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Abstréct. This paper deals with finding optimal designs for linear

: modéjs where the regression function is of the form 3'?(?) + btas.
?(?) is assumed to be known but Tittle is known about the bias other
 _tHan that it is bounded in absolute value for all Q_by some constant -
' c and is such that the linear model is well defined. It is assumed
that § will be estimated by the usual least squares estimates. Op-

2

“timal designs for estimating 6 when ?(Y) = (1, X')' are found for
fix) = (1, x, x e X)' the

a number of optimality criteria. When
analog of D-optimal designs for estimating_g are found. In all cases
consfdered it is shown that the "usual" optimal designs are optimal
for the model with bias considered here. This indicates thét the
usual optimal designs are "robust" when the regression function is

not known precisely.
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1; Introduction

In this paper we shall be considering experimental designs for
regression models of the form |
() - Ey(X) = 8y + B'% + w(¥)
where X €X = some subset of k-dimensional Euclidean space, BOgis a real
ﬁumber; 8 is some vector in k-dimensional Euclidean space, andefiG.
G is a set of rea1—va1ued functions on X having the properties
(1) |w(§)| < ¢ for a fixed constant c, for all X €X
and all y €G.
~(i1) For any finite set of points zi,...,Qh in X and
real numbers ays...,a, such that |ai| < ¢ for all
i, there is a y €G such that w(;i) = a, for all 1.
(1i1) By and g are well-defined in (1.1).
An example of such a G is given in section 2.

. . N . -> >
For any finite set of points X ..,xn we assume the observed

10
va]Ués of y at these points, namely y(?l),...,y(§n) are uncorrelated
random variables all having variance 02. BO and B are unknown constants
which will be estimated by the "usual"least squares estimates, i.e. the
least Squares estimates one would get assuming v = 0. Our objective is
to find an experimental design which will yield the most “accuréte”

(in some sense) estimates of By and 8 assuming model (1.1) holds and

we have no know]edge of what "bias" ¢ €G is present. More precisely,

we seek designs which will minimize the maximum over al] Y €6 of some

function of

(1.2) E(g-g)(e - 8)



Wheré § = (30, 3')' and g is the least squares estimate of §. In Sections
2, 3, and 4 of this paper minimizing designs are foundbin various settings.
In all cases considéred we find that the best designs are the designs one
- 'would use if y was identically 0 in (1.1). In Section 5 some implications
of the results of this paper are discussed and brief reviews of a few other

papefs dealing with models like (1.1) are given.

2. ¢p- optimality of the usual designs for linear regression in a robust

.f setting.
Let Rk denote k dimensional Euclidean space and let T be the

k

group of all coordinate permutations and reflections in R". Let X be the

‘k-fold Cartesian product of the closed interval [-1, +1]. Notice X is
invariant under r.

Suppose we observe n values YioeeesYy of a real-valued random variable
at points X(1),...,X(n) in X respectively. The value of ¥; is believed

to depend on x(i) through the probability model

(2.1) y1=so+§'2(i>+w(i’(i))+ei, i=T1,...,n.

The e; are uncorrelated random variables with mean 0 and variance 02.
Also BOGER and Eé&Rk are unknown constants we wish to estimate. We further
assume that ¢ €G where G is any set of real valued functions on X having
the broperties

| (i) if Yy €G then |w(;)l < ¢ for some_constant c > 0 for

X € X.



(i1) For any finite collection of points ;1,...,2}16X and any
set of real numbers ays...,a such that Iai}'g_c for all
i, there is a ¢ €6 such that w(?i) = ai‘for each i.

(ii1) Bg and 8 are well defined in (2.1).

-An example of such a G is the set of all real va]ued‘functions ¥ on
X_satiﬁfying lp(X)] 5_¢ for all X €X and f¢(;)d§ = fx1¢(§)d§ = ...
o= kaw(f)df = 0 where x; is the i-th coordinate of X, dx is lebesque
measure on X, and all integrals are over X. Notice for this G the term
_Bb + §f§(f) in (2.1) represents the best linear approximation to y (con-
sidered‘as a function of X) in the Lz—norm with respect to Tebesgue
measure.

Qpr>objective; roughly speaking, will be to decide how best fo select
?(1),..;,§(n) $O as to get the most accurate (in some sense) least squares
estimates Qf'so and § in the absence of any information about y. This
objectiye will be made more precise as we proceed.

To make our objective mofe precise.1et us write the model (2.1) as

(2.2) | Ey(X) = 8y + B'X + y(X)

exhibiting the dependence of y on X. In this paper we shall take an
experimental design to be any probability measure on X. If £ is an
experimental design, the information matrix of ¢, denoted M(£), is defined

in this setting to be

M(g) = [ (1, X')'(1, X" )de(X)
X

Notice M(£) is a nonnegative definite (k+1)x(k+1) matrix. From here on
we shall restrict attention to designs ¢ having finite support and such

that M(g) is nonsingular.



For any v €G define
(2.3) g = [ uRde(0), vy = [ xu(X)de(X), = 1,000k

Al integrals above and from here on are to be assumed to be over X
unless otherwise specified.
Also define
(2.4) | - V= (bg> pseeenpy )’ 3.= (8g> g
| Fof any 1nteger n > 0.a probability measure ¢ having support on points
| ?(1),;..,§(n0 €X (m < n) and putting mass r(i)/n on X(i) (r(i) is an integer -
<n fbr’i = 1,...,m) corresponds to a design where one takes a total of n
observaiions, r(i) of them at the point X(i) for i = 1,...,m. Such a design
~is called an exact design and is the only type of design which one can
impiemént in practice.
Suppose ¢ is an exact design taking n observations, where n > 0 is an
integer? and M(g) is nonsingular. If g is the Teast squares estimate of
§ and we let p = 02/n one can show
- - >
BB - )6 -8 = o () + ()T (e).
We define
(2.5) (e, ¥) = o™ (6) + W (e)F M ().
The first term on the right handaside of (2.5) is the covariance matrix of

>

é._ The second term on the right hand side of (2.5) represents the bias
present in our estimate g of 8 due to the unknown function ¢ in our mode1
(2.2). Our objective can‘now be stated as trying to find a design £ which
minimizes (in some sense) the maximum over all possible y of E(g—g)(g—g)‘ =
D(£,¥). In seeking this minimizing design we shall not just restrict at-
tention to exact designs taking n observations but rather allow £ to be

v any design having n or fewer points in its support.



To see in what sense & will minimize the maximum over v of D(%,v),
we define for any (k+1)x(k+1) positive definite matrix D and any
O>< p < o,

(2'.6.). | e (D) - ((1

o~

W)+ P

O. .

where the Ai are the eigenvalues of D. We seek a £ which minimizes

sup ¢p(D(g,w)) for a given p > 1, where the sup is over all-p€G. Notice
“when p = 1 this minimizing £ corresponds to what is sometimes called an
A-optimal design.

- To find this minimizing &, define for any design g

y _ ) > . .

whére xO = 1.  Notice mij(g) is the (i+1) - st, (j+1) - st entry of M(g).
- We also define = (m) to be the set of all designs £ having finite sup-
port (but not necessarily n or fewer points in the support) and satisfying
moo(g) =1, mOi(g) = mio(g) =0 foi all 1 <1 <k, mij(g) =0 for all
1T'<i#3j <k, and mii(g) =m for all § = 1,...,k.

Finally we define
(2.8) e w) = T ()
Notice A(g,y) is the only non-zero eigenvalue of the rank 1 matrix
M_](£)$$'M—](g) and the eigenvector having eigenvalue A(g,v) is
M ()T,

The following Temmas will enable us to find the minimizing'g.

ZM-](E) - M—](g)$$'M'1(g) is non-negative

LEMMA 2.1. If g€s(m) then ¢
definte and

(2.9) Me, v) < (f vE(x)de)/m < cZ/m



pf. Since £€ = (m) an orthonormal set of functions in Lz(g) (the
L,-space with respect to the measure ¢ on X) is {1, x1/ﬁﬁ,.;.,xk/ﬁﬁ}.
The projection of any v €G onto the subspace of LZ(E) spanned by this

set is

(2.10)  Proj y(X)

) |
[ w(X)dx + LU ¥ (X) (x;/ /) dX)x, /vin
i _

k
vy 1Z]w1x1//ﬁ

since £.€ £ (m) we have by (2.8) that A(g,y) = ws /m2
i= 1
this and the fact that Proj ¢ has Tength no greater than ¢ in the norm

Using

induced by Lz(g) (i.e. the length of a function v is fw x)dX) we have

(2.11) s [P dr

> [ (Proj w(x )2d§
k

wg L /m
i=1

tr 307 (£)%

m(gsw) + (1 - m)y

mr(g,9)

|v

since m < 1. This yields (2.9).

>

Next since tr $'M'](g)w tr $¢'M ](g) 5_c2 it follows that the only

non-zero eigenvalue of @w M ](E) is §_c2. From this it follows that

CZM"](g) - M'](g)$$'M'](g) is non-negative definite.

I

LEMMA 2.2. Suppose £¢€ = (1). Let m€G be such that = = ¢ on supp .

Then for 1 < p < » |



(2.12) | sup o (D(e, v)) =

D(g, =
Sup °p( (g, 7))

[$3

pf. ‘For any w€6 and £€ = (1),

D(£,0) =pdiag(l, 1,..., 1)+ M

()3 M (e)

where,diag (a],aé,...,ak+1) is a (k+1)x(k+1) diagonal matfix having a, as the
i-th entry on the diagona]. We can write the eigenvalues of this D(g,y) in
the fbrm p + ¢gs P + oy s o + Gp sev.y P F o for some _QO’G]""’ak'
By Lemma 2.1 we know CZM-](E) - M_](£)$$'M-](g) is non-negative definite hence
the gigenva]ues of D(&,y) must satisfy p < p + ay <P + c2 » P < p ¥ oy

< 'p + c2 s e p < p t 4 < 0 + c2 . This means the o must satisfy

(2]3) Oi-aoicz, Oia]icz,...,OiakiCZ.

~Lemma 2.1 also tell us that tr M_](g)$$'M-](g) = a(g,p) §_c2 hence we

must have

tr D(g,v)

It
o
+
Q
=
n

= tropdiag(l, 1 ,...,1) + tr M ()0 M (&)

o + kp + C2

1A

so that the o must further satisfy

k
(2.14) Jog < o
i=0 '
Now
& 1/p
(2.15) 2 (D(£,9)) = [[(o + ag)P + Lo +ay ) Ptk IV
1=

Using convexity or Lagrange multipliers one can show for p>1 that values of

k
P, z

Ggs Opsnensay which maximize (p + o
i=1

O) [o + ai]p subject to



(2.13) and (2.14) are aj = <, 0 = ay =...= o = 0. Thus any #*€G which
2

has‘the property that the eigenvalues of D(g,y) are p + ¢, ...,

will satisfy for 1 <p<w, £€ 5 (1)
. *
(2.16) sup ¢ (D(g, v)) = o (D(g , v).

' veq P p v

It is easy to check that the = given in the lemma has this property.

LEMMA 2.3. Suppose £*¥€ = (1), then
for any design ¢ having finite support and for which M(&) is nonsingular

S (2.7) sup @D(D(a, v)) < sup o (D(g*, ¢)), 1 < p < =,
. VEG veg P

pff For any design ¢ having finite support let =(£) be a fiXed element
- of G having the property that =(£) (X) = ¢ if X €sup £. Also for any
element y of the finite group I' of coordinate reflections and permutations
in Rkv1et v¢ be the design having the property

(2.18) ve(X) = £(yX), X€X

Now for p > 1 tr MP is convex in M. Also M—] is convex in nonsingular

| N .
M. Notice M (g)w(£)=(c,0,...,0)" since T(g) is the first row of cM(g).
Since sup D(&,y) = sup D(yg,y) for all yeT we have

Y EG Y €G

(2.19) sup tr[D(g, ¢]P = (1/cardr) ]} sup tr[D(ve, )P
' Y €6 YET Y €6

(1/cardr) ¥ tr[D{ye,n(v£)]P
vET

| v

(1/cardr) 7§ tr[pM_](yg) + diag(cz,o,...,o)]p

YyET

tr[(1/cardr) § oM '(ve) + diag(c,0,...,0)]°
YEr

| v

tr[pM 1 ((1/cardr) T ve) + diag(c?,0,...,0)]°

YET

| v

where convexity is used in the last two inequalities.



Let n = (1/cardr) } v£. Then n is a design having finite support,
YET
M(n) is non-singular, and n€ = (b) for some b < 1. Thus

(2.20)  sup tr[D(g, v)IP z_tr[oM"](n) + diag(c?,0,...,0)7°
, VEG |

tr[ M1 (e%) + diag(c2,0,...,0)]°

| v

tr[D(e*, w(g*))1P

sup tr DP(g*, v)
w€G

where the second inequality comes from the fact b <1 and the last equality
folTows from Lemma 2.2 and the fact that x]/p is increasing in x > 0 for

- fixed p > 1. The lemma now follows from (2.20).

THEOREM 2.1. Consider the set = (1) .
Suppose n is an integer > 0 such that there exists an

5»"exact'design gx€ = (1) taking n observations (thus D(g*,y) = E(6-8)(6-8)").

Then for all p > 1

inf sup o _(D(&, w)) = sup & _(D(g*, v))
e ye6 P vee P

where the inf is over all designs & for which M(¢) is nonsingular.

pf: This follows from Lemma 2.2.
It‘js we1] known that for the model
» g e

Where‘everyﬁhing is as in equation (2.1), a design £ on X which wiT]
mﬁnimize @b(M'](g)) is any £€ = (m) where m is as large as possible. In
pra@ticé,‘therefore, Theorem 2.1 says that one should go ahead and use |
’_the design which is optimum for model (2.21) (a model without a bias term)

even if you think your model is really (2.1). Loosely speaking this means
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that if you have a model like (2.1) but have no idea as to the form of
fhe bias y present the best design to use is the one you would choose if
no.bias v whatsoever was present.

It should be remarked that a similar result can be obtained for the -
setting where X is the simplex in Rk and model (2.1) holds except that
By = 0.

3. D—optima]ityvof the usual designs for linear regression in a
‘robust setting

Invthis section all notation is the same as in Section 2. Our
mode1 15 6nce again (2.1) except now we let X be any subset of the
k-fold Cartesian product of the closed interval [-1, +1]. In this
section our objective is to find a design & which minimizes

sup det D(g, ).
VEG

To carry out this minimization let us introduce some notation.
Suppose £ is a design having support on the n points Y(]),...,Y(n)éfx.
Let S(é) be the (k+1) x n matrix whose i-th column is the vector
(1, Z(i)')'; Let W(g) be the n x n diagonal matrix diag(£(x(1)), £(x(2)),
.(.,g(?(n))).‘ Notice we can write
(3.7) M(g) = S(g)w(g)s' (&)

b= SEME) (W(X(1)),..,u(X(n))".

We get the following result

~ THEOREM 3.1. Suppose there exists a design £* having k+1 points in its

support.and such that
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(1) M(g*) is nonsingular.
(i) det M '(e*) = inf det M (¢), where the inf
is over all designs &£ on X.

VThenbg* minimizes sup det D(z,p) among all designs £ on X

Qf,- If £¢* is as in the theorem, S(g*) and W(g*) are (k+1)x(k+1) matrices
and:it is easy to verify £*(x) = 1/(k+1), if X is in the support of &£*, in
‘ofder’for £* to minimize detkM-](g) or equiva]ently maximize det M(g). One
than Has for any v €G

det[p M'](g*) + M'1(£*)$$'M'](a*)]

(3.2) det D(&*,u)

2

det M %(g*) detlp M(g*) + 39']

det M"Z(g*) - det M(g*) - p

det M_](E*) <P

1}

det M1 (e*) - oX(p + (W(X(1)), .. u(X(k+1)))H(EX)S" (%) -

ST (e W (e%)S T (e%)S (XM (E*) (p(R(1)) 5. . (R (k1)) ")

. k k+1
det M '(g*) - o (p + P
1:

]wz(f(i))a*(f(i)))

< det M—](g*) ok(o + cz)

The last inequality will be equality if and only if ¢ = c on supp g*. If we

let 2 be any element of G such that Yo = € on supp £* then

(3.3) inf sup det D(&,w) > inf det D(g,wo)
& YEG g

= inf det MlE) - o
3

= det M (%) oX(p + ¢
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sup det D(&*,y)
vEQ

> inf sup det D(&,y).
E YEG

‘The second line in (3.3) is proved in a manner analogous to. (3.2). The
third 1ine follows from the choice of g*.  The fourth 1ine follows from
(3.2). (3.3) yields

sup det D(eg*,y) = inf sup det D(&,y)
veG £ YER

where the inf is over a]]idesigns £ oh X. The theorem is proved.

‘Sihce M(g) is the same for any design.g which minimizes det M—](E)
(such a design is called D-optimal), it follows that if there is a D-optimal
l'design on k+l points of X for the model (2.21) (the usual linear model

without bias) any D-optimal design for this model will minimize sup det D(g,y)
_ PEG

among a11 designs & on X for model (2.1). Once again we see that if essentially
nothing is assumed about the bias in (2.1) the optimal design is the same

as for the model where no bias is present, i.e. y = 0.

4. D-optimality of the usual designs for polynomial regression in a
robust setting. '

" Consider the probability model

r .
B X + w(xi) +e., i=1,...,n

k
(4.1) Yy =8 * Z 1

‘ v r=1
where x € [-1, +1], By B]""’Bk €R, the e, are uncorrelated random variables

2, and ¥ €G where G is any set of real valued

with mean 0 and variance o
functions on [-1, +1] having the properties
(i) if y€G then |y(x)] < ¢ for some constant ¢ > 0 and all

x€[-1, +1].



~(i1) For any finite collection of points SERERFL L
[-1, +1] and any set of real numbers Apse ey such
that lail < ¢ for all i, there is a y €6 such that

w(xi) = a; for each i.

(ii1) Bg» Bys---5Bp_1»> and 8, are all well defined in (4.1).

An example of such a G is the set of all real valued functions ¥ on
[ xp(x)dx

=...=fuka(x)dx = 0 where dx is lebesque measure on [-1, +1] and all

[-1, +1] satisfying |w(x)| < ¢ for all x€[-1, +1] and [ w(x)dx
intergrals are over [-1, +1]. Notice for this G the term By * B1x+...+8kxk
s the best approximation to y by a po]ynomié] of degree k in the L2 norm
with respect to lebesque meaéure.
This mode] is just a special case of that considered in Section 3 with
2 k).

> . y
X= (x, x“,...,x")" and

k

2 Y eRS; -1 <x <+ 0.

X = {(x, x°,...,x
If we-apply the results of Section 3 in this special case we get the fol-

lTowing.

THEOREM 4.1. Suppose there exists a design &£* having k+1 points in its
support and such that
(i) M(g*) is nonsingular.
(1) det M (£%) = inf det M1 (£), where the inf is over all
designs £ on [-1, +1].

Then £* minimizes sup det D(£,y) among all designs ¢ on [-1, +1].

pf. This is an application of Theorem 3.1.
As a result of this theorem one finds that the D-optimal designs of

Hoel (1958) and Guest (1958) for the polynomial regression model
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. k

— r . 3 =
(4.2) Y; = 8p* r§18rxi e, 1= 0,000

where the notation here is the same as in equation (4.1), are also the

designs which minimize sup D(£,¥) for the model (4.2). This is because
: VvEG

the designs of Hoel and Guest have support on exactly k+1 points of [-1, +1]
- and hence satisfy the conditions of Theorem 4.1. Once again we see that if
essentially nothing is known about the bias term ¢ in (4.2) one might as

well behave as though no bias was present in the model.

5. Discussion

The results of this paper, on the sﬁrface, are probably not very in-
teresting or satisfying from a practical standpoint. In the case of
simple Tinear regression on an interval it does not seem reasonable to
take on1y observations on the endpoints of the interval if one is not
sure that the underlying model is a straight iine. Ones intuition says
one ought to include some observations from the interior of the interval.
The results of this paper, though, show that there is no good way to choose
- these .interior points for observation if Tittle is known about the departure
from linearity of the regression function. One needs to know something
about the departure from linearity, which is called the bias in this paper,
in order to choose interior points for observation. For example one needs
to know the bias is convex, concave, or quadratic. In the absence of such
1nformation the “best“ one can do is to behave as though no bias is present.
Whatrto do when something is known about the form of the bias has been dis-
cussed in some special cases by other authors.

There are several papers in the literature dealing with models 1ike

(1.7) and it may be instructive to comment on a few of them in closing.
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Box and Draper (1959) appear to have been the first to point out the
dangers of a large bias term in estimation in any strict formulation of

a regression model that ignores the possibility that the chosen model may
only be an approximation to the true model. A careful description of some
problems in this context is given by Kiefer (1973). Huber (1975) considered
a simple linear regression model like (1.1) with X = [-%, +3] and v to be
square integrable with respect to lebesgue measure on X. Since ¢ is un-
bounded on any finite set of points in X the bias term can be arbitrarily
large and hence no design on a finite set of points has finite risk for

fhe risk function considered by Huber. The optimal design is found to

have continuous support and hence not implementable in practice. Marcus
and Sacks (1976) formulated a simple linear regression model Tike (1.1)
with X = [-1, +1], bounded by a known function #(x), ¢(0) = 0, and only
Tinear estimates (not necessarily least squares estimates) of the parameters
are considered. This prior knowledge about ¢, i.e. that |y(x)]| < ¢(x) and
$(0) = 0, yields interesting results. Optimal designs depend to some ex-
tent on the form of ¢(x). In addition the fact that ¢(0) = 0 means no bias
is present at x = 0 and hence it turns out for many ¢ that x = 0 is in the
support 6f the optimal,design. Pesotchinsky (1978) has considered.multi-
variate formulations of the Marcus and Sacks model. Notz (1979) and Li

and Notz (1980) have considered a model like (1.1) except the estimates

of 6 are only required to be linear estimates but not necessarily the

Teast squares estimates. Only the mean square error between the estimates
and the true values of the unknown parameters is considered. Wu (1977)
‘considers a robust formulation in the spirit of (1.1) for some classical

experimental design situations. He comes to conclusions similar to those



of Sections 2, 3, and 4 in this paper.

In summary, the results of this paper seem to indicate that in con-.
sidering models of the form (1.1) with unknown bias one needs to have
prior knowledge of or assumptions about the form of the bias otherwise
there is no way of knowing where to take observations other than at points

which are optimum for the model without bias.
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