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ABSTRACT

Let X = (X],...,Xp)t have a p-variate normal distribution with un-
known mean ¢ and identity covariance matrix. The following transformed
version of a control problem is considered. Assume the loss incurred in
estimating e by d is L(d,8) = (etd - 1)2. Let g(lelz) be a generalized
prior density. 'Admissibility of the corresponding generalized Bayes
rule § is considered.
Using techniques of Brown (1979) and Berger (1976b), it is shown

that if g is bounded, satisfies certain regularity conditions, and for

a constant K and r2 sufficiently large

9(r%) < krl4P)
then § is admissible.
A useful asymptotic approximation to & is obtained. This result,
used in conjunction with a theorem of Berger and Zaman (1979), yields a

new inadmissibility theorem.



1. Introduction

Recently, interest has been shown in the decision theoretic treat-
ment of a statistical control problem. See, for example, references [5],
[10], and [12]. 1In this problem nonstochastic control (or design) vari-
ables are to be chosen in a linear model so that the resulting dependent
random variable will be close to a desired, fixed value. For more com-
lete discussions of this problem, see Zaman (1980) and Zellner (1971).

Zaman (1980) considers the following transformed version of the con-
trol problem. Let X = (X],...,Xp)t have a p-variate normal distribution

t

with unknown mean ¢ = (91,...,ep) and identity covariance matrix. The

problem is to choose a decision rule §(X) = (6](X),...,6p(X))t subject

to incurring a loss, L(8,6), where

(1.1) L(s,8) = (¥ - 1)2.
This version of the control problem is the subject of this paper.
Define a spherically symmetric (s.s.) decision rule § to be of the

form
(1.2) s(x) = o(|x])]x| 'x

p

where |x|2 = 3 x?. Previous admissibility considerations for such
i=1

rules include results for the uniform measure, generalized Bayes rule,

8, given by

(1.3) 5, () = (1+ [x|9)7'x.

Zaman (1980) has shown that 8, is admissible when p = 1,2,3. Stein and
Zaman (1980) proved that §; s admissible when p = 4. The most general,
previouslinadmissibility results are given in Berger and Zaman (1979).

In particular, it is shown that §, is inadmissible in more than four di-

mensions (also see Stein and Zaman (1980)).



It is suggested in the literature, particularly Berger and Zaman
(1979), that generalized Bayes rules corresponding to priors with tails
as sharp as |e|4'p are admissible, while rules corresponding to priors
with tails flatter than |e[4_p are inadmissible. The results of this
paper provide conditions under which these conjectures are true. The
importance of such results is twofold. First, a gap in the theory is
filled. Second, the identification of the "boundary of admissibility"
of generalized Bayes rules (i.e., prior tail behavior of the form
K[e|4"p for some constant K) is important in applications. Rules cor-
responding to priors on such a "boundary" frequently display desirable
properties (see Berger (1980a), (1980b)). Hence, such rules are often
proposed in applications, at least in the absence of complete prior
information.

The proof of admissibility given here is essentially an implemen-
tation of a general technique given by Brown (1979). Berger (1976b)
has carried out Brown's program in a different setting and provides a
background drawn on in our proof. The argument employs an approxima-
tion to generalized Bayes rules for large |x|. Applying this approxi-
mation, an extension of an inadmissibility result of Berger and Zaman
(1979) 1is obtained. This approximation may also be of interest beyond
its use here.

The next section presents some notation and preliminary results.
In Section 3, the admissibility theorem is stated and discussed. An
approximation to generalized Bayes rules is developed in Section 4. The
proof of admissibility is given in Section 5. This proof is quite long.

Hence, some details are either omitted or given in the Appendix.



2. Preliminaries

Define the function f(e,r), for r a scalar, by

(2.1) flo,r) = exp{-3(6 - r)z}exp{-%le*lz}

where o* = (ez,...,ep)t. Also, define the quantities N(-) and D(-) by
(2.2) N(r) = | 6,f(e,r)dn(e)

and

(2.3) D(r) = [ 65F(0,r)dn(o)

for an arbitrary (generalized) s.s. prior, n(6). Note that in (2.2) and
(2.3), as well as the remainder of this paper, the region of integration
for 6 1is assumed to the parameter space, @ , unless otherwise stated.
The parameter space for the control problem is taken to be RP - {03},
where {0} denotes the origin. See Berger and Zaman for a discussion of
this restriction. Zaman (1980) has proven that if § is (generalized)

Bayes w.r.t. w then & is unique and ¢(|x|) as defined in (1.2) is given

by

-1
(2.4) | o(|x]) = N([xD)ID(|x])T"" .
Two other previous results play a major role in the analysis here.
The first fact, based on a complete class theorem given by Zaman (1980),

is that if ¢ is s.s. and admissible, then

(2.5) 0<o(xDIx|™" <1, ,vIx| -

Second, Berger and Zaman (1979) have obtained a useful representation of
the (finite) Bayes risk of an arbitrary, finite risk, s.s. rule, &,
against a given s.s. prior measure, m. Let r(s,n) denote the described

Bayes risk. Then r(s,n) is given by



(2.6) r(s,m) = K0 [T Z r(p_1){¢(r)e1 - 1}2f(e,r)dr]dw(e) R

where K0 = (2m)

oo

Throughout this paper, K (or K', K", etc.) denotes a generic con-

. _ -1
stant; K] = KO .

3. The Admissibility Theorem

The proof of admissibility is based on a theorem of Stein (1955),
but in a form given by Farrell (1968). Their sufficient condition for

admissibility is stated for our purposes in the following theorem.

Theorem 3.1. Let s be the generaTized Bayes rule w.r.t. the measure

n(e) where

(3.1) | dr(s) = g(|o|%)ds.

Suppose that there exists a sequence of finite, non-negative functions

h ([e]?) such that

Do 9(]o|%)n (Jo]%)de < = ¥, =1,2,...

i1) Timh (Jo]%) = 1.
N

i11) Tim [ [R(s,0) - R(s.8)Ia(]6])h (Js]%)ds = 0.
N>~ @

where 8, denotes the Bayes rule w.r.t. the prior nn(e) given by

(3.2) dn (6) = g(|e]%)h_(]o]®)de

and R(s,6) denotes the usual risk function of the rule s. Then & is ad-

missible.



The details of the proof of Theorem 3.1 may be found in Farrell
(1968). Also, see Brown (1971). For the control problem, the key ele-
ments required are i) the uniqueness of s.s. (generalized) Bayes rules,
and ii) the convexity of the control problem loss function in the vari-
able §.

The hueristic probf of admissibility given in Brown (1979) suggests
choices for the functions hn(lelz) and proposes methods for approximat-
ing the integrands appearing in Conditon iii) of Theorem 3.1. The choice

of hn(lelz) used below is

1 it 0<lo]? <
(3.3) ho(lel) =1 H (Je]®) i 1< [o]% < n
0 if Jo|? > n?
where
(3.4) Ho(o1%) = 11 - (o 161%)/ 0117

Some comments are in order. First, our proof is somewhat facilitat-
ed by defining g and h_to be functions of |e|2 rather than |e|, although
this appears silly in the definition of Hn' Second, in general, implemen-
tation of Brown's argument requires that the functions hn are "flat".
This flatness requirement accounts for the functional form of Hn' Choos-
ing the 17th power as in (3.4) enhances the flatness of Hn’ but will also
be of further technical importance. We doubt that 17 is the smallest
power that can be used in the definition of Hn to prove the admissibility
theorem below. However, complicating matters by searching for such a
smallest power would not simplify the proof, nor add to its tractability.

Throughout the remainder of this paper, the following notation is

used. Define



g' (v = daly)

Theorem 3.2. Let & be the generalized Bayes rule w.r.t. the measure

n(6), defined in (3.1). Suppose that

i) 0 f_g(lelz) <B <,

ii) g is absolutely continuous w.r.t. Lebesgue measure.

Furthermore, suppose that there exists a constant T > O such that if

r® > T then the following conditions hold:

iii) g(r2) has a continuous second derivative w.r.t. rz.

iv) There exists constants, Cq and Cy such that

a) o' (r)] < e;rg(r?)
b) 9" (r)] < c,rtg(r?)
V) g(r2) >0.
vi) sup o 9y + r?) < Kg(r?) .
y:lylzz v}

vii) There exists q > 0 such that

9 o(1g(r?) .

viii) For some constant, Cys

Then § is admissible.

Note that Assumption viii) is the conjectured boundary of admissibil-
ity as discussed in the Introduction. Note that if p < 4, Assumption viii)
must be limited by Assumption i). Assumptions iii) and iv) are required

for the approximation of the generalized Bayes rule. These conditions



essentially require g(rz) to be flat for large rz. In particular, sharp
tailed priors such as exponentially decreasing priors are eliminated from
consideration. However, such priors are proper and therefore yjeld ad-
missible rules. Finally, Assumptions vi) and vii) are technical, but

not very restrictive.

4. Generalized Bayes Rules and Inadmissibility

We begin by presenting an asymptotic approximation of a generalized
Bayes rule in terms of the corresponding prior kernel g. For technical

reasons it is convenient to consider the function ¢* defined by

(4.1) $*(r) = ro(r) - 1.

Theroem 4.1. Assume that § and g are defined as in Theorem 3.2. If g

satisfies Assumptions i) through vii) of Theorem 3.2, then

L2
(4.2) o (r) = -r 201 + 202 L) L oy,

Note that the implied approximation of § for |x| sufficiently large
is
(4.3)  s(x) = (1-[[x]"%2+2 9'—UA|22—)] ¥ o(]x|72)3)x| % .
g(|x]™)
Before proceeding with the proof of this theorem, additional notation
and preliminary lemmas are given. The first lemma is straightforward com-

putation.

Lemma 4.1.  (Berger and Zaman (1979)).

i) feqf(e,r)do = Kjr .

ii) fe]{lelz-rz}f(e,r)de = K1(p+2)r )



111)  fo3f(e,r)de = K (1 + r?)
iv) fosg]o|® - r3f(o,r)de = K (K + (p + 4)rP) .
Define the quantity N* by

(4.4) N*(r) = f(re] - f(e r) Iel

Then by definition, ¢* = N*D™1. Also, define the set. G by

(4.5) 6= to: [[o]% - ¥%| <3 rdy
Note that ¢ €q if and only if
(4.6) RS LI

Arguments of the type given in the next lemma are used repeatedly

below.

Lemma 4.2. For any nonnegative integer M

2M( M+1) .

(4.7) [ (re; - 6)F(e.r)g(l0]%)de < ke 21 4

GC

Proof: Let I denote the integral appearing in (4.7). Note that for 8 E:GC,

||e[2 - r2[M Z_KrZM. Hence, a simple Chebyshev argument implies that
(4.8) p<kr® (e - 6D)[101% - ¥¥Me(0.r)g(]0]%)do -
c
.G

Since g is bounded, it is clear that
(4.9) 1< k8 Mflro, - 65[[]6]% - r?|Mf(o,r)do

A simple computation now yields the result. ||

Proof of Theorem 4.1: The first step is to approximate N*. Recall that

(4.10) N* = f(re]-eﬁ)f(e,r)g(|e]2)de + f (re -6 )f (6,r) Ie]

G GC



Call these two integrals I] and 12 respectively. I2 can be bounded by
applying Lemma 4.2. In particular, choose M to be equal to q+1. Then

for r large (i.e., r > 1), it is clear that
(4.11) I < ke 9,

Next, consider I]. By Taylor's Theorem, g can be written as

(4.12)  glo]®) = g(r®) + ([o]?rP)g" (%) + 3161 %rP) 2 (xD)

where rg is some point contained in the interval [3 2,-§ 2]

Now, sub-
stitute this expression for g into I] and integrate term by term. Denote
the resulting three integrals Ia’ Ib, and IC, respectively. Rewrite Ia as

(4.13) 1, = 9(r*)ef(reg-e])f(o,r)do - [ (ro,-02)f(o,r)de) .

c°

The first integral is computed using Lemma 4.1; the second is bounded as

above. Therefore, Ia is given by

(4.14) I - -K]g(rz) £ BKr 9,

Essentially the same argument, ignoring lower order terms, implies that

(4.15) I, = -k,2rg* (%) .
Finally, consider Ic' Clearly,
2 2 22y g2

(4.16) I.<% élre] - e7l(fe]" - r%)%|g (ro)lf(e,r)de}.

. . . . Wy 2 -4 , 2
From Assumptions iv) and vi), it follows that |g (rg)] < ke "g(r"), and
hence we have that
(4.17) I, < ke Yg(r?) [re; - 0](Jo]? - ¥2)%F(o,r)do .

Therefore, as in Lemma 4.2, (4.17) reduces to
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(4.18) I, < K'rg(rf) .

Then Assumption vii) and lines (4.11), (4.14), (4.15), and (4.18) yield

(4.19) N* = -K]g(rz){1 + 2r
‘ g(r

By arguments similar to those above, it can be shown that

(4.20) D = Krlg(rf) {1 + o(1)} .

A standard manipulation then gives the desired result. ||
The final topic of this section is inadmissibility. Employing power-
ful theoretical techniques, Berger and Zaman (1979) have obtained the fol-

lowing theorems. Suppose § is of the form (1.2) with

(4.21) s(r) = v 11 - or? 4 0(r7?))
where ¢ is a constant. Then & is inadmissible if ¢ > 5 - p. Then apply-
ing methods similar to those used in this section, they obtained the fol-
lTowing result. If & is generalized Bayes w.r.t. the prior = given by
dr(e) = Jo|% 'de

where ¢ > 1 - p, then § is of the form (1.2) and (4.21) and, hence, is
inadmissible when ¢ > 5 - p.

Based on Theorem 4.1 and the results of Bergér and Zaman (1979), we

have the following generalization.

Theorem 4.2. Assume § and g satisfy the assumptions of Theorem 4.1. Fur-

thermore, suppose that

c-1+o0(1)

as r>w». If c>5-p, then § is inadmissible.

Proof: Obvious. ||
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It should be noted that Theorem 4.2 is not the most general result
possible based on the theoretical results of Berger and Zaman (1979) and
our approximation. However, it includes most cases of genuine interest

and is quite simple to present.

5. Admissibility Proof

Recall the definitions of ¢, N, D, etc. Let the analogous quanti-
ties corresponding to an be denoted ¢ Nn’ Dn’ etc.

The proof of Theorem 3.2 is a verification of the conditions of Theo-
rem 3.1. Clearly the functions hn(|e|2) defined in (3.3) and (3.4) satis-

fy Conditions i) and ii). To verify Condition iii), let

(5.1) e, = f[R(a,e)-R(sn,e)]g(Ielz)hn(lelz)de .

By formula (2.6), suppressing the dependence of ¢ and ¢, ON r,_&n can be

written as

(5.2) & =KL e (9o -1)2 (¢,0,-1)°3

f(e,r)g(lelz)hn(|e|2)dr]de .

The interchange of order of integration (by Fubini's Theorem, since nn(e)

is a proper prior) and simplification reduce (5.2) to

(5.3) 8n = K

0 Z r(p'])(¢-¢n)2Dndr .

The quantity,&n is partitioned into the following three integrals

(ignoring Ko):

Wik

2
(5.4) el - p(P-1) )2

(¢—¢n Dndr [}

—
—~——
S
O‘H§
=



n-n
(5.5) eb= o elP Dy )P ar
(tn 0 n?) 2
and
(5.6) ed = | . P D1 (00,-197 - (00,-1)%
n-n

#(0,r)g(8]%)h, ([s]%)deTdr .

The proof is completed by showing that these quantities all vanish as

n =+ o,

Proposition 5.1. 1im 81 =0 .
n—>c

Proof: Define the sets A, B, and C by

A={o:0<[6]°<1},
B={e:1i[e]2_<_n2},
and C={o [e[2 3_n2}
Also, let

(5.7) 2, = [ 81f(6,r)a(]6]?)(1-H,([8]%))de + [ oqF(0,r)g(]0]*)do
B C

and

2

%@JMHH%UHMwﬁﬂw+£6ﬁWJMHM%M-

(5.8) v, = [ 8
B
In the Appendix it is shown that
_ I
(5.9) ¢ - oy = D (A0 v)

Hence, . 81 can be written as
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o 1
(0n onn")=
1 _ (p-1),,2, .2 2 -2
(5.10) &= é r (An+¢nyn 2xn¢nyn)D Dndr
Define
(&z&lnz)%
(5.11) = r(p'])AED']dr
0 .
and
2 (Qﬂ.@/flnz)% (_])22_]
(5.12) I = é piP pypD dr.

1 < 1. Then the desired result

since h (|8]%) < 1, it follows that D D"

clearly holds if both Il and Ig tend to zero as n > ». We will show that

this is the case for Iﬁ. The proof for Il is essentially the same.
Recall that the priors nn(e) are proper. Hence, the estimators §
are admissible. Expression (2.5) then implies that ¢ﬁ_5 rz, Vn=]’2"" .

Hence, it suffices to show that

-

2

(n 0 n")

(5.13) 13- P 2574 0
| 0

Next, consider y . Since 1 - Hn(|e|2) < 1, it follows that

(5.14) Y.< o3¢ (0,r)a(]o] %) (1-H _(J6]%))ds
1<[6]%<on n?
b [ o%f(e.r)g(fe]?)ds
o n°<]o]

Call these two integrals J; and J,, respectively. Since 1 - Hn(]e|2) is

non-decreasing in |e|2, J; 1s bounded by

(5.15) Iy < (U-H (mn?)) 05 (0.r)g(]8]%)de
2 2
1<]6["<on n
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and, hence, by Lemma 4.1,
2 2
(5.16) Jy < KO-H (on n"))(T+17) .

For sufficiently large n, it can be shown that

2
- H (san?) <k BN (g n?) 4
nn
Hence, we have established that
(5.17) J, < K(]*—rz)(ennz)_3/4 .

1

To bound J,, note that on the region of integration of J,, |e|2 Z_anz.

A Chebyshev argument as in the proof of Lemma 4.2 yields the inequality

(5.18) 3, < KO+ @mnd) .

2

The next step is to bound D. By definition, D is given by

(5.19) D= exp{--%rz} fe? exp{-32 le[z} exp(e1r)g(|e[2)de.

1
First, note that since 0 < r < (on n n2)2, it follows that

.2 2\- %
(5.20) exp(-2r") > (gan")
Let J3 denote the integral in (5.19). A straightforward argument (see
Lemma A.1) demonstrates that

(5.21) Jg z-LT,p

where LT D is some constant greater than zero. Therefore, (5.20) and

9

(5.21) imply that

(5.22) 071 <« (Lo ) N mnd)E .

- Tsp
Finally, expressions (5.17), (5.18) and (5.22) imply that
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. 1
_<_K Y'(p+])( 2 2

(5.23) I onn")

O+ @)% + 1+ eh @nd) Hoar .

It is clear by inspection of (5.23) that it suffices to show that
2
)

Wik

5 _1 (on
2)-1

2n n i
(5.24) (onn f ridr > 0
0
where i is any fixed, non-negative integer. Simple integration in (5.24)
yields
it

2\~

) n mn?) 2 50

K(on n on 90 n

as was to be shown. ||

Next, consider. 8ﬁ. The heart of the proof for . 6§ is the approxima-
tion of both ¢* and ¢ﬁ. The arguments used for ¢; are essentially the
same, though more delicate, as those used in Theorem 4.1. The key result

is given in the following proposition. The proof is given in the Appen-

dix.

s 2,2 8/9 .
Proposition 5.2. Assume (¢n 22 n“)2 < r <n-n"""., Then for n sufficient-
ly large

e ()

(5.25) o*(r) - ¢*(r) = K + o(1)
n 2
H, (r%)

It is necessary to present some notation. Define the function s by

(5.26) s = s(y?) = tan® - Q/nyz

Note that then
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The following information concerning the derivatives of H_ is needed.

Lemma 5.1. If 1 < y2 < nz, then
1) M 64 ] = 1701 P () T

and 1) [H!(y°)]

| A

Ks(y2) 1201+ sy 1y e n?) 17T .

Proof: Simple computation. ||

Proposition 5.3.

. L2
lim . en = 0.

N->e

Proof: First, note that by definition

o(r) = ¢ (r) = v (6%(r) - ¢%(r)) .

n

Applying Proposition 5.2 and an approximation of D_ (equation (A.10)) ob-
tained in the

proof of that proposition, it is sufficient to show that

1 n-n/? (p=1)p -1 H' (V ) 2 2
(5.27) e = T P=1 [y n ——— 12[r g(r™)H (r7)]dr
(BnZnnz)é i (r°)

vanishes as n

+ o, Lemma 5.1 and simplification yield
n-n®/?

28)  ep=x [ e PIseh)) a1 g(r?)
(ononn")%

Now, since [s(r )]]s[ﬁnnz]_]s < 1 and, by Assumption viii), g(r

2)§_C3r4—p,
we have that (for large n)
n
82 f_K[&zn]—z f rVdr
1
(ontnn”)*

KLonn] Lonn- 3 on on P/nnz]

<K'Igmn] > 0. |

A
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Proposition 5.4. T1im 8§ = 0.

N>

Proof: Note that

n-n
) ?8/9 r(p_1)[f(¢nel' ])zf(e’r)9(|e|2)hn(|6|2)de]dr ,
n-n

5

Call these two integrals 8n

and 82 respectively.

First, consider Bﬁ. Since s is Bayes w.r.t. = (6), ¢, minimizes

n
the inner integral of 82. Then, clearly,

(5.30) eS< [ v To 120,09 012 (Jo]2)doldr.
-n

0 8/9

_ 2n8/9

Define the sets r; = {6: 0 < 6] <n- 2n8/9} and T, = {6: n < |e] <n}.

Since hn(|e|2) = 0 for |6| > n, it is clear that

(5.31) ef< [ oIy o - r2e(e,r)gl]o]Dh (Jo[2)doTdr
n

o301 (g - r)2e(e.r)a(le]D)n (Jo]2)doTdr
8/9 Ty

Call these integrals J4 and J5 respectively. Consider J4. Since

8/9 8/9

r>n-n"", if 6 €ry, then r - 67 >N Hence, a Chebyshev argument

and the fact that hn(le|)2 < 1 imply that

(5.32) 9, <n"HEO) ;o3 (67 - 1) (6.r)g( o] ?)doTdr.
n_n8/9 F]



Case 1: p=1,2. Recall that g is bounded.

tegration in (5.32) yields

-4(8/9 P
(5.33) S S A S O
T )
.
< Kn_4(8/9)(n- 2n8/9)2 N
Case 2: p > 2. Clearly, we have

(5.34) J
1

18

Interchange of orger of in-

)8£(6,r)dr]do

0.

2 <780 e (o 1)Be(o,r)arTg([o]2)ds
Te =

< kn M) (e o, 1 P3))g (o] Dhexpt - 3 Jox( P

I

For sufficiently large n, partition ry into the sets ry = {6: 0 < |6 <

1 1
(T+1)2}andIh = {g: (T+1)2 < || < n-2n

(5.35)
T3
- 0489y, 0.

Next, Assumption viii) implies that

(5.36)
Ty

4

T

| A

n

K'n'4(8/9) [ ydy
0
2

= K"n—4(8/9)n > 0.

8/9

}. It is clear that

a4 89) 1 (14 10,1 P3))g (161 Z)expt - 3le*|P1do

n489) 1 (14 [0, 1 P=3)g( 10 Pexpi- 3 Jo*|)de
0479 1 1o 1 (P-3)g (16| 2)expt - 3[6%|23ds
T

kn=#(879) 1 o, (P=3) 1| (4-Plexpi - 2[0% %30
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Now, consider Jg. For n large and ¢ €T, hn(lelz) = Hn(]elz). Since

H, 1s non-increasing, if ¢ €r,, then Hn(|e[2 E_Hn[(n-2n8/9)2]. Further-

more, it is easy to see that

L(n-2n®%)2] = Lo (1-2071/%) 717175 17V

[nn] L1+ 0(1))2n™ /9717

KD%zn]_]7n_]7/9 ]

| A

Hence, it can be concluded that

E_K[n1/927z n]-17 ? ~(p-3)

n-n8/9

(5.37) Jg

[ { (61-r)2f(e,r)g(|e|2)de]dr.

2

Case 1: p=1,2. The argument here is similar to that used for J4.

Case 2: p > 2. Again employing Assumption viii), (5.37) reduces to

n
(5.38) 9 < KIn2mn17 [ ydy

n-2n

= Kl[n]/g_@n n]-]7[n2_ n2(-| _ 2n—]/9)2]

- K(&zn)_]7n_]7/9+2-]/9(1- n—2/9)

K(oan)™ " > 0.

| A

Finally, considerfﬁg . By Theorem 4.1, ¢ can be approximated by

s(r) = r 1 (1+0(1))

for large n and, hence, large r. Some simple algebra then implies that

(5.39) (907 - 1)? < Ke72[(0y - r)2+ Jog - r| +11.
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The same arguments used for . 62 are now used to show that. Eﬁ tends to

zero as n » =, ||
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APPENDIX

Verification of (5.9): Recall that ¢ = NnDr']]. Since AUBUC = RP,N_

is given by

N, = foif(e.r)g(]o|%)do

- [ oyf(0.r)g([0]%)(1-H_(]o]%))de
B

+ée]f(e,r)g(|e|2)de] .

By the definitions of N and Ao Nn can be written as

Nn =N - Ayt

Similarly, Dn is given by

D
n

1]
O

i

=2

Now consider the following algebraic manipulation:

N-An N-2

,
R I I (R T
n 0y, T D - 51

=~
1]

N-A Y
n n
D [] + D_,Yn ]

A Y N-x

N _"n_'npr " "n
=D~ 1 * D[D—yn]

it
-©-
1
>
=
L)
]
+
=
=
<
=
DI
——

Lemma A.1. Jg > L

Proof: Let ay = p']T+-1 and a, = a]+-1, where T is as given in Theorem

3.2. Define the set ® by

9 = {6|/§?_§iei 5_/55} P PPN
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First, note that ® is a non-empty, compact subset of @ . Furthermore,
if 6 € ®, then i) exp(elr) > 1 and ii) by Assumption v), g(]e]z) > 0.

Therefore, it is clear that
Jy > [ of expl-3[o]|%3a(]o]%)do .
8

Since the integrand on the R.H.S. of this expression is a bounded, posi-
tive, continuaus. function of ¢ on ® and & is compact, the desired con-
clusion follows. ||

The following lemma is needed in the proof of Proposition 5.2. The
proof of this lemma is identical to that given in Berger (1976b), Lemma

3.2.8.

Lemma A.2.  Assume that (¢n on n <r<n-n'". Then uniformly in r,

i) vim [H (AP = 0

and i) Tim [s(+%)r]” = 0.

N->00

Proof of Proposition 5.2: The key to the proof is the approximation of

¢;(r). First define the sets G, and,a2 by

o, = to: [[0]%-v? < 2 v and [o]% < 0%}
and
G, = {e: ||e|2- r2| > 4 r? and |e|2_§ n’}
. 2, _ o 2 2 ...
Since h ([8]") = 0 if |e|” > n", it is clear that
(A.1) Nk = [ 2 2 2
: x = [ (ro-oey)f(e,r)g(jo]")h ([o]")de
G
+ [ (re,-02)f(e,r)a(le]5)h (|o])do
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Call these two integrals I] and 12 respectively. First, consider I2' By
noting that hn(|e|2)5_1 and then applying Lemma 4.1 with M = g+ 3, 12 can

be bounded by

(A.2) 12 < KT—(q+2)

for n (and hence r) sufficiently large. Since Lemma A.2,i) implies that

[Hn(rz)rzj'] + 0 uniformly in r,(A.2)can be written as

¢ 2
(A.3) I, < K" (r°)

for sufficiently large n.

Next, consider I]. Again, by Taylor's Theorem

(A.4)

g(lel2H, (le]%) = ta(r)H _(r¥)

+ (lél'z-'rzig'('P"?Z)H-?n.(rlz)i+%(!él-z?rz)_zg“(rf)»fin(rf

+ {(1o12-rP)g (D) (V2) 3+ (0] 22" (r]IH ()

TG

2 1 2 3 2
where r E[Er Al 1.

Let 8y, 8,, and @5 denote the quantities in brackets ({}) in(A.4).
We now substitute B+ By + B3 into I] and integrate. Consider B -

Since Hn is monotone, for all r%_e[—;—rz,% r2]
Given this fact, B4 js treated exactly as in Theorem 4.1 yielding

(A2
(A.5) [ (oyr-69)f(o.r)m de = - Kyg(rDH (W) +2 TU) w01y,
G ! 9(r®)

)}
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Note that I, has been absorbed by (A.5) by the result of (A.3) and
Assumption vii). Note that the bound in (A.5) is equal to Hn(rz) times
the corresponding bound'in Theorem 4.1.

Now consider By First, as above and as in Theorem 4.1, ignoring

lower order terms, the integral of Bo is given by

(A.6) g(rP)H! (r?) [ (re;-03)(]6]%-r%)f(o,r)de ~ K 2).

1 2r2q(r2)H'(r
n
Gy

1
Finally, consider By - Let

2
Iy = Gj (re1 - e])f(e,r)BBde‘.
1

Then, it is clear that

(A7) I < [lreq-eff(le]?-r2)*F(e,r)

KElg' (F3)[1H (P |+ g (ref) [ (rd) [ 1o

Applying Assumptions iv) and vi), and Lemma 5.1, we obtain

I, < ke g L(s (BN 21+ s(r¥)) (o n®) 7
fIvo; - 0] (o]~ v*)2f(0,r)do,
and so
(A.8) L < K g(r2) (s (b2 P14+ s(r¥)) (0an?) VT .

3
Combining the results of (A.5), (A.6), and (A.8), the desired approxi-

mation for N; is

(A.9) N; = -K]g(r

172
e g-(%)—) o) I+Ike (s (r2) T (s () Ty
g(r
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The next step is to approximate Dn' By the same arguments as above,
but using one less term in the Taylor series representation, it can be
shown that

(A.10) D = KyrPg(rPH (K2) {1+ K(rs(r?)) ™ +0(1)} .

-1

Finally, since (rs(rz)) +~ 0 uniformly in r, a simple manipulation

yields

(r?)

" 2)]+ o(1).

n
Hn(r

2
* — -2 I( )
¢n(r) = -p {142 [Eiifi?;]+ o(1)} - 2 [

Now, recalling the result for ¢*(r) in Theorem 4.1, the proof is

complete. ||
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