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SUMMARY

A more génera] concept of Latin squares than complete Latin squares
is introduced. These balanced Latin squares are proved to exist for all
orders. The random selection of complete and balanced squares is con-
sidered. The question of the F-distribution approximation of the random-
jzation distribution over the collection of complete or balanced squares
is addressed for Latin square designs and extended to cross-over designs.
A 1ink is provided to complete sets of orthogonal balanced Latin squares

where they exist.
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Balanced Latin Squares

by
G. Campbell and S. Geller

1. INTRODUCTION: Historically, Latin square designs were developed

to eliminate row and column fertility gradients in agricuiture field ex-
periments. However, Fertility gradients need not be only horizontal or
vertical. To guard against diagonal gradients too, Knut Vik designs were
introduced. An n x n Latin square is Knut Vik if, when a replicate of the
square is placed next to it, all main diagonals and off diagonals of length
n of the n x 2n rectangle contain each treatment symbol once. For n = 7,
there are exactly four Knut Vik designs, as mentioned in Atkin, Hay, and

Larson (1977). Letting the integers 1 to 7 denote the treatments, they

are:

1234567 1234567 ~ 1234567 1234567
6712345 5671234 4567123 3456712
4567123 2345671 7123456 5671234
2345671 6712345 3456712 7123456
7123456 3456712 6712345 2345671
5671234 7123456 2345671 4567123
3456712 4567123 56712314 6712345

Note that each design is a row permutation of the others. One objection,

most forcefully voiced by R. A. Fisher (1951), is to the exclusive use of
systematic designs rather than randomly chosen designs. Proper randomization
from all Latin squares of order n > 5 leads to a statistic whose randomization
distribution conditional on the observations is well-approximated by the F-

distribution of the normal model. R. A. Fisher was especially worried that



restricting selection to a small number of designs invites a conniving
nature to choose a pattern for the treatments which might cause the ex-
perimenter to falsely reject the null hypothesis of equality of treatments.
Also, the distribution of the statistic from a small number of designs does
not closely approximate the F-distribution. For further discussion see
section three.

Another problem is that Knut Vik designs have an undesirable property;
namely, each treatment is bordered by exactly the same pattern of other
treatments. For example, in the first 7 x 7 square above,1 is always bordered
by the pattern 7 3 2. In particular, in the rows of the first square 1 precedes
2 six times. In the event of some border interactions, this design could mask
real effects.

Williams (1949) proposed the concept of completeness in order to balance

the effects of neighboring treatments. A Latin square is row complete if

for each element i, the element j, j # i, immediately follows i exactly once
in the n rows of the square. - Column completeness is defined analogously. A
Latin square is complete if it is both row and column complete. Note that
the concept of a complete Latin square is different from a complete set of
orthogonal Latin squares. Williams (1949) constructed a row complete Latin
square for each even order. These squares can be rearranged by row permu-
tations to form a complete Latin square. Complete squares exist for some
odd orders; e.g., for n = 21 see Dénes and Keedwell (1974). But they do
not exist for others; e.g., n = 3, 5, 7, see Hedayat and Afsarinejad (1978).
Denes and Keedwell (1974) conjectured that every row complete Latin
square can be transformed by row permutations to a complete square. Owens

(1976) provided counterexamples for n = 10 and n = 14. The conjecture can
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also be disproved for odd order squares by using exhaustion on the 9 x 9
row complete square of K. B. Martz in Hedayat and Afsarinejad (1978).

In none of the papers on complete squares is there a discussion of
randomization or an enumeration of all such squares for a particular order.

Since complete squares need not exist for a given order, a more general
notion of equalization of pairwise boundaries is introduced here. This idea,
called balanced Latin squares, is defined in section 2 and some applications
are presented. It is noted that complete squares are balanced, but there
are balanced squares which are not complete. The theorem that balanced
squares exist for all odd orders > 3 is proved constructively. The con-
struction also suggests a relationship between even complete squares and
odd balanced ones.

In section 3 criteria are given to assure that the randomization dis-
tribution of the test statistic for a large set of Latin squares approx-
imates an F-distribution. It is shown that the criteria are met for the
set of all balanced squares of order 3 and for the set of all balanced
squares of order 5. The randomization procedure is presented. Some com-
plete sets of orthogonal balanced Latin squares are given which also sat-
isfy the criteria. Conjectures are made for higher-order balanced squares.
Designs that are merely row complete or row balanced are also considered.

In the finé] section, the method suggested by Williams (1949) of using
pairs of squares to achieve completeness for odd orders is pursued and the
balanced squares are utilized to extend this work. Also a more general idea
of balance is suggested. The paper concludes with a general discussion of

Latin squares, their usefulness and their Timitations.



2. BALANCED LATIN SQUARES: A Latin square is row balanced if, for

any treatment i, treatment j, j # 1, is adjacent to i exactly twice in the
n rows. It is clear that this is weaker than row complete since, if i im-
mediately precedes j for all i # j, then i and j are row adjacent exactly
twice, once as ij and once as ji.

The following example illustrates the usefulness of balanced squares.
There are five machines arranged in a row and five operators, one for each
machine. In the five experimental runs, each operator operates each machine
once. It may be important which operators are located next to each other
for each run, although the side is not important. To test whether there is
a difference among the machines and among the operators, assuming no machine-
operator interaction, a Latin square design is used. The columns denote the
machines, the treatments, numbered, 1 to 5, denote the operators, and the
rows are the five runs. One such balanced design is

12345
24153
45231
53412
31524

Note that, for example, 2 is adjacent to 1 exactly twice but always on the
same side. This suggests the usefulness of row balanced Latin squares in
cross-over or change-over designs in which each treatment occurs in each
of n positions and any treatment pair afe adjacent in exactly two rows,
although the order of the pair is not crucial.

A Latin square is column balanced if, for any treatment i, treatment

J» J # 1, is adjacent to i in exactly two columns. For simplicity a Latin

square is called balanced if it is both row and column balanced. One



possible use for a balanced Latin square design would be in a controlled
indoor agricultural experiment in which wind and 1ight are controlled to

be non-directional. There is, nonetheless, a possibility of an interaction
between plots with a common boundary. Since the order of the plots does
not affect the interaction, a balanced design would be appropriate; One
such design of order 5 is

12345
24531
35214
43152
51423

Note that this design is balanced, in contrast to the previous design which
was only row balanced.

It is clear that complete Latin squares are bé]anced, and hence balanced
squares exist for all even orders. Row permutations of an even complete
square may destroy completeness but possibly preserve balance. For example
with-n =6, square A is complete while B, which is a row permutation of A,

s balanced.

12345686 123456

241635 241635

315264 536142

462513 462513

536142 654321

654321 315264
A B

This suggests that, for even orders, there are more balanced squares than

complete ones.

One question of interest is the existence of balanced Latin squares of
odd orders. For square L ='{21j} of order n call the %4 the main diagonal

and the 2111+1!i the:off diagonal, as i ranges from 1 to n..



Theorem 1: Balanced Latin squares exist for all odd orders.

Proof: Let zij denote the entries of an n x n square matrix where
n=2m+ 1. The entries denote the treatments which are labelled 1 to n.
For i < j define “{j as follows:

1. If i =3 (mod 2), then

i+ if i+j<n+1,1=0 (mod 2)
i+3-1 4f i+3<n+1,4=z=1 (mod 2)
lij ={n if i+j=n+1
n -k if i+j>n+1,1z=0 (mod 2)
n-k+1 if i+j>n+1 1=1 (mod 2)
where k =i +3j - (n+1).
2. Ifi# 3 (mod 2), then
j-i if 1 =0 (mod 2)
Y5TV5-i+1 if i=1 (mod 2).

Complete.the matrix by symmetry about the main diagonal; i.e.,

lij = Rji'

The construction can also be described as follows:

Step 1: Write 1 2 ... n as the first row; i.e., sz = J.

Step 2: For i even in the first row, fi11 in the diagona1'from
upper left to lower right starting with i and alternating
with i - 1.

Step 3: For i odd and less than n in the first row fill in the
diagonal from upper right to lower left beginning with i
and alternating with i+1.

Step 4: Fill in n for the main off diagonal; i.e., % = n.

i,n+1-1
Step 5: For the last column write n n-2 n-1 n-3 ... 1 2.



Step 6: For the even entries of the last column, fill in the
diagonal from upper left to Tower right beginning with
i and alternating with i - 1.
Step 7: Complete by symmetry about the main diagonal.
For n = 5, the following is obtained:

12345
24153
31524
45231
53412

It remains to prove that the square just defined is Latin and balanced.

To see that the square is Latin, write the it row. For i <m= (n-1)/2,
ieven, itisi,i+2,i-2,1+4,4-4,...,2i-2,2,2i,1,2i+2,
3,21 +4, ...,2m,2m+ 1 -2i, 2m+1,2m+3 -2i,2m -1, ..., 2m -1 -1,
2m - i+ 3, 2m - 1 + 1. It is clear thatevery integer from 1 to n occurs
exactly once. There are three other cases; namely, i <m, 1 odd; i > m,

i even; and i > m, i odd. For each case, the rows can also be enumerated,
noticing the occurrence of each treatment exact]y once in each fow. By
symmetry about the main diagonal, each treatment occurs precisely once in
each column. Thus the square is Latin.

The proof that it is balanced proceeds by induction. Note that, due
to symmetry, it suffices to show that for entries lij’ i < j, each treat-
ment borders every other treatment precisely ohce in the rows and once in
the columns. An outline of the proof follows. The theorem is easily
checked for n = 3 and 5. Suppose the 2m - 1 by 2m - 1 square is balanced.

We shall construct the 2m + 1 by 2m + 1 square from the 2m - 1 by 2m - 1

square. Consider the portion of the 2m - 1 by 2m - 1 square lij’ i<iJ,



i+j<2m+ 1. For 2m -1 =9 this is

123456789
41638597
527496
8193
92

Replace every other 2m - 1 by 2m beginning in row 2. Now take the portion
of the square zij’ i<j, 1+ Jj>2m-1 and replace alternate 2m - 1 by 2m

starting in row 1 as illustrated for 2m - T = 9:

810

59 7
4106 8
19 37 5
102 84 6
7 15 3
62 4

3 2

1

Place these two triangles together with an off diagonal of 2m + 1's between
them, filling in the needed 2m - 1 in the last column and 2m in the Tast

row; e.g.

-—

NSO Y

o1 — W

© oo A




Note that the outlined pieces are just the part of the balanced 2m - 1
by 2m - 1 square in which all treatment pairs occur precisely once ver-
tically and once horizontally. The pairs involving 2m + 1 with 2m and
2m - 1 are in the upper right corner. It is easy to prove that the ele-
ments protruding from the top toward the diagonal are 2, 3, 6, 7, 10, 11,...
while those protruding from the bottom are 1, 4, 5, 8, 9,... . These are
systematically bordered by 2m and 2m + 1 precisely once horizontally and
once vertically. Thus the square is balanced. O
It is possible to construct complete even squares from odd balanced
ones and vice versa. To go from the balanced square of order 2m + 1 of
Theorem 1 to a complete square of order 2m, merely take the triangle of
entries on and above the main diagonal and above the off diagonal; i.e.,
2. such thati <jand i + j <n + 1. Then symmetrize about both diag-

1]
onals. For example, for 2m + 1 = 5,

1234 1234 12314
- -

41 413 2413

4 2 3142

1 4321

It can be easi]y shown that the resulting even complete square is the
standard one of Denes and Keedwell (p. 82, 1974) and Bradley (1958). Thus
this gives an easier formula for the 2m by 2m complete square.

The other direction requires more effort. Write down the portion of
the 2m by 2m complete design on and above both the main and off diagonals;

i.e. such that i < jand i + j < 2m+1. Consider secondly the portion

symmetric to it about the off diagonal and including the off diagonal;

i.e., such that i < jand i +j >2m + 1. In this second portion

[
1]
interchange 1 and 2, 3 and 4, etc. Attach this second portion to the
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first with an off diagonal of 2m + 1 and complete by symmetry about the

main diagonal. For example, for 2m = 4 we get
1234 3 12345 12345
> ->
41 2 4 4153 24153
31 524 31524
2 31 45231
2 53412

3. RANDOMIZATION OF COMPLETE AND BALANCED SQUARES: An important feature

in ordinary Latin squares is the ability to select one at random from the
collection of all Latin squares of a particular order. Conditional on any
given set of observations, it is possible to calculate the exact randomiza-
tion distribution of the test statistic under the null hypothesis of no
treatment effects by evaluation of the statistic for each of the equally
likely Latin squares in the randomization. The advantage of randomization
is that, for n > 5, this randomization distribution is well-approximated

by the F-distribution. Under the assumption of normally distributed errors,
the test statistic has exactly this F-distribution. For this reason Fisher
(1951) has been extremely vociferous in promoting complete randomization in
the Latin square designs. This entails random selection of a standard
square; i.e. one with 1 2 ... n as first column and first row. Then ran-
domization of the rows of this square excluding the first, and lastly ran-
domization of the treatments completes the selection. In the case of or-
der 6 or larger, one standard square is given and the randomization is on
all rows, columns and treatments. A natural question then is whether ran-
domization is viable for complete or balanced squares and, if so, whether
the randomization distribution of the test statistic is closely approxi-

mated by the F-distribution.
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First note that row balance and row completeness are preserved by
row permutations, but column permutations can destroy these row properties.
Thus row or column permutations can destroy balance or completeness. One

can nonetheless permute treatments without affecting any of these properties.

Unfortunately the value of the test statistic is unchanged by treatment permu-

tations. Thus randomization requires enumeration of balanced or complete
squares, excluding treatment permutation.

First, however, what properties do a large set of squares require to
insure adequate approximation of the randomization distribution by an F-
distribution? As in Scheffe (1959), design random variables are needed.
Let'dijk
Only the first and second moment conditions of Scheffe (1959) are re-

= 1 if treatment k occurs.in row i, column j, and O otherwise.

quired; namely,

1) E(dijk) = 1/n “‘and

‘ 1/n _ ifi=1',3=3"', k=k'
- ) 0 ifonly 2 of i = i', j = j', k = k'
2) E(d,., d.i.ipe) =
gk 711"k 1/n(n-1) ~ifonly 1of i =14', j=3', k = k'

(n-2)/n{n-1) if-i # 3", 3 #3', k#k'.
where the expectation is taken over the equally likely selection of a square
from the set. It is immediate that any set of Latin squares which allows
randomization on treatments is guaranteed to have E(dijk) = 1/n, and hence

E(dS;,) = 1/n also. Furthermore, if only two of 1 = i', j = j', k = k' hold,

then E(d di'j'k') = 0 since the squares are Latin. Thus the only con-

ijk
straints are those for which equality of the indices occurs exactly once or

not at all. These can be reformulated as follows, as suggested by Cox (1980).

Let N(ij)(i‘j')(k’kl) denote the number of squares for which treatment k is

hold
holds
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in position ij and k' in i'j'. Then the equivalent conditions are

a) N( )(k,k) =¢, for fixed i#i', j#Jj' and for all k

i§)(13" 1

PV Niagy(agny (oK)

Cy for fixed i # i', J # j' and all k # k.
Furthermore g and Cy do not depend on ij and i'j'. ‘Moreover, if conditions
1) and 2) hold, since for every square with the same treatment in the two
locations, 1 # i', j # j', there must be n - 2 other squares with n - 2
different pairs in those locations, Cy = (n-2)c].

The natural way to proceed is to generate groups of n - 1 squares

with a common first row such that the conditions are satisfied for each

group. Complete sets of mutually orthogonal Latin squares are such groups.

Theorem 2: A complete set of n - 1 mutually orthogonal Latin squares of

order n with common first row satisfies conditions a) and b).

Proof: Fix a pair of locations ij and i'j' such that i < i' and
j#3'. Label the squares 1, 2,...,n - 1 and let kr and.k; be the treat-

ment in the rth

square in location ij and i'j' respectively. Recall that
square s is orthogonal to square r if each treatment pair krks occurs
exactly once among all ij locations. First note that kr = k; for at most
one r since, if kr = k; and kS = k; for r # s, then the pair krks occurs
twice in the enumeration of pairs from squares r and s, contradicting
orthogonality. It is claimed that for each location pair, there is a
square r such that kr = k;. It suffices to show that for any Latin square
1/(n-1) of the pairs of locations with i < i' have the same treatment,
since there are n - 1 squares in the set and for a given pair of locations

kr = k; at most once. In all, there are nz(n-1)2/2 pairs of locations,

i<i'y jJ#3j', for a given square r. Holding i and i' constant, there
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are n pairs of locations such that kr = k;. Hence for square r, there
are n (g)f= nz(n—l)/2 such pairs. Thus for a given pair of locations, there
is one square such that kr = k; and n - 2 squares such that kS # k;. By
orthogonality and i < i', k; # k; for r # s, and kr = ks if and only if
i = 1. Hence all treatment pairs (k,k') with k # k' occur with the same
frequency. Therefore conditions a) and b) hold with Cy = (n-2)c1. O

For n = 3, there are only 2 balanced squares before treatment random-
ization. They are row permutations of each other and orthogonal; thus they

satisfy the above condition. 1In fact they are the only 3 by 3 Latin squares with

: v . 123 123
1 2 3 as the first row. They are 2 ? 1 and 3 1 2. However, this results
312 2 31

{nrbnly two different values of the test statistic, far too few to allow
adequate approximation by the F-distribution.

For n = 5 there are three standard balanced squares. Each such square
generates by row randomization three complete sets of four orthogonal
balanced squares. Thus there are nine sets of four squares which separately
satisfy the conditions. See Table 1 for these squares, where each row
of the table is a complete set of orthogonal balanced Latin squares. Note
that these are all the balanced squares of order 5 up to treatment random-
ization. These give 36 different values of the test statistic which may
be approximated crudely by the F-distribution. A preferred approach is to
generate the exact null distribution under randomization of the test
statistic conditional on the observed values in order to perform the test.
The randomization procedure is to randomly select one of these 36 squares

and then to randomly permute the treatment.
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For higher order squares the 1ist of all standard squares is too
long to check individually for balance or completeness. In addition, it
is also extremely tedious to check all row permutations, keeping the first
constant, for balance or completeness. Thus it would be preferable to have
another method of generating sets of balanced or complete squares which
satsify the above criteria. One such method is to concentrate on com-
plete sets of orthogonal balanced or complete squares. It is well-known
that complete sets of orthogonal squares exist for all primes and all
prime powers. Furthermore some sets of each order can be generated by
row permutation; see p. 167 and Chapter 7 of Dénes and Keedwell (1974).
The randomization would then be from a small group of complete sets of
orthogonal Latin squares.

Consider balanced squares first. It is as yet unresolved whether
there are complete sets of orthogonal balanced squares for all powers
of odd primes. However the following are some partial results. The
general idea is to show that the standard balanced square of Theorem
1 is in the transformation set of the square G which is generated by the
Galois field of order p (GF(p)) in such a way as to give a complete
orthogonal set by row permutation; see p. 167 of Denes and Keedwell (1974).

To do this we need

LEMMA 3: For n odd, under the treatment permutation which interchanges
treatments i and n - i + 1 for 1 odd and leaves even i fixed, the stan-
dard balanced square L in the proof of Theorem 1 is transformed to the

square A = {aij} such that 355 7 2471 = 2y (mod n) for all i and j.
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Proof: The first row of the standard square L is transformed to
0,2,n-2,4, n-4, -3, n-1, 1. Add, modulo n, the transformed value
as1 of 21] = i to each entry. The proof consists of showing that the

th row of the original

inverse transformation of this row is then the i
matrix L of Theorem 1. For example, if i is even and <(n-1)/2, the ad-
dition of the above row by i modulo n results in the row:
i, i+2,i-2,i+4,i-4,...,1+3,1i-1,1+1
which when transformed back gives the row:
i,i+2,i-2,i+4,1i-4,..:.,n-1-2,n-9+2,n-1.

th

This is just the i row of L in Theorem 1. The remainder of the proof

is to check the rows for the other three cases of Theorem 1.

Theorem 4: For odd primes p the standard balanced square of order p is
in the transformation set of the square G generated by GF(p) (p. 167
Dénes and Keedwell (1974)).

Corollary 5: The standard balanced square B of order p, an odd prime,

is a member of a complete orthogonal set.

Proof: By Theorem 4 there is a transformation taking G to B. Since

orthogonality is preserved by transformations, the corollary follows. O

Proof of Theorem: By Dénes and Keedwell (1974) p. 167, the square

G has the property 35 = 3y + (mod n) and hence has the property

i aij
of the treatment permuted square in Lemma 3. GF(p) has elements

0, T,...,p - 1. If the columns of G are permuted to the order
02p-2...3p-11 and then the rows to the same order, the prop-

erty is preserved. The result is the permuted square of Lemma 3. O



Note that the transformation does not work for pS, s > 2 since the
additive group of GF(pS) is not cyclic. It is conjectured that the
standard balanced square of order ps, s > 2, p any prime, is not in the
transformation set of G. Whether the balanced square is part of a com-
plete orthogonal set for ps odd is a good question.

It is also conjectured that, for p an odd prime, the squares of the
complete orthogonal set of €Corollary 5 are also balanced. This is true
for p =3, 4, 7, 11 and 13. Note that, since the orthogonal set of the
Galois square is obtained by row permutation, so is the orthogonal set
of the balanced square. Thus the other members of the complete orthog-
onal set are determined by the first column. For p =7 and p = 11 the

(p-1) orthogonal squares have first column as follows:

111111 1 1111 11 11
2345617 2 3 45 6 7 8 9101
325476 3 2 5 47 6 9 81110
457632 4 5 8 91110 7 6 3 2
546723 5 4 9 81011 6 7 2 3
673245 6 71110 5 4 2 3 8 9
762354 7 61011 4 5 3 2 9 8
8 9 7 6 2 31011 5 4
9 8 6 7 3 21110 4 5
1011 3 2 8 9 5 4 6 7
1110 2 3 9 8 4 5 7 6

It is further conjectured that there are at least (p-2) complete sets
of orthogonal balanced Latin square. This would nicely take care of
odd order Latin squares up to and including 19 excluding 9 and 15. A
further conjecture is that for p a prime that any balanced Latin square,
although not necessarily generated by the regular standard one, is also

in a complete set of balanced orthogonal Latin squares.

17
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For even orders the case seems less encouraging. For n = 4 there
are two squares up to treatment randomization which are complete and
none which are balanced but not complete. Thus it is impossible to sat-
isfy condition a). For n = 6 there are 19 balanced squares obtained by
row permutations from the usual complete one. It is unknown whether there
are more standard squares which are balanced or complete. Unfortunately
no subset of the known 19 balanced squares satisfies condition a). Higher
even order squares have not been investigated.

Consider the Latin square designs that require completeness or balance
only in the rows or columns. For simplicity, restrict the discussion to
properties of rows rather than columns. Such designs are particularly
useful in cross-over designs, also called chénge-over designs} Note that
row completeness and row balance are preserved under row permutation.
Further, the value of the appropriate test statistic for such designs
changes under row permutation but not under treatment permutation. In
addition, the first and second moment conditions of Scheffe (1959) hold
for sets of row-complete or row-balanced designs which include row
permutation and treatment permutation due to the fact that the squares

are Latin. Therefore, the randomization proceeds as follows for balanced
squares, with a similar procedure for completeness. Choose at random one
standard balanced Latin square from some set of such squares. Randomly
permute the rows excluding the first and randomly permute the treatments.
For each standard balanced square:there are  (n-1)! values of the .test
statistic, due to the row permutation. If. k denetes the. number of stan-
dard balanced squares in the collection, there are k(n-1)! possible values

of the test statistic. If this number is large, the F-distribution will
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closely approximate the randomization distribution for any particular
set of observations.

For example, for n = 4 there is only one of the four standard Latin
squares that is row complete and hence row balanced; it is also complete.
There are hence only 3! = 6 possible values of the test statistic. Then,
the randomization distribution can be exactly calculated. For n =5, three
of the 56 standard squares are row balanced; they are also balanced. Thus,
there are 3-4! = 72 possible values of the test statistic under randomization.
This can be approximated somewhat crudely by the F-distribution. For larger
n it is not necessary to enumerate all standard row balanced or row complete
squares. Thus, for n = 6, using only one standard row complete square there
are 5! = 120 possible values.

In cross-over designs, the number of rows need not be n; it can be any
multiple of n. Row completeness and row balance can be defined for anal-
ogously for kn x n rectangles. The n! rows of all possible permutation of
the n treatments is obviously row balanced and row complete as a n! xn
rectangle. For kn < n!, row complete or row balanced designs can be con-
structed by randomly choosing k row complete or row balanced squares from

the collection and then randomizing on rows and treatments.

4., CONCLUDING REMARKS: Unable to find a complete square of odd order,

Williams (1940) constructed a pair of side by side squares such that row
completeness is achieved as a pair. Houston (1966) called such squares
(row) complimentary. It is possible to generate many such pairs of squares
using balanced squares. For any balanced square of odd ordér, write the
180° rotation of that square to its right. Then the pair are row com-

plimentary and column balanced. For example for n =5
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12345 32415
24531 25134
35214 41253
43152 13542
51423 54321

These squares as a pair are row and column complete.
The lack of complete success in section 3 with regard to even order
Latin squares Teads to more general notions of balance. One such concept

is that of overall balance; i.e. for any treatment i, treatment j, j # 1,

borders it exactly four times in all on the horizontal and the vertical.
There are squares which are overall balanced but not balanced. For n =4

there are 5 such squares:

1234 1234 1234 1234 1234
4312 3421 3412 3412 3412
2143 2143 2341 2143 4123
3421 4312 4123 4321 2341

This type of square would be useful in such applications as indoor crop
experiments with no directional preferences but possible boundary inter-
actions in which there is no difference between horizontal and vertical
boundaries. Unfortunately, for n = 4 no subset of overall balanced and
complete squares satisfies the randomization criteria.

Latin squares have been a part of statistics at least since the
nineteenth century. In many instances the economy of such designs in

dramatic, requiring n2 observations rather than the n3

for a complete
factorial. .This paper has suggested the Togical restriction to balanced
designs as a way to avoid the possibility of a systematically faulty design.
Such an approach is certainly superior to the practice of disguarding "bad"

squares produced by randomization. One must keep in mind the Timitations
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of Latin squares. If general interactions are known or suspected to exist,
the Latin square design is inappropriate and either a fractional or complete

factorial, either of which requires more observations, is recommended.
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