8) ,
9

so that & is adaptive.
Instead of Sg in practice one would prefer to use a more reasonable

prior distribution resulting, for instance, in a Bayes estimator 8, which

has asymptotically constant risk under each of the parametric families Py

k=1,...,2 , i.e.

1im[p{K) (s, (x)#6)1V/™ = max o, (0) . (3.6)
N->eo S



These prior probabilities can be found in the following way.
Let
-nu
A = exp{—nue}( ) e ﬂ)-] ;
n€eo

Then because of the Lemma

n n
[pék)(go(f)fe)]1/n ~ max [Pék)(zwk i Pk(Xj,n)kn>ZWk I Pk(ste)Xe)]1/n

n:in#o 1 1
~  max | max [P(k)( E log pi(xj’n) >n{u -u_), r=1 2)]1/n
l<i<a ninge © T P.(x4,8) no9
s (u.-u ) s
. rtoe nm (k) - r ‘ % —SY‘
> max max inf e E pk (X,n) @ pr (X,0).
1_<_'ii,Q, n:nfe S],...,SR’ZO 1

We show that one can find numbers u,, 6 €@ such that the Tatter quanti

e’
equals to max pk(e).
)

Let zen for 8 # n be reals such that

%S 7
r on LS 2 =S
(k)

“(Xn) T p, "(x:0) = max o.(e). (3.
1 i,0

max inf e o P;
i,k 51,...,5230

Clearly all z. are nonnegative and because of (3.6) one has for all o

on
ZSr(ue'un) (k) ZSp & =S,
max inf e Eg P (X,n) T p. ' (Xs0)
ik s], ,8 >0 1
2,_.
< max p,(6)
i,e
IS z
r“on S L -s
= max inf e Eék)p- r(X,n) Ip r(X,e)
i,k 5750055 20 L 1T

20

ty

7)
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Thus for all e, n

ue—un = zen
These formulae mean that
u, = min [u +z_, ] . (3.8)
o nin#e on

These simultaneous equations can be solved in the following way.
Put Ug = 0. We construct a solution of (3.8) in such way that

0 < Ug S Uy < -en 2 UL Then (3.8) reduces to a recursive formula

u, = minfu,+z.,] .
i ke<i k “ik

To make such representation possible we have to assume only that for
i=1,...,m

min z., > min z,, ,
i 1K ki K

which can be achieved by reparametrization of the elements of @ . Clearly
the resulting estimator 50(5) will be asymptotically minimax.

We summarize our results as follows.

Theorem 3.2. If condition (3.3) is satisfied then the following
estimators are adaptive:

(i) maximum Tikelihood estimator 3(5)

. 2 n % n

§(x) = n iff ] Wy T pk(xj,n) = max ) Wy T pk(xj’e)’

1 1 o 1 1

(ii) overall maximum 1likelihood estimator

. n n

§(x) = n iff max I pk(x.,n) = max max II pk(x.,e),
kT J 6 k 1 J
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(i1i) Bayes estimator 60(5) with asymptotically constant risk,

n n
60(5) =n iff ) W I pk(xj,n)xn = max ) Wy T pk(xj,e)Ae ,
k 1 5 k 1
-nug -nu_ -y
where rg = € (Ye ™', and constants Ug satisfy equations (3.8)
n
with coefficients z

an defined by (3.7).

Now let us consider hypothesis testing problems and adaptive tests.

Theorem 3. 3. If an adaptive test of hypothesis P] vVersus Q] and P2

versus Q2 exists, then

-K(Q7,P7)  -K(Q,,P,) - P. - -
max (e L P ) > max inf e (s*t)K 1q§+t(x)p]s(x)p2t(X),
itk s,t>0
(3.9)
where K = max(K],Kz) and K;, i=1,2 are given by (2.12).
If K] = K2 = K and for i=1,2
i P. i -K(Q; »P)
max  inf e (STE)Kg Tt O0p Rt <0 T, (3.10)
kik#i s,t>0

then an adaptive test exists.

Proof. Let ¢ be an adaptive test for hypotheses P] against Q1 and

P2 against Q2 of power 8. Then

Q] Q
W-lE (P+W2E ¢ =8 s

so that ¢ as a test of hypothesis w1P]+w2P2 against w]Q]+w2Q2 has power g

for any positive Wi oWy, Wy W, = 1. Therefore

- =K(Qq5P4)  -K(Q,,P,) P
max (e [ ,e 272 )= max(1im(E ]w )]/n,1im
N> N0

P
(E %¢ )1/
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P P

= 1im(w]E ]¢ +,E 2e )1/n
N
P P
> Tim(w,E ]q3*+w2E @* )]/n
N0
. -(s+t)K Pi st -s t
= max inf e E "qp "(X)pq (X)p5 - (X) .
ik s,t>0

(3.11)
Here ¢ * is the optimal test of hypothesis w]P]+w2P2 Versus w]Q]+w2Q2, and
numbers Wi, W, are assumed to satisfy the condition of Theorem 2.2.

Also for i=1,2

P
. -(s+ + -
inf e (SPIKg g8+ ()57 (x)p; B(x)
s,t>0
(s+t)K P. o4 _
< inf e Te Ta3*(0p7 5 (X005 H(X)
s,t>0
-sK P. -K(Q. ,P.)
< inf e e 1q?(X)pis(X) = e i (3.12)
s>0
Therefore (3.11) implies (3.9).
Now assumé that K1 = K2 = K. Let
n n (1) n n
1 [w, ? q](xj)+w2 ? qz(xj)]>cn [wy ? p1(xj)+w2 ? pz(xj)]
_ (i) T - oo
?i(x) =9y,
O - 1] - < - n -
where céi) and yéi), 0 5_y£i) < 1 are chosen in such a way that for i=1,2
0
E "9, (x) =8
It follows from the proof of Theorem 2.2 that 1im n-] log c(i) = K.

n
Define a new test ¢: ¢ = ? 1 if c(]) < c( ) and ¢ = ¢, otherwise.
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Then

E'e (x) > 8

and
Pi 1/n . o =(s¥t)K Pi s+t -s -t
TimfE "¢ (x)] = max inf e 7 /0 a (X)p] (X)p2 (x) .
N0 1<i,k<2: 5,t>0
Because of (3.12) the Tatter relation implies that

P. -K(Q, ,P )
Tim[E o ()_()]]/n < e LA

N> B

which proves the Theorem.

Corollary 3.2. If an adaptive test exists then (3.11) is actually

an equality.

4. EXAMPLES

In this Section we illustrate Theorem 3.1 by two examples assuming
for simplicity that @ = {0,1}.

1°.  One-parameter exponential families.

Let meausures Pék) be defined over an abstract space % and Tet their

densities with respect to some g-finite measure y be of the form

P(x:8) = [Cloy (017 expiay (6)v(x)3,

ak(e) # ui(e) for k#i. Here C(a) = f euv(x>dp(x) and o belongs to the
e

natural parameter space, which is, of course, an interval with end-points
a_» o,. MWe assume that the common support of all measures ng) has at
Teast two points. It is well known that in this case f(a) = log C(a) is

a strictly convex function,
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Now one has for k=1,...,%

GO AN Pl CRLHERIENCY
<s<]
= exp{oinf] [f(ak(1)s+ak(0)(1-s))-sf(uk(]))-(1—s)f(ak(0))]}
<8<
= H(ai(O),a1(1)). (4.1)

To check the conditions of Theorem 3.1 assume that 2=2. Then we have
to evaluate

1) s+t

inf E( P, (x,n)p{S(X,e)pét(X,e)

s,t>0 o

= exp{ 12f0 [f(ay(n)(s¥t)+as (6)(1-5)-ay(0)t)-(s+t)f(ay(n))
S,t>

- (1-5)F(ag (0))+tF(ap(6)) ]} (4.2)

and

: + - -
inf E{2)pS*E(,n)prS (X,0)p5 (X,0)
s,t>0 ®

= exp{_inf [F(eg (n) (+)%ay(0)(1-t)-ay (0)5)-(+1) ey (n))
s, t>l

- (1-t)f(ay(8))+sf(ag(0))]} (4.3)

for e # n .

Notice first of all that the vector of partial derivatives of the func-
tions in (4.2) and (4.3) does not vanish in the open quadrant
{(s,t),s>0,t>0} . (Actually only the subset of this region,where
a_<(S+t)a2(n)+(]-S)a](6)-ta2(6)<a+,has to be considered.) Indeed in the
case of the function in (4.2) this vector vanishes if and only if

(ap(n)=oq (8))F" (g (8)+s(ap(n)-aq (8) 1+t (anln)-ay(8))) = Flayln))-F(a;(8))

and

(ap(n)=05(8))F* (ag ()5 (ay(n)-aq (8) ¥t (ap(n)-0p(0))) = Flay(n))~Flay(s)) ,
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which implies that
[F(ety (n))-F(aq (8))1Lap(n)-0q (0)171 = [F(ap(n))Flay(8))ILap(n)-0y() ]!

(4.4)
Since [f(az(n)—f(a)][az(n)—a]_] as a function of o is strictly monotone,
(4.4) means that a](e) = az(e), which contradicts our assumption.

Therefore

12f0[f(a2(n)(s+t)+a](e)(]-s)—uz(e)t)-(s+t)f(d2(n))-(1-5)f(a](9))+tf(“2(e))]
S, t>!

= min{inf [£(ay(n)sta (0)(1-5))-sf(ay(n))-(1-s) (e, (6))

s>0

Nt [Flag (0)4+(ap(n)-a(0))6)-F g (0))-EF(ay(n)+£F (ay(0)) 13 .

We show now that

inf [f(ay(8)+(ay(n)-ay(0))t)-F(ag(8))-tf(ay(n))+tf(ay(e))]

> 02 Anf [f{ap(n)staq (6) (1-5))-sF(ay(n))- (1-5)F (s (0))]
s>

= ]Og H(a](e),az(n)) . (4'5)

If the equation
(a5 (n)=05(8))F" (aq (0)+({ay(n)-ay (8))t) = Flap(n))-Flay(e))
has a nonnegative solution t=t, then
Flaq (0)+(ap () -0 (8) ) ) F g ()=t Tl () )+ Flory (0))
= F(aq (8)+(ap(n)-0y(6) ) ty)-F(a, (0))
~tg(ap(n) =0 () )" (g (8)+{ap(n)-u(8))ty) > 0

which proves (4.5).

Observe now that since f' is.strictly increasing, az(n)>a2(e)-1mp11es

£ (a,) > [F(ay(n)-F(ay(8))Iay(n)-o,()17T ,
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and az(n) < uz(e) implies

£1(a_) < [F(ay(8))=F(ay(n)) ILap(e)-apy(n)I™

Thus (4.4) is always valid and condition (3.3) of Theorem 3.1 can be

written as

1'2}-?2 [H(a;(6),a;(n)] 311[1% H{a;(8),0,(n))

for 6 # n . The condition (3.2) takes the form

12??2 H(as(6),a;(n)) 3‘?;ﬁ H(a;(6),a5(n)) .

These results can be easily extended to the case of arbitrary finite

2. We formulate them as

Theorem 4.1. Let for k=1,....2%

Py (x:0) = [C(ay ()17 explay (8)v(x)}

be densities of one-parameter exponential family, ai(e) # ak(e) for i#k.
Assume that the common support of P> k=1,...,%2 contains more than one
point. If an adaptive estimator exists,then

max  max H(oy(6),a,(n)) > max  max H(a;(6),a)(n)), (4.6)
1<k<z 6#n 1<itk<e 6#n

where H(ai(a)5“k(n)) is defined in (4.1). If for k=1,...,%

gzg H(ay (8),0y (n)) z_iT?;k g;ﬁ H(a;(6),ay (n)), (4.7)

then an adaptive estimator exists.
Theorem 4.1 contains many interesting particular cases.

(i) Densities of the form

P (x,0) = cla(6)]®  expi-a(8)|x[®T1}, -w<x <=,
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or of the form

1

P (%:8) = CLa(6)]% exp{-a(e)x® ™'}, x>0.

(These families include normal, exponential and double exponential dis-
tributions with unknown scale parameter.) In this case C(a) = Ca 2,
f(a) = -a Tog 0, o > 0, a > 0. Also

_ . as a(1-s) -a _ o - 8> a
Haysap) = Inf oz o [opsta; (1-5)1°7 = [ o Tes(aTY ]

L]

= [ 1998 exp(1- 1998 )12 - n2(g)

where 8 = a,o] . It is easy to check that h(g™') = h(g) and that h(g) is
a unimodal function which attains maximum at B=1 and is increasing for
0<B<1.

Therefore inequalities (4.7) in this case mean that

1 < max max[ak(e)/uk(n),ak(n)/ak(e)]
6#n

< max  max max[a;(6)/ey(n)say(n)/as(e)] ,
izigk eo#n

in which situation an adaptive estimator exists.

Also because of (4.6) an adaptive estimator does not exist if

max  max max[a, (6)/a (n),a (n)/o (6)]
1 o . a{n)so (n)/oy

> max max max[ai(e)/uk(n),ak(n)/ai(6)].
1<ifk<t 6#n

The heuristic interpretation of this condition is that an adaptive estima-

tor cannot exist if all measures Pék) and P£1), i#k, o#n are "closer to

k) and P(k).

each other" than measures Pé N

(ii) Poisson distribution,

or(0) [a(e)7%

o1 , x=0,T1,...

p(x,58) =
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In this case a(8) = 1log A(8), C(a) = exp{e®}

a]s+a2(1-s) o
H(a],az) = log infle -se -(1-s)e

s>0

OLZ:I

o Q o
1

Togl(ag-0,)"" ((e '-e 2)(1-Tog((e '-& 2)/(aq-up)))age

-a1ea2)].

I}

Theorem 4.1 gives a necessary and a sufficient condition for the existence
of adaptive estimators in this situation.

(iii) Binomial distribution,

b (x:0) = (b, (0)T°[1-p, ()1,  x=0,1,....N ,

af(e) = Tlog p(e)[log(1-p(e))]'1. Although this example is of the type treat-

ed in Theorem 4.1 it is more convenient to evaluate the function

H(pk(O),pk(1)) directly:

H{p (0).p (1))
. |
=it L (T (0016, (003X g, (10115 g, (31 1K)
S>1 X=

inf{[p, (0)1°[p, (1)1'~5+[q, (0)1°[a, (N1 ~*}"= o(p )

s>0

n

k=1,...,2, qk(e) = 1-pk(e), o =0,1.
For a fixed k let

H (v) = Zg;[p;'s(1>Ys+qL's<1)(1-y)SJ

0 <y < 1. The function Hk(y) is unimodal with a maximum at y = pk(l).
The condition

Hp (002 (1) 2 max H(p;(0).p (1)

which is equivalent to (3.3), means that
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H (p (0)) > max H, (p;(0)) .

irifk
This condition, of course, signifies that pk(O) is "closer" to pk(l)
than pi(O), i#k, and if this holds for all k,an adaptive estimator exists.
If it exists, then
max H, (p,(0)) > max H, (p.(0)) .
kK Kk l<itkeg K1

2°. Location parameter families on a cyclic group.

Assume that %= @ = {0,1}, p,(x,6) = p,(x-0), k=1,...,2, where differ-
ence x-6 is understood modulo two. Thus pk(0)+pk(1) =1 and

o(p) ) = ing[p§<1)pL'S(0)+p§(o>p&'S(1)1 = 2p, (0)p, (1112 .

S> ,

Also if, say, 2=2, 6#n

. + - -
inf £ VDS 005 (6,000, (x,0)

s,t>0

it [0 (n)py ™5 (008 (6)#93™ (0o (e ()]

min{ iqu[p}_s(e)pg(n)+p}_s(n)PZ(9)] ,
s

inf_ 2Lp, (0)p; () 1175)2[p, ()0, (n)15/2)
S

where A is a subset of the positive halfline where

P}_S(G)Pg(n) > P}_s(n)pZ(e),and B is its complement.
If p](e) < p](n), then the set B contains zero and
inf. 2p, (6)p, () 115V 210, (0)p, (n)15/2 < 2[p, (0)p; ()12 = o(py) .
s € _

If py(e) > pyln) and py(n)py(6) = py(0)py(1) < py{0)py(1), then
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inf 2[p, (0)p; (m)175)72[p, (6)p,(n) 192 = 0.
s €B
If p1(e) > p](n) and p2(0)p2(1) > p](O)p](l),the set A contains interval
[0,1] and

inf [p™5(6)p5(n)*+py S (n)p3(0)] < inf 2Lp, (0)p (1) 11751/ 2[p, (0)p, (n)1%/2,

s €A B

Let for 0 < p < 1

H(p) = int [p, S (0)p+p,"5(1)(1-p)°1 .
<5<

Then Hk(p) is a unimodal function with a unique maximum at p = pk(O),

and it isincreasing in the interval (O,pP(O)). The inequality

. 1- 1-
inf Loy (0)py )4y (n)5(0)] < o ()

means that

H'| (pz(])) < H](p](])) .

Also if Pz(n) < pz(e)

inf S pSTE(K,n)p7% (6,005 (x,0)
s,t>0
= minginf [p}'s(e)pg(n)+p}‘s(n)pZ(e)] .
S

iq:A Z[P](9)p1(n)](]-S)/Z[pz(e)pz(n)]§/2} ]
S

The latter quantity is less than p(P]) if p](e) > p1(n) or if p](e) < p1(n)
and p,(0)p,(1) < py(0)py(1). When py(e) < py(n) and py(0)p,(1) > py(0)py (1),
this inequality means that

H(p,(n)) < Hy(py(1)).
Thus

p(P]) < max inf Eé])p2+t(x,n)p]s(X,e)pét(x,e) .
efn Sstzo
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if p,y(0)p,(1) > py(0)py(1) and py(1) > p;(0), py(0) > p,(1),
H(p,(1)) > H(py (1)), or py(0) > py(1), py(1) > py(0), Hy(py(1)) > Hy(py(1)).
Because of the mentioned properties of the function H inequalities
p1(1) > p1(0), p,(0) > p,(1) and |p,(0)-1/2] > |py(1)-1/2| (which is
tantamount to pz(O)pz(l) > p](O)p](1)) imply that H(p2(0)) > H(p](1)).
Also inequalities p](O) > p1(]), p2(1) > p2(0) and ]p2(1)—1/2|> Ip](])-1/2|
imply that H(p2(1)) > H](p](l)).
Therefore in'general an adaptive estimator exists if and only if
pk(l) > pk(O) k=T,...,% or pk(l) < pk(O), k=1,...,%. In these cases the
estimator which takes the value corresponding to the minimal (maximal) ob-

erved frequency is adaptive.
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