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SUMMARY
Let TyseessT) be k given populations.

Assume that we wish te find a population better than a
given control, if there is any. From all populations we may draw inde-
pendent samples with distributions which are (at least partly) determin-
ed by real parameters Bys-2.50, 5 Say. A population Ty is viewed to be
better than the control if 0; > 84> i=1,...,k, where 9 €IR is a fixed
given constant. The goal is to guarantee at least a probability P* of
making a correct decision if 0; 2 64> i=1,...,k, and to maximize the prob-
ability of finding a population better than 0> otherwise.

Two-stage procedures of the following type will be studied: At
Stage 1, based on samples x],...,xk, all populations are screened out
which appear to be no better than 0, If none (exactly one) is left the
procedure stops and decides that none (this one) is better than 85 If
more than one, ms with j €s,survives then one proceeds to Stage 2, Here
additional samples Y, i€s, are drawn and final decision is made based
on Y. or (xi,xi), i€s.

A natural class of two-stage procedures is proposed which can be
completely described and studied in terms of Neyman-Pearson testing fhe-
ory, where the unsymmetry of tests, however, can be overcome to a consid-
erable extent. As a typical result it is shown that optimality of tests
carries over to optimality of two-stage procedures. Finally, under nor-
mality, comparisons are made in case of k=2 with certain Bayesian pro-

cedures.



1. Introduction

If k populations Tyseesm are given and we wish to decide oh the
basis of a properly chosen sampling scheme which one of these popula-
tions is the best one (e.g. has the largest mean), various different ap-
proaches and methods have been studied up to now. A complete overview
is provided by Gupta and Panchapakesan (1979). Among those, two-stage
procedures with screenihg in the first stage seem to be quite appropri-
ate, since they are more economical as one-stage procedures but still
technically not as complicated as sequential ones. Nevertheless, opti-
mality results here are missing up to now and obviously are hard to find.
Even the implementation of a simple procedure {as that one which uses.
Gupta's (1965) maximum means procedure in the first stage and the nat-
ural final decision in the second stage) in an indifference zone approach
under the assumption of normality with a common known variance causes
considerable difficulties. For details and references see Tamhane and
Bechhofer (1979), Gupta and Miescke (1979) and Miescke and Sehr (1980).

The situation becomes somewhat fairer if we wish to find a popula-
tion better than a control n_, whether it is known or unknown. This be-

0]

cause pairwise comparisons are to be made now between s and L instead

of m and T i#j, i, j€{l,...,k}. Let us admit here additionally the
choice of a final decision "none of the populations is better than the
control". Moreover, let us adopt the following basic requirement and

goal:

P*-Condition: Let P*€(0,1) be a predetermined constant. A procedure

is said to meet the P*-condition if its probability of making the
final decision: "none of the populations is better than the control"

is at least P* whenever this decision is correct.



Goal: Among all procédures (in a given class) which meet the P*-condition
find that procedure which maximizes the probability of deciding final-
ly in favor of a population better than the control if there is any.
The purpose of this paper is to show that a natural class of two-stage

procedures, being widely used in practice, can be described and studied

within the framework of Neyman-Pearson testing theory, where the unsymme-
try of tests can be overcome to a considerable extent. Emphasis hereby

is laid on the basic structure and on comparisons of such procedures rather

than on establishing specified ones.

In Section 2 we introduce a natural class #' of two-stage procedures

and derive a formula for their probabilities of correct decisions. As a

typical consequence it will be demonstrated in Section 3 that two-stage

procedures based on good unbiased one-sample tests for Hj: “population
s is better than no" versus Ki: “population s is inferior with respect
to no", which are simultaneously good tests for the dual problem (where

Hi and Ki are interchanged), perform well. Three open questions conclude
this section. Finally, in Section 4 we study the normal case and make
some comparisons with certain Bayesian procedures in the case of k=2

populations.

2. _Basic results
Suppose that for every Mis i=1,...,k, we have a family

{fi,e. } 916 o c R of densities with respect to the Lebesgue measure

or any counting measure on R which have a common support Q< R and may
be known or only partly known. The assumption concerning the supports
is made for convenience to make ideas clearer and can be weakened in cer-

tain circumstances. Let the fixed known control be denoted by 8,5 SAY>



and all populations s be called better than the control if 6, > 8, and

inferior to it if 8; < 8 Let Zi = (X, ..X;. ) and Y. = (Y Yo ),

i1’ in; - il1?°”

o’ imi
i=1,...,k, be samples from s available at Stage 1 and Stage 2, respective-
ly, where g],y],...,gk,yk are mutually independent, and let X= (51,...,§k)
and Y = (Y5..0,Y, ).

Before we are going to define a natural class of two-stage procedures
in a concise way, let us briefly describe how these procedures typically
are applied in practice. For every testing problem Kiz 6; < 6, versus

Hy: ©; > 6, the experimenter chooses a test based on X; and for H, ver-
sus K. another one based on Y, or (Xi,xi), i=1,...,k, takes two levels

0y 205 € (0,1) (which usually are small) and proceeds as follows:

At Stage 1 he discards all populations which are not significant at
level oy under the first set of tests. If none (exactly one) is left, he
decides that none (this one) is better than the control. Only if more
than one population survives, he proceeds to Stage 2.

At Stage 2 the experimenter draws additional samples Yi from those
"ils which were selected at Stage 1 and exchanges hypotheses and alterna-
tives with respect to these populations. If all these populations now
turn out to be significant at level e, under the second set of tests
(which is rather unlikely to happen) he decides that none of the popula-
tions is better than the control. Otherwise, he makes a final decision
in favor of that population among the selected ones which has the largest
p-value under the associated second test.

If these tests are upper level o, (respectively lower level az) tests,
which for simplicity are non-randomized for a moment to fix ideas, based’

on real valued statistics Ui and Vi’ i=1,...,k, then the procedure



described above can be equivalently described as follows: At Stage 1 all

“1Is are selected with U.

; > ¢; (where c; is the aq-fractile of U; under

0; = eo), and final decision is made in terms of the Targest Vj among the
selected wj's, provided Vj i.dj (where di is the az-quantile of Vj under

ej = eo). The truncated version of such procedures (i.e. which perform
Stage 1 only) have been studied by several authors. See, for example,
Gupta and Sobel (1958) and Lehmann (1961). Also some work has been done

in sequential setups. For references see Gupta and Panchapakesan -(1979),
Chapter 20. But, apparently, no results concerning two-stage procedures

of the type described above have appeared in Tliterature until now. This
gives us the motivation for the following considerations.

To begin with, let us state without a formal proof that by similar
arguments as are used in Miescke (1979a) it can be shown that every pro-
cedure of the type described just now - where Ui’ ¢, and Vi’ di more gen-
erally may take values in measurable spaces xﬁ_ and yi , and where Ui and
Vi are stochastically non-decreasing in 6 with respect to measurable total
orderings in 2:1 and,yi , 1=1,...,k - is a member of the class & to be de-
fined below.

To avoid confusions and to arrive at a consistent representation of
this class let us from now on use only tests for Hi versus Ki’ i=1,...,k,
which take value 1 as soon as one observation falls outside support Q.
(This modifies procedures only on nu]]-sets.) Finally, several definitions
given in Miescke (1979a) will be relevant in the sequel but for brevity
are not repeated here. Especially, tests may be randomized ones taking

values in [0,1]. This typically occurs in discrete cases or in continuous

cases when nonparametric (rank) tests are under concern. Thus significance



statements as well as p-values are understood to be based on additional
randomization schemes as are used in Miescke (1979a). To be more specific,

Tet A = (A .,Ak) be that one for the first stage and B = (B]""’Bk)

'l,--
that one for the second stage. Note that X, Y, A and B are assumed to be

independent.

- The class & of two-stage procedures:

For i=1,....k let
(1)

unbiased test for H; versus K. based on X,, which is standardiz-

= {(Pi,a}(xe[o,l] be a right-continuous and monotone (in «)
ed at 8o Assume that within Q Py = 0 and ¢y = 1. Let
(E = ((P'I ""’cPk)'
(2) Analogously, let by = {wi,a}(xE[O,]] be such a test for H, ver-
sus K; based on (xi,xi). Let ¢ = (w],...,wk).
For 0 < aq <TlandO < ay < 1 let (?,1-a],y,a2) denote the following two-

stage procedure:

Stage 1: Select s ifp (gi,Ai), the p-value of 51 under 2% is larger

¢
than 1-a,, 1'=],...,k.1 If none (exactly one) of the populations is
selected, stop and decide "none (this one) is better than eo". Other-
wise proceed to Stage 2.

Stage 2: Among the selected populations decide finally in favor of that
" which has the largest p-value pwj(xj,yj,Bj) under wj’ provided it

is no smaller than Qo Otherwise decide that "none is better than eo";

Let ® be the set of all such two-stage procedures.
The following result will serve as our basic tool to determine
(a],az)-tup1es for meeting the P*-condition as well as to compare the per-

formance of competing procedures satisfying the P*-condition.



Theorem 1. Let (g),]—a],g,az)E.S . For notational convenience let

E; = Eeimi, ]-a](xi) and F;(a) = Eq {wi’ (X;,Y:)|X; is not significant under

¢, }, i=1,...,k. Then for every non-empty Dc {1,...,k} and gEszk

1 ,-I‘OL'I

(2.1) Pe{fina] decision of (¢, 1 -a],y,az) falls into D}

1
= f H[E+(1E)F(a]d(H[E+1E)F(u)])
as J i€D

where integration is with respect to o. Moreover,

(2.2) Pe{fina] decision of (? ,1-a],g,a2) does not fall into {1,...,k}}
k
I=1| J(az)] .

Proof: It is shown in Miescke (197%a)(cf. (2.3) there) that the distribu-
tion function of each p-value appearing in (¢ ,1—a],9,a2) equals to the

power function of the corresponding test, which hereby is thought of being

k

a function of o €[0,1] where parameter 6 €2~ on the other hand is held

fixed.
let Dc {1,...,k}, D# 0, 8€2", 0<a; <1and0<a,<1be fix-
ed. Then

Pé{final decision falls into D}

Pé{fina1 decision is in favor of = }

)
€
= ) Py {the s 's with i €s are selected and final
€D

decision is made in favor of ﬂr}

1
red sir€s o, i€s i¢s

# r



1
- ¥ (1-E. )F. (a E.%d 1-E)F () ).
rgD o{ s:rZQS iIGIs 1) 1( )jI¢Is J <( r) r )
2 )
j#r
k
Now, the integrand {---} equals to ][] [E1+(1-E1)F1(a)] and (]'Er)Fr(a)
i=1
i#r

can be rep]a;ed by Er+(1—Er)Fr(a). Thus Pe{fina1 decision falls into D}
equals i
1 k
I ILE+(1-E)F, (o) Td[E,+(1-E )F (a)]

red o i=1
2 i#r

1
0{2 J-Iqlu [Ej+(1-Ep)F; ()] T iIEID[E1-+(1-E1-)F1-(oc)]d[Er+(1-Er)Fr(oc)]
i#¢r

1
i s [EJ.+(1—EJ.)FJ.(oc)]d<

AL [E;+(1-E)F;(a)]) -

ay J ¢

This completes the proof of (2.1). Since (2.2) can be verified by us-

ing similar arguments its proof is omitted for brevity.

Remark: Note that for i=1,...,k we have also the following representation

of E.+(1-E;)F.(a), o €[0,1]:

(2.3) Eq (95,14, X
1

=95 g ()% Yy

i ,]-a] -i i,000=77=1 )

= Py (Ip

3 (W (2(1 ’A-i)i]_a']}u{pq;_i (Z('I 3A1)>]'°L] and Pq)] (Z('I’Y'I’B'I )f_OL}> .

1

Corollary 1. Every two-stage procedure (¢ ,l-a],y,uz) €9 satisfies the

P*-condition if

(2.4) (1-07)% = p .



k
Proof: A lower bound for (2.2) is II Ej which satisfies
j=1
k k )
Eo= Il e, ooy x> Tl E @, . (x)=(1-ap)
J-=-l J J-=-I GJ- J,] (X-l =J _j=l 60 \],]'a-l =J -I

if 81202258, < 8. This follows from the unbiasedness of the tests.
Unfortunately, the dependencies between ¢ . (X.,) and . (X.,Y.),
i,1-a,=1 T,a ' =17-1
i=1,...,k, make it hard to find good procedures in & . Therefore most of
our results in the sequel will be given only with respect to 8', say, where
8' < 8 consists of all procedures from $ where the tests 2 in the second
stage depend only on the Xi's and not on the Xi's, i=1,...,k. The interest-

ed reader is invited to try to prove one of the conjectures stated at the

end of this section.

Corollary 1'. A two-stage procedure (¢ J-a},%,az) €9' satisfies the

P*-condition if and only if

(2.5) R L

Proof: Let 675+ ++30 < B, For (¢, l—al,g,az)eEﬁ' (2.2) reduces to

:x

[E o
j=1  9;

(X.) + (1-E_ .

5 1eay y (X;)E, ¥

J s]'@] -J ej ! )]

jsaz('j
which, by the unbiasedness of the tests, and the fact that a+(1-a)b =

b+(1-b)a is increasing in a, b €[0,1], assumes its Towest value at

01 = --- T 8 = 84> where the power functions are equal to the levels of
the tests.
Remark:  If in a procedure (¢ ,1-aq,¥,a,) €8 every pair of tests P vy

have non-negative correlations for 0; < 64> i=1,...,k (which, of course,

is given if the procedure belongs to &' ), then the infimum of (2.2) under



015++-,68, < 6, falls between (]-a])k and (1-a1+a]u2)k

Let us from now on adopt the following convention:

Convention: All procedures from &' are assumed to have an oy satisfy-

ing (1-a;)* = P* and a small a,.

In view of (2.5) (1-a])k = P* and a, = 0 clearly is the best choice to
minimize the expected overall sampling amount (and to make (2.4) to an ex-
act condition with respect to & ). But on the other hand an experimenter
might feel restricted at not being permitted to decide also at Stage 2
against all populations. Thus let us admit at least a small % This 1is
slightly conservative with repsect to (2.5). But it changes the probabil-
ities of any events at most by a difference of (max {a1,a2})2. This fol-
lows from the fact that o, acts only on probabilities of events where at
least two populations pass Stage 1 and eventually are rejected at Stage 2.
To give a nqmerica] example, take ap = oy = 10'2. Then for k=5(10) we
have a P* above 0.95 (0.90) and 0y changes all probabilities at most by

the amount of 10-4.

3. Consequences and extensions

The following two results will be used repeatedly in the sequel. Their
proofs are straightforward using integrations by parts and are therefore

omitted for brevity.

Lemma 1. Let Gi» Gy [0,1] ~ [0,1] be right-continuous, non-decreasing

6;(1) = 1 and 6,(a) < (>)6:(a) for i=1,...,r(i=r+l,... k),

=
—
+
>
[<p]
—
—
~—
1l

re{l,...,k}. Then for O <oy < 1

r k
= i

6; (e)d( T 6y(e)) < }

j=r+l 5

:1 6 ()d(IT &)

1 j=r+l
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As a special case of Lemma 1 we get

Corollary 2. Let G1,...,Gk as before and Gi(a) 5_Gj(a), o €[0,1], for a

pair i, j€{1,...,k} with i # j. Then for 0 < a, <1

1 k

(3.2) f H 6,(a)d6;(a) < I1 6, (a)dG,(a) .
%o 2=1 ey 2=1
L2] L#i

For the sequel let Pe{C.D.} denote the probability of a correct deci-

sion at ¢ €Q|<, i.e. that the final decision falls into R(6) ='{1|ei > 85
i=1,...,k} if R(e) is non-empty or that the final decision is "no popula-

tion is better than eo” if R(e) is empty.

Corollary 3. Let (9 ,l-0y,4,0,) €8, 0 <a; <1 and0<a,<1. If for

every i1 €{1,...,k} @ and by are UMP unbiased tests for Hi Versus Ki based

on X; and Y, and if simultaneously 1-%; and i-y, are UMP unbiased testsfor

the dual testing problem (where the hypothesis and the alternative are inter-

changed), then at every o € Q (9 ,1- -aq »Psa,) has the largest P {C D.} and

w.r.t bad o ulatio
the smallest expected sampling amountgamong all (¢ ,1- a],w,az)EFE

As is well known, these conditions are usually fulfilled in one-para-

meter MLR and multiparameter exponential family situations. The proof of
Corollary 3 as well as that of the next result follows from (2.1) and

Lemma 1.

Corollary 4. Let (¢, 1-a],g,a2) €n'. If the power functionsof all tests

are non-decreasing (non-increasing) in sample-sizes for 0, < (>)eo, then

Po{C.D.} is nondecreasing in sample sizes at every 9€52k

The next result can be stated with respect to 8.
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Corollary 5. Let (¢ ,l-0y,¥,a,) €8 where ¢ consists of consistent tests.

Then P,{C.D.} converges to 1 if n; > and 6. # 6,5 1=1,...,k.

Proof: Let g€aX with o, # 6 , i=1,...,k. Then

Pe{C.D.} z_Pé{only‘ni's with i €R(8) are selected at Stage 1}

R -

2 R 0.% 3,10, (%) II [, o, (X,)]
J v J

which tends to 1 for large Nyseessn by the consistency of the tests.
Under the assumption of monotone (non-decreasing) likelihood ratios

(MLR) a stronger result can be obtained.

Theorem 2. Assume that in every population m. the family of densities has

MLR, i=1,...,k. Let (¢ s1-aq,950,) €8 (or &) consist of the UMP tests

for the corresponding testing problems. Then for increasing sample sizes

n., m.,, i=1,...,k, Pe{final decision in favor of that s with the largest

1 1
o; > 6.} tends to 1 for all e €aX

; with R(8) # ¢ and P {final decision is

"no population is better than eo”} tends to 1 for all ¢ EQI( with

e-l,...,ek < 80 .

Proof: Let 6, > 6,,6{5...50, 95 0 <a; <Tand 0 <o, < 1.

Pe{(? s1-a15¥,0,) finally decides in favor of ™}

(xk’yk’Bk) > azspw (XisxisBi)s i # k} .

Z_Pg{p@k (xksAk) > ]'a];p ;

Yk
Now, Pg{p(P k(xk,Ak) > ]-a];pwk(gk,xk,Bk) > az} tends to 1 for large Ny and
My by the consistency of the tests.

Moreover, the procedure which decides in favor of a population accord-

ing to the Targest p-value with respect to y can be viewed, equivalently,

as being based on ¥, say, where @1 is essentially the same test as y; but
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now standardized at O (instead of eo), i=1,...,k. But then since all

popu]afions Myse-«>T_1 are shifted into "alternatives",

1 k-1
PtPy > Py 17k} = Polby, > Py 7k = é 1I=I] Eo, ¥ o (XgoYg)da
(cf. Miescke (1979a)) which tends to 1 for large Mysenesily. When more

than one 0, is largest a similar result can be derived. The proof for &'

using UMP tests Ppoesesty based on yi,...,yk is exactly the same. The

second assertion of the theorem is already proved by Corrollary 5.

Remark: If the asymptotic relative efficiency (ARE) in the sense of Pitman
is defined in terms of the probability of selecting the ni's with 1 €R(s)

at Stage 1, then if ARE(¢1, @1 ) does not depend on i€e{l,...,k} (as is
typically the case when @1,...,<Pk are of the same type and @1,..., ik

are of ‘the same type) we have ARE(%, ,@1) = ARE((® ,]-a],9,a2)4§51-a],9,a2))
for all 0 <oy <1, 0 <oy, < 1 and y. The proof is similar to that in
Miescke (1979a). Of course, it would be more satisfactory to have an ARE-

concept including both stages, but this seems to be a difficult problem.

In fact, Pitman's approach does not lead here to clear conclusions.

Corollary 6. Let (9, 1-ay,ys0,) €8' . If the power functions of ¢, and

p; are non-increasing in 0; € Q, i=1,...,k, then for r, s€{l,...,k} with

eY‘<eS

(3.3) Pe{final decision is in favor of nr}

5_Pe{f1na1 decision is in favor of Tt

Proof: This follows from (2.1) and Corollary 2.
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Final Remarks:

(1) The results so far derived hold analogously in cases where the

control values eo_ may depend on i €{1,...,k}.
; :

(2) The case of unknown controls can be treated analogously provided
that control samples are drawn independently for each single test.

(3) Under the assumption of MLR let (¢ ,1-a],g,u2)€ES consist of the
UMP tests for the corresponding testing problems. Then

kK k

inf{P {C.D.}[g €n", R(e) # #}

(3.4) 1nf{Pe{C.D.}|Q €, R(e) = 91

= P( ){C.D.} .

858550250,
This follows from Theorem 1 in a recently published paper by Simons (1980),
(2.1) and Lemma 1.

(4) Let us conclude this section by stating the following three im-
portant questions that have not been settied now: Assume that in all popu-

lations MLR is given and that ¢. ,wi,¢1 are the UMP tests based on X;, Y.,

(X:>¥:)s i=1,n 00k,
I) Is (9, 1—a],@,u2) performing better than (¥, T-ay,y,0,)?
II) If this is true, how well performs (g, 1-a],@,a2) in 82

III) The one-stage procedures (y,1-a;) and (@,1-a]) which select accord-
ing to the largest p-values of the corresponding tests, provided that they
are larger than l-a;, are the natural competitors to (¢ ,1—a],y,0) and
(¢ 51-ay,9,0). Do they need larger sampling amounts than the two-stage

procedures take in the mean to have the same Pé{C.D.}?

4. The normal case. Bayesian two-stage procedures for k= 2.

Assume that we have k normal populations s with unknown means 6, €R

and known variances o? > 0, i=1,...,k. Let Xi and Yi denote the sample
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means derived from the samples of sizes n, and m. from T i=1,...,k. Let
@ denote the cumulative distribtuion function of the standard normal distri-

bution. Then the optimal procedure in 8' is as follows:

Stage 1: Select all populations T j=1,...,k, with

: . -1 )
j€S: = h|Xi3_g)+ cﬂﬁ?@ (]ﬂh),1=],u.,k}.

IfS= {jo}(S = @) stop, and decide in favor of s ("none is better
0
than eo"). Otherwise, proceed to

Stage 2: Decide finally in favor of =  if r€S with Vr >V, s €S and

S

1.1
Y. > 6, * Grm;2¢ ](az). Otherwise decide that no population is better

than the control.

Let zi = (ni+m1)'](n1X1+m171), i=1,...,k, be the overall sample means.
Though we do not know whether the a]ternativé procedure which uses Zi's
instead of Yi's in Stage 2 perform better, we can at least show that in
(2.1) the functions E1+(1-E1)Fi(u), a e[az,l], with 0; > 8, will then be
replaced by smaller functions Ei+(1—E1)F?(a), o E[a2,1], say, i=1,...,k.

Let ei > eo.

- NET = ER
(1-E;) (1-F¥(a)) P, {X;20,+n %0 @ ](1-a]),Zi390+(n.+m.) %0 ](a)}

1 1 1

1

- -1 - - 1
Pei{Xii90+n1201¢ ](]—a])}Pei{Zizﬁo+(n1+mi) 0.9 (a)} .

Iv

This follows from Slepian's inequality since Xi and Yi are positive-

ly correlated. Finally the proof is completed by

P (o0 +(nom) R 071 (a)1 = o ((ntm.) %7  (0:-0 )-071 (a)
G_i 1—o0 1 1 1 11 1 1 0

Wik

@(m.c;](ei-eo)-¢'](a))

| v
—]

- -1
Pei{Y1390+m1201¢' (a)} = ]—Fi(u) .
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When the variances are unknown the optimal procedure in 8£' is based
on t-tests in an analogous way. Let S5 and Ei denote the usual UMV unbi-
ased estimators of oF based on 51 and Xi’ respectively, i=1,...,k. Then

-1
]

- _1
;%00 ](1-a]) at Stage 1 has to be replaced by nizsit(ni-l,l—a]), and

n
1

-2

- 1.
m.2o, ](u) at Stage 2 has to be replaced by mrzsftﬁnr—1,u), where t(n,a)

denotes the o-quantile of the t-distribution with n degrees of freedom.

Though a (Bayesian) decision theoretic approach is quite difficult to
perform in general, the case of k=2 populations can at least be studied
to some extent. A two-stage procedure will now be described by S(X)(the
random subset of {1,2} of indices of those populations s being selected
at Stage 1) and d(X,Y) (the final decision at Stage 2). As before, the pro-
cedure stops and decides 0, i.e. "none is better than eo" (1,2) if
S(X) = ¢ ({13,12}) and d(X,Y) at Stage 2 is used only if S(X) = {1,2} .

Let 2: R = R, with 2(0) = 0, be a non-decreasing function which acts
as loss-gain-function with respect to final decisions 1 and 2. Assume
that decision O leads neither to a loss nor a gain. Moreover, let ¢ > 0
be the costs we have to pay if we wish to perform Stage 2. Finally, let
T be the prior distribution of the (now random) parameter vector ©. Then

the overall Bayesian risk is given by

2
(4.1) fk{[c + 121 2(0,-01)Ptd(X5Y) = Tfs(X)=(1,2} }]P9{5(5)={1,2}}
Y]

2
+ .Z

L #logmeg)? {s(X).= €t} pde(e)

1 -
The optimal decision d* at Stage 2 (which minimizes the posterior ex-
pected loss given X=¢ and Y=p) does not depend on the special choice of

any subset selection rule S and turns out to be
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(4.2) d*(g,n) = i iff E{z(eo-ei)lx=§, Y=n}
< min{0,E{a(0,-0;) [X=g, Y=n}}, (1,3} = 11,2} ,
and d*(g,n) = 0 otherwise.

The optimal subset selection rule S* at Stage 1 (which minimizes the
posterior expected loss given X = £ under the assumption that d* will be
used at Stage 2) decides according to the smallest of the four values given
in the following scheme:

(4.3) S*(g) =9: 0

S*(g) = {i}: E{e(o,-0,)|X=¢}, i=1,2 ,

)

S*( {1,2}: c+E{min{0, min E{z(eo—ei)lx=§,!}}|§=§ }.

i=1,2 -

Wy

Notethat in the Tast expression the inner conditional expectiation is
viewed as being a function of Y, and that the outer one is the expecta--
tion with respect to the conditional distribution of Y-given X = &.

Now Tet us assume the following normal model: Conditionally, given

© =0, X and Y are independent with X ~ % (e,pI) and Y ~.% (8,qI), and
apriori 0 ~ 7 (eol,rI), p,q,r > 0, I= <é$>, 1' = (1,1).
Then by using for convenience U, V], V2, which are assumed to be in-

dependent standard normals, we get the following scheme equivalent to (4.3):

(4.4) S*¥(g) =p: O
s*(g) = {ik: EU(%(?(p+r)'](eo-gi)+(kp(p+r)'])%u>>, i=1,2
S*Gg) = {1,2}: c+E ' “[min{0,min {

i=1,2

él<2<r(p+r)_](eo-£1)+pV1+YU>>}H

-1
>,

Wl

where p = pr[(p+r)(pgtpr+qr)] 2 and v = [rpq/(pg+pr+qr)]
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Let especially & be Tinear, i.e. 2(A) = as, A€ R, where we can as-
sume without loss of generality that a=1 holds (since this can be com-
pensated by c). Moreover, let us for a moment restrict our considerations
to two-stage procedures which at Stage 2 are not permitted to make deci-
sion 0. (This corresponds to procedures in 8' or 8 with ay = 0.) Then
the optimal procedure, denoted by d, and Sy, can be described in a concise

form.
(4°5) d*(ESD) = -i -iff qg-i + pn-i > qEJ + pnjs {i,J} =. {192} 2

and S, decides according to the smallest of the 4 values given in the fol-

lowing scheme:

(4.6) Su(e) =9 :0
Se(g) = (13: s(o-g5), 1=1,2,
; ;
Selg) = (1,232 s(o -max{gy,e,})+ c-2% 5T (- (2%0) 6]52 gl)

_ Yy
where & = r(p+r) ! and T(y) = [ o(x)dx, y€R .

The last expression follows from Lemma 3 in Miescke (1979b). Since T
is an increasing function with T(0) = (2w)'%; the procedure will hever ar-
rive at Stage 2 if ¢ > pﬂ—%. But on the other hand, let c < pﬂ_%a As before
an ﬁi with 51>Ej ,¥i531=41,23, will be selected by Si. But.now if &y > 0
or &, > 8, then S*(g) {1,2} if and only if 8[g,-&q] < -22p1' ]((2% )" -1 ).
Moreover, if E1:80 < 8, there is an area in the neighborhood of (eo,eo)
where also S,(z) = {1,2} occurs. Thus within IR?\{g]g],gz < 8.} Sy is
of the type of Gupta's (1965) maximum means procedure.

If now more generally a decision 0 is also admitted at Stage 2, then

the optimal procedure (S*,d*) is of similar form but is no longer repre-

sentable in such a concise manner. Typically, the area where at Stage 1
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both populations are selected will be larger.

Finally, let us mention that one gets analogous results if other Toss
functions are admitted. It is thinkable that especially 2(a) = 21(-22)
if A > (<)0, L5 by > 0, leads to a procedure which is closer to that one
given at the beginning of this section. But, unfortunately, its representa-
tion is more complicated such that this question could be studied only num-

erically.
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