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Summary

The problem of estimating a p-variate normal mean (p>3) under
arbitrary quadratic loss is considered. Any estimator, having uniformly
smaller risk than the maximum Tikelihood estimator 60, will have signif-
icantly smaller risk only in a fairly small region of the parameter
space. A relatively simple minimax estimator is developed which allows
the user to select the region in which significant improvement over 60 is
to be achieved. Since the desired region of improvement should probably 6

be chosen to coincide with prior beliefs concerning the whereabouts of thé

normal mean, the estimator is also analyzed from a Bayesian viewpoint.



1. Introduction

Let X = (X ,...,Xp)t have a p-variate normal distribution with mean

t

1

vector 6 = (61,...,9p) and known covariance matrix t. It is desired to
. t
estimate 6, using an estimator &§(x) = (6](x),...,6p(x)) , under a quad-

ratic loss
(1.1) L(6,6) = (0-5)%q(e-5),

Q being a known positive definite matrix. An estimator will be evaluated

by its risk function
R(s,8) = E [L(6,8(X))],

j.e., the expected loss (or mean square error if Q = Ip).
%

The usual estimator §”(x) = x is inadmissible if p>3, a surprising

fact discovered by Stein (1955) (for Q =-% = Ip). Estimators having
uniformly smaller risk than 60 for the general situation above have been
found by Berger (1976a, 1976b, and 1979), Bhattacharya (1966), Bock (1975),
Casella (1977), Hudson (1974), Judge and Bock (1977), Kariya (1977),
Shinozaki (1974), Strawderman (1978), Thisted and Morris (1980), and many
others in spherically symmetric or other special cases. Indeed, the class
of estimators better than s° is almost embarassingly large, in that it is
very difficult to choose one among them for actual use.

The basic difficulty is discussed in Berger (1980a), namely that any

estimator better than 60 is, unfortunate]y, significantly better only for

6 in a fairly small region (or subspace) of the parameter space. Hence
selecting an alternative to 60 corresponds to selecting the region of the
parameter space in which significant improvement is desired. It is conven-

ient to think of such a region as, say, an ellipse of the form



(1.2) {e: (e-ﬁ)tA-](e-u) < pls

where p specifies the center of the region and A determines the axes and
orientation of the ellipse. It is natural here to think in Bayesian terms.
Indeed it seems inescapable that one would want to choose the region of
significant improvement to be that region in which it is suspected that

6 resides. Hence the point u can be thought of as a prior guess for o,
and A as a prior covariance matrix for 6. We will interchangeably view
the problem as a Bayesian would (u and A represent the prior mean and co-
variance matrix) and as a non-Bayesian would (n and A determine the region
of desired improvement in risk).

In this paper, a relatively simple minimax estimator (uniformly bet-
ter than 60) will be developed; an estimator which allows the direct
incorporatioh of u and A and achieves its major improvement in risk (over
60) in the region specified by u and A. This estimator thus provides a

reasonable solution to the selection problem.

Before proceeding, several explanatory comments are in order, first
for Bayesians. The problem, as formulated here, is decidedly non-Bayesian
in outlook. A Bayesian, after determining u and A, would tend to construct
around them a particular prior, and then calculate the Bayes estimator.

The concern that an estimator have risk uniformly less than that of 60 is
irrelevant, at first sight, to a Bayesian. Of considerable importance to
a Bayesian (or at least to many Bayesians), however, is the robustness of
the estimator with respect to misspecification of the prior chosen. (Any

prior that is written down is, after all, only an approximation to one's

true prior knowledge.) Consideration of possible misspecification of u



and A and of the chosen functional form for the prior leads one to worry
about risk properties of the Bayes rule. (See Berger (1980a) and Berger
(1980b) for discussion of this and for earlier references.) A Bayesian
could consider the desire to have risk uniformly smaller. than that of 60
to be a desire for the greatest degree of robustness possible, in that
60 is minimax and is the "noninformative priorf Bayes estimator, implying
that even complete misspecification of the prior (here, complete misspecifi-
cation of p and A) will not have disastrous consequences.

A non-Bayesian may question the need to specify u and A. The need to
specify u, the point towards which one "shrinks", is fairly well accepted,
it being easy to see that the region of significant improvement of any mini-
max estimator is concentrated about p. The need to specify A is less
clearcut, however, and so an example seems in order. The following example
deals with a minimax estimator developed independently in Berger (1976a)
and Hudson (1974). (This estimator will also be needed in the later develop-

ment.) Define

(1.3) P = (1 -"—(ﬂ—U— " k) + s
[ |x-u]|?
where l|x-p||2 = i'] ']¢ ) and r is any positive nondecreasing

function less than or equal to 2(p-2). This estimator has risk less than

that of 60. Note that GBH

shrinks towards u, but does not incorporate A.
(It can be shown to correspond to a particular, rather unrealistic,choice

of A.)

Example 1. To see what can go wrong with GBH, assume p = 5, Q = 15, I is

diagonal with diagonal elements {10,1,1,1,.1}, and the b, are thought

likely to Tie between 0 and 2. Thus we would 1ike an estimator which does



well in, say, the ellipse (1.2) with u = (1,1,1,1,1)t and A = Iz, or, in
Bayesian terms, feel that ﬁ and A are reasonable as the prior mean and
covariance matrix. Sticking with the Bayesian language for clarity, we
roughly expect the unconditional distribution of X (averaged over the
prior) to have mean u and covariance matrix (f+A) =.($+15). Hence, very

crudely, we expect to observe
. i N
[Ix-u] % 2 tr (37107 T = e

But then GBH(X) will tend to be very close to x itself, which indicates that

0 in the desired region.

the estimator will improve very little upon &
Indeed this is the difficulty that usually befalls anyone trying to auto-
matically apply a fStein estimator" in a nonsymmetric situation: the
result is usually very close to x itself, indicating that the estimator

has not been appropriately centered and scaled by p and A.

The above example indicates that A can be an important component of
the analysis. Even more striking difficulties are encountered if certain
of the ei are much less accurately specified (apriori) than others, i.e.,
if A has a wide spectrum of eigenvalues. Then le-ull2 will almost
certainly be very large, leading to very little improvement. Note that A
and { with wide spectrums tend to be the rule in multivariate analysis.
Before leaving the discussion of A, it is important to note that the
amount of improvement (over 60) that can be obtained in the specifjed region
is inversely related to the size of the region. When A is very large, there
will be only a small amount of improvement in the specified region. There-
fore, unless one has reasonably accurate prior beliefs about at least some

of the 6.5 it is a waste of time to use anything but s,



An important qualification and Timitation of this work should be
mentioned, namely that it is designed for situations in which the data are
of no or little use in determining A. As an example in which the data
can be used to estimate A, suppose it is felt apriori that p is of the
form uo(],...,])t (i.e., the 0 have a common prior mean uo), and that

A is of the form

ATy

0 AL

where both k and p-k are moderately large. Then A] can be estimated by
k

%-.Z (xi—ik)z (where ik = %-.Z Xi)’ and A, can be similarly estimated.
Re;;lnab1e estimators for th};]situation, estimators probably better than
those suggested in this paper, are developed in Efron and Morris (1973).
Another such example, discussed in Efron and Morris (1972), is the so-called
matrix of means problem. This arises in, say, trying to simultaneously
estimate several fexchangeab]e" regression equations. It is often possible,
in such a situation, to completely estimate A from the data. Stein (1966)

and Stein (1974) also deal with situations that can be interpreted as

involving estimation of A (and u).

The difficulties in the theory dealing with estimation of A (or
certain features of A) from the data are that (i) the theory has only been
developed for a few very special symmetric cases; (ii) the answers in the
special cases seem drastically different, so no easy frecipe? can be
given; (iii) it is not clear how and when to combine data estimates of
facets of A with subjective estimates, a necessity when p is not very

large. The problems in developing a comprehensive general theory thus seem



to be considerable. Actually, the majority of multivariate estimation
problems probably lack the necessary symmetries or a large enough dimen-
sion to make estimation of features of A feasible. Hence the results in
this paper, which are based mainly on subjective determination of p and
A, should be widely applicable. (As will be seen later, the estimators
proposed here can be easily adapted to deal with situations in which u
can be estimated from the data, such as when u is thought to be of the

t

form uo(l,...,]) . Thus only estimation of A itself is really precluded.)

In Berger (1980a), a robust generalized Bayes estimator using u and

A was developed. The estimator 1is given by

RB,.\ _ (o) E ) T (x-w) -1
) = (I - A - s
> P (X-u)t(¥+A)—](X-u) ROAY o)

where r is a certain increasing function which can be reasonably approxi-

(1.4) s

mated by r(z) = min{p-2, z}. This estimator was shown to provide sig-

nificant improvement in risk (over 60) in the region specified by u and A,

but unfortunately is not necessarily minimax (i.e, uniformly better than
60). It is thus of interest to develop usable minimax estimators incor-
porating u and A. (Many statisticians, the author included, do not feel
that minimaxity is an absolutely essential criterion for an estimator,
particular since minimaxity is dependent on the (subjective) Toss structure
assumed. Nevertheless, there are those who would feel hore comfortable

0 was a uniform improvement, and in any

knowing that their alternative to §
case a good minimax estimator is needed as a base of comparison for non-

minimax estimators.)



A very complicated minimax estimator incorporating u and A was developed
in Berger (1979). In this paper a much simpler and easier to evaluate
minimax estimator is developed, one which can be easily and usefully applied.
This estimator is constructed in the next section, and an important special
case js given. The third section of the paper compares this minimax esti-

RB and more common Bayes estimators, indicating the effect of

mator with &
insisting on minimaxity. Generalizations and concluding remarks are presented

in Section 4.

2. The Minimax Estimator

BH and a

The estimator that will be proposed is a combination of §
minimax estimator developed in Bhattacharya (1966). The estimator of
Bhattacharya, as generalized by Berger (1979), can be described as fol-
lows. Suppose that it is desired to estimate 6 under loss

2
= * - * * *
(2.1) L(8,8) 121 qi(ei 61) , Where af > a5 > ... 3_qp,
and that it is known that, in estimating ej = (e],ez,...,ej)t under sum of

(j)(x) = (cs](‘]')(x),...,cs.(j)(x))JC is

squares error loss, the estimator ¢ i

minimax. Define the estimator GMB componentwise by

2.2) o () =g |

j=1(q§—q§+1) a§3><x>,

where g*,. is defined to be zero. Then

pt1

Lemma 1. SMB is a minimax estimator of e under the loss (2.1).

The above lemma is Application 1 of Berger (1979), although the idea

of the proof can be found in Bhattacharya (1966). After a suitahle



transformation of the original problem, it will be seen that the estimator

MB with the 6(j) chosen as in (1.3).

we seek is §
To properly transform the original problem, let A be the (pxp) ortho-

gonal matrix such that
e S
(2.3) Q* = A(§+A)™= IQI(f+A)™® A is diagonal with
diagonal elements qy > Q7 3:..3_q§,

and define

ol

(2.4) B = A(4+A)% 41, X* = BX, % = Be, f* = ByB%, u* = By, and A* = BABL.

The problem of estimating 6* under loss E q?(e?-s?)z, based on X*, }*,
i=1
u*, and A*, can be easily seen to be equivalent to the original problem.

The reason for considering this transformed problem is that, in Bayesian
terms, the improvement that can be expected by shrinking a particular co-

ordinate in a Bayesian fashion is roughly (in the diagonal case)

qici4/<012+Ai)’ where qi, GiZ, and Ai are the corresponding diagonal ele-

ments of Q, §, and A. (This will be indicated in the next section.)
Hence the above transformation rescales and rotates the problem so that
the true "importance" of the ith coordinate is indeed accurately measured

MB

by q?. This 1is crucial, in that s = forces minimaxity by, in a sense,

ignoring coordinates with Targer indices (to the extent necessary).

In the following, it will be convenient to use the notation yj to

denote the first j components of a vector y (i.e., y. = (y],...,yj)t), and

Cj to denote the (jxj) upper Teft corner matrix of a matrix C.

To empToy Lemma 1 in the transformed problem, minimax estimators of
e*j must be found for sum of squares error loss. We also desire these
"subproblem" estimators to incorporate p* and A*. An extremely fortunate

fact can be observed in the transformed problem, namely that (f*+A*) = $*2.'



If, furthermore, we are in the diagonal case (where §* and A* are diagonal
matrices), then ($§+A§) = ($§)2. Hence the robust generalized Bayes

estimator for o*J . as defined in (1.4), can be written

(G) Jy - r(||x*j_u*j||2) ; j j j
¥ (x*) = (I, - ] ot o
X J | ]x*\]‘__p*J_l IZ) $ Y (x*Y-p )

5

where }]x*j-u*jllz = (x*j—u*j)t ig'z(x*j—u*j). But this is an estimator

of the form (1.3) (recall that the loss is assumed here to be the sum of

squares error loss), and is hence minimax provided j > 2 (only Go(x*j) = x*j

is minimax if j < 2) and r is any positive nondecreasing function less

than or equal to 2(j-2). Thus the robust Bayes estimator, which is known

to be good in the region specified by u*j and A?, is minimax for the

transformed subproblems. Note that G(j) is minimax regardless of whether

or not {* and A* are diagonal. When §* and A* are not diagonal, 6(j) need

not correspond exact]y with the robust generalized Bayes estimator, but

it still utilizes p* and A* in a reasonable fashion and should perform well.
The only remaining concern is how best to choose the function r above.

From the viewpoint of maximizing improvement in the region corresponding

to p and A, the choice r*(z) = min{2(j-2),z} is reasonable. The conjugate

prior Bayes rule (known to perform very well in the specified region)

corresponds to r(z) = z, but to guarantee minimaxity r must be bounded

by 2(j-2). Hence the use of r* allows 6(j) to perform like the Bayes rule

as long as possible, consistent with minimaxity. Thus the recommended

subproblem estimator is

(2.5) G(J)(X*‘J) - (IJ _ m'ln{Z?;l] ZJ ;;T*‘]‘U*\]H } $*-] X*J *J) + 11*‘]
x*J o %

where (j-2)" equals (j=2) if j > 2 and equals 0 if j = 1.
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The search is now ended. ‘The G(j) in (2.5) can be used in (2.2), the
resulting esimator being guaranteed to be minimax‘by Lemma 1. Transform-
1ng”ba¢k to the original coordinates eStab]féhes the following summariz-
ing tﬁéoreﬁ.

Theorem 1. For the original problem of estimating 6 under the loss (1.1),

MB

the estimator 8, defined as follows, is minimax:

_ _ p . .
(2.6) 1876003y = @t (at-ar, el ((m0)d),
J=1

where the q? (recall q;+] = 0), B, and G(j) are defined in (2.3), (2.4),
and (2.5). |

The above estimator is easier to evaluate in the diagonal case, so
we state for convenience

Corollary 1. Assume that Q, f, and A are diagonal with diagonal elements

95> o?, and Ai’ respectively, and that the Xi are indexed so that

. 2 - .
q? 3_q§ 3,..3_q;, where q? = qio?/(oi+Ai). Then a minimax estimator of
6 is given, coordinatewise, by
O
2.7 P00 = % - 5 (o) [ § (a3
THA;

. j
where | [xJ-]|? = L (x,mu )2/(c%+A ) and G, = 0.

MB

Comment: When A = cf and Q is a multiple of i'], 8" reduces to

MB _ . 1 2(p-2)
- ] = { s } - s
87 (x) = (1 - min{g o B o) J(x-u) +u

which is a version of the James-Stein estimator. Observe also, that if the
expression in square brackets in (2.7) were 1, then the estimator would be

the conjugate prior Bayes estimator.
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3. Evaluation of the Minimax Estimator

In this section, the improvement offered by GMB (over 60) will be

MB RB

evaluated. Also, & ~ will be compared with s and the standard Bayes rule

for the problem. Attention will be restricted to the diagonal situation,
B

and, for ease of calculation, the following simpler versions of 6MB and 6R
will be considered:
* - -
R (x) = (1) - —— R )T w) + s
C(x-u) (FHA) (x-n)
and (see Corollary 1 for definitions)

2

+
MB* % 1 * (j-2)
8.0 (X) = Xy - —5—— (X;-u; ) [=% (g*%-q..,) ——=1.
2 * L, + 2
1 EENC-UD I RIEIERY
These estimators are undoubtedly worse than GRB and GMB; the use of (p-2)

instead of r(llx—ullz) introduces an undesirable singularity (as x > u) in
s"B*. and the use of (j-2)" instead of min{2(3-2)", ||xJ-uJ{|2}, besides

*
introducing such singularities, causes GMB to generally be farther from

MB

the conjugate prior Bayes rule than ¢ The improvements actually obtained

RB MB

using 6 = and 6 ~ will thus probably be even greater than the improvements

calculated here.

We are interested in measuring, in some fashion, the improvement in

risk’(over 60), in the region specified by u and A, that can be obtained

RB* MB* e 3
~and 8~ .. A natural way to do this is to average the

through use of &
risk over some prior distribution for 6; a prior concentrated near the
specified region. Since n and A can be interpreted as a prior mean and
covariance matrix, it is reasonable to choose as the averaging prior a
np(p,A) distribution (to be denoted w). We will thus compare the Bayes

RB* MB

risks (i.e., r(m,8) = E'[R(6,8)]) of & and § * to that of 60. Note

that
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r(n,60) = E"[tr(Q4)] = tr(Q}).

Note also that if = really was the true prior distribution for the prob-

lem, then one would want to use the Bayes estimator

sB(x) = (Ip-¢($+AY])(x-u) s x - $(+A) N (xen),
which has risk
(3.1) R(6.68) = trig(I-5(4+A) ) EQUI-$(+A) D) + ot (3+A) T Thag(+a) !
“and Bayes rigk
(3.2) r(m,6B) = tr(a) - tri(A) Tiod

0 p
r(m,s ) - ) q?
i=1

B 0

Since r(m,8) is minimized by §°, the maximum possible improvement over §

(for this measure of average improvement) is c]ear]y'g q?. It is also
clear that q? does indeed reflect the amount of improlé$ent obtainable in
estimating 055 a fact used in ordering the coordinates in the derivation
of GMB.

The calculation of r(n,GRB#)'was carried out in Dey (1980), the con-

clusion being

(3.3) r(1,6787) = r(m,80) - ( %- E

MB*

Finally, the Bayes risk of & is given in the following Temma.

Lemma 2. If = is a Wp(ﬁ,A) prior distribution, then

q¥ - 2 E —;-[?- o . z -——]
3 23 1 (i-T) =1 93

*
J

"
=
—
=2
-
=5

(3.4)  r(w,s

A
=
P
=
»
o>
o
N
1
il ~10 Il D10
w
O
-3
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Proof. Given in the Appendix. ||

Using (3.2), (3.3), and (3.4), it is easy to compare the potential

improvements (over 60) of GB, GRB*, and SMB*, namely . E q?, (1-%) E q?,

i=1 i=1
and

J=1

g* g* (i-1)
Eq*+25—11-z—y-1 I 2
jo3 1 jo3 1 i-1) . qg ?
respectively. Thus, taking a Bayesian approach but using the robust

generalized Bayes estimator costs about %— E q? in potential improvement,
v - i=1
while insisting on a minimax estimator costs at most (q? + qg) in potential

improvement.

These "costs" in being robust or minimax are often not excessive,
particularly for larger p. (See, however, Remarks 2 and 3 in Section 4,

which are concerned with certain other problems arising when p is large.)

RB

Although for small p these "costs" can be large, recall that and

MB RB* MB* (

§ ~ are probably considerably better than & and § especially for

small p where the singularities have greater impact). Hence the true

"cost" should be substantially less than indicated above for small p.

R B

It is important to recall why § B and 6M are usually preferable to

B B

§°. The risk of s°, given in (3.1), is a quadratic function of 6, and can

hence be terrible outside of the region specified by u and A. The esti-
mator GRB, on the other hand, rarely has risk much worse than that of 80
(see Berger (1980a)), and hence 1is considerably safer than GB. The esti-
mator SMB, being minimax, is, of course, the ultimate in safety. (Again,

to a Bayesian, the "safety" here can be interpreted as safety with respect

to misspecification of the prior.)
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It should be stressed that, when qf and q§ are large compared with

MB

the remaining q?, then 6§ = can be considerably worse (from the Bayesian

viewpoint) then GB or GRB. Insisting on minimaxity can thus eliminate
most of the potential gains available from prior information when the
coordinates are quite disparate (in terms of the q?). The robust Bayesian
estimator GRB does not suffer this inadequacy, and hence is, generally
preferred by the author when significant prior information is deemed to

be available.

To conclude this section, it is worthwhile to revisit Example 1,

and see how well GMB does.
Example 1 (continued). A calculation gives that 9y = l~$3
4y = 93 = Q4 = ¥» and gz = o15. Thus, defining
. ot
rj(x) = min{1, ———%iiﬁgl§},
| %7 -u7] |
it follows from (2.7) that
2
X; - ——Si———(x ) [ - v (x) + dr (x)}] for i < 4
O B K B R LA 1105 =
MB i
857 (x) = 2

(o8 ’
X; - ——il———(xi-ui)r5(x) for 1 = 5.
(o5+A.)
i
Observe that, if the prior information is correct, then |!x‘.'—u‘]||'2 should
be roughly (j-2)'] so that ry and ry should be around 1. Hence G?B should,

for i > 2, be roughly Tike the conjugate prior Bayes estimator
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Unfortunately, qT is large compared to q5 = %3 SO 6?8 is much closer to
6?(x) = Xy than to 6?. Again, this is unavoidable if one insists on

minimaxity; coordinates with exceptionally ]arge,q$ can not be. shrunk as

much as a Bayesian would desire. Note, however, that Xg is not allowed

BH

to mess up the other Xi» @S it did in the 6 estimator. Thus, for

example, if the problem was to estimate (62, 035 05 95), GMB

BH

would perform

exceptionally well, while ¢ would still collapse back to 60. Incidentally,

sRB will behave Tike

2
X. - ———i———(x.-u.)rs(x)
1 (O +A1) T 71

- a

for all coordinates, and hence will have good Bayesian performance. Finally,
note that if the prior information assumed does not accurately reflect the
Tocation of &, then HxJ-uJH2 will tend to be large, and r,(x) small.

MB

Thus s = will collapse back to 60 automatically when the data seems to

contradict the prior. (Such behavior is, of course, necessary for minimaxity.)
4. Concluding Remarks

Remark 1. In developing u and A, it is often important to incorporate

believed (apriori) relationships among the 8- Certain relationships,

such as a belief in the equality of the ei or, more generally, a belief

that certain Tlinear restrictions hold, can easily be handled in the

framework of this paper. Indeed, assume it is felt that Be = eO with
)t

"accuracy matrix" C (in Bayesian terms, say, C = E“(Be—eo)(Be—e0 , T NOW



16

simply denoting the prior information). Then if B is a nonsingular (pxp)

matrix, it is natural to choose u = B_]eo and A = B_]C(B_])t and proceed.
If, on the other hand, B is not of.full rank, say B is an (mxp) matrix
3am<p) of rank m, simply define Y = BX-6,, n = Be-sy, § = B{B',

MB(

(
6 = (BQ']Bt)'], u=0, and A =C. Calculate § (y) for this transformed
(

m-dimensional) problem, and use in the original problem
(4.1) 5(x) = % + Q'8 [ (Bx-0,) - (Bx-8,)].

This estimator is minimax by Theorem 2 of Berger and Bock (1977), and is

tailored to offer significant improvement over 60 in, say, the region
) to=1/pa.
{6: (Be—eo) C "(Bs eo)gm}.

As an example of the above ideas, suppose it is felt that the 8, arise
independently from a common prior distribution with unknown mean 6*. This

could be modeled, as above, by choosing B to be the (p-1) x p matrix

1-1 0. ... 0
0 1T-1T0... 0O

0ver o .. 01 -1
b

choosing eO = (0,...,0)", and letting C be the matrix

where

_e*)]z = 2T2,

= F'rn - 2 _ pm
a=ETlo;-0,,41" = E [(ei-e*) - (8549

T2 being the believed prior variance, and
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2 2
b = E"[(05-0,,1)(6.,1784,5)] = ~E"[64,q-0%1% = -1,

Note that it is necessary to (subjectively) estimate Tz. The estimator
(4.1) can be seen, in this situation, to be an estimator which shrinks
towards a point (in symmetric situations the grand mean) determined by
the data.

It is also possible, in the above example, to use prior information
about the value of e* (if aVai]ab]e). To do this, simply add the row
(0,...,0,1) to the matrix B above, define 0, to be (0,...,0,66), where
66 is the prior guess for e#, and let C be as above with the addition

of a pth row and column of zeroes, except for the (p,p) element

2

C = E"(e*-0%)“ (representing the believed accuracy of the guess for
0

psp
the common mean). The result will be an estimator which shrinks towards

a point determined by both the data and subjective knowledge.

Remark 2. The estimators considered in this paper "group" all coordinates
together, in the sense that all of the xj are involved in the estimation

of each 0, There are several situations in which this is probably not
desirable. One such situation is when, say, q (and maybe q2) are much
larger than the other q;- Then one might well want to sacrifice minimaxity,
using separate (though still robust) Bayesian estimates of 01 (and maybe
92). The point is that the relatively unimportant coordinates should not
be given the chance to foul up (through say misspecification of the corres-
ponding M and Ai) the important coordinates. Of course, if minimaxity

is insisted upon, at least the third coordinate must be given the chance

to foul things up.
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Another situation involving a_fgrouping" probiem is when it is felt
that the My and Ai are less accurately specified for certain coordinates
than for others. It may be desirable to then group the coordinates accord-
ing to the accuracy of the prior specification. See Dey (1980) for results

on this problem.

Remark 3. For large p, another modification of the estimators suggested
here is probably desirable, namely "truncation" of large coordinates as
suggested in Stein (1974). The problem is that, when p is large, some of
the 6, can be expected to be fout]iersf with respect to the prior beliefs
(or, equivalently, the prior distribution may well have fat tails). Such
outliers could result in an excessively large value of (x-u)t($+A)'](x—u),
and hence cause the estimators considered here to be essentially equivalent
to 50 (as in Example 1). To correct this, Stein (1974) proposed (for the
symmetric estimation problem) truncating large values of the Xg

To apply this idea to our situation, consider estimators of the form

(1.4), and define
v = (3HA) E(x-u).

The estimator (1.4) can then be written

2 1
sRB(x) = x - f%lf%_l. $(3+A) 72 v,
v

Next, Tet w, = |v.|, and define Wipy SWipy S eee WGy to be the ordered

W . Finally,for some integer k < p, define

)t

z. = (sgn vi){min Wi’w(k)}’ and z = (21""’Zp

1
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Clearly Z, is simply Vi truncated so that its absolute value is no
larger than the kth order statistic of the lvil. If the prior input
(1 and A) 1is "correct", then the Vs should be small, so that truncating
the Vi as above will indeed protect against outliers. Using these trun-

cated variables, the estimator of interest can be written

2
rr( ) 1
sPBT(x) = x - iliill— F(3+A)7F 2,

where r-. should now be calculated as if the dimension were k. (The trun-

T
cation effectively reduces the dimension to k.)

The integer k should be chosen to be some appreciable fraction of p,
say k = <ap>, where 0 < o < 1 and <y> denotes the smallest integer greater
than or equal to y. From Stein (1974) and more detailed studies in Dey
(1980) for a variety of possible situations, the choice a = .7 seems

quite reasonable when p is very large. For smaller p one must be more

careful, and an overall choice of k such as
k =3+ <.7(p-3)>

might be reasonable. (Another possibility, which we don't pursue here, is
to choose that k which maximizes (k-2)/|z|2; the idea being (assuming

re = k-2) to let the data choose the truncation point.)

To develop a truncated version of GMB and prove that it is minimax, let
(see (2.3), (2.4), and (2.5) for definitions ) Gj be an orthogonal matrix
such that Cﬁifog is diagonal, and then define
y(3)

()

o457 ey, W) <

(sgn vgj)) mih{ng), W
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Finally, choose

(4.2) s ety = x| (@)

() oy - ol min2((@2 2008 ¢ .
e =t - B _,.le_(j)|zlz o),

and define SMBT as in (2.6), with (4.2) used for 6(3).

Using the subproblem argument of Section 2, it is clear that to

MBT it is only necessary to verify that 6(3) is

establish minimaxity of s
minimax under sum of squares error loss. This can be done using integration
by parts (after firsf diagonalizing * - the reason for the presence of the
C% in the definition of a(j)), along the lines of thg proof for the sym-

metric case in Stein (1974). For brevity, the proof is omitted.

Remark 4. When § is unknown (or partially unknown) and a reasonable esti-
mate of it is available, simply plugging the estimate into SMB or 6RB
seems to work quite well. For example, with even a moderate number of

MB will probably still be minimax

degrees of freedom for the estimate of f, ¢
and offer substantial improvement over 60. Proving this in general is
enormously difficult, however, since the ordering of the q? will depend on
the estimate of {. (For certain special situations, minimax results can

be established along the lines of Comment 3 of Berger (1979).)

Remark 5. A variety of previous investigations (see Brandwein and Strawderman
(1980) and Berger (1976c) for certain results and other references) indicate
that the improvement of the estimators discussed here (over 60) will not

be particularly dependent on the exact functional form of the loss and den-
sity. For most Tosses that are symmetric in the errors of estimation and
many densities (such as the t), the estimators suggested here should sig-

0

nificantly improve upon s . (Of course, for non-normal densities, the
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sample mean or least squaresestimator may not be appropriate at all.) No
matter what the Toss or density, however, the matrices Q and § are still
very relevant. (See Berger (1976c) for appropriate definitions of Q and

I when dealing with general location losses and densities.)

It is interesting to observe that GRB does not depend on Q. This is
because 6P is a (generalized) Bayes estimator, and in Bayesian estimation
with quadratic loss the (generalized) Bayes estimator is the posterior
mean, regardless of Q. Whether this freedom from Q is considered a lia-
bility or an advantage of GRB probably depends on whether one is a Bayesian
or a non-Bayesian. Note that any minimax estimator must depend heavily

on Q.

B MB

Remark 6. A continuum of estimators between &~ and & ~ can be defined

RB somewhere in the middle), allowing one to compromise between the

(with s
minimax and Bayesian viewpoints to any extent desired. One could, for
example, determine the maximum risk one is willing to suffer, and then find
the "most Bayesianf estimator in this continuum subject to it having a
maximum risk less than or equal to this predetermined maximum. The imple-
mentation of such a program would be a difficult numerical problem, how-

ever, and usually @ither GB, GRB, or GMB will be adequate.

Appendix: Proof of Lemma 2.

Il ~10

In Dey (1980), it is shown that if . a% = 1 for i=1,...,p, and

j=i
8* 1is given coordinatewise by

il _G-2)" o]
<1 -3 G (xgmugdtugt

Hx) = T o
TR\ e,
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then

P i oyt
r(m,8%) = r(ﬂ,ao) - E a¥ - ¥ -2)" 3[2 Z ;T aJ]
i=1 ' g=i Y
* .
Clearly §MB* i just &* with o = q¥ 1(q* -q%,,). Observing that
i j+1 :

UL AR LI -1
L oo = Z q% (a3-a%,q) = o} (ag-a}),

it follows that (for simplicity of notation dropping the "*" from the q?)

MB*) _ p(m,eY)

-2 E g ii:gli’(qj’qj+]) + E éL" E iiégli'(qg'Q§+])-

i=1 j=i i=1 % j=i

(A1) r(m,s

Summing by parts shows that

i iioyt
: E : Z ig—%l_'(qj'qj+1)

(3=2)*
A2)

i=1 j=i

Z Z J+2-qj+3)

Jj=1 i=1
p-2 p-2
p .
= z q; (recalling that Upe1 = 0).

i=3

Next, defining i* = max{3,i}, it is clear that

(j-2) " Nt e 2y 2 1
(A3) jzi k (q qJ+1) = qi* -2 JE1* J(q qJ+1)

Combining (A1), (A2), and (A3), it follows that

r(m, 8 - r(n,80) = - E q; - 3-(4L-+<j—) qg +2 E al E_ }(q2 q§+1

i=3 92 i=1 % =i

§
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It thus remains only to show that

(A8) (= + h)a5 + 2 E] z
it

q. -
=2y [1-p4 .
9 9% (65-e501) 123 SRV

=T J
To establish (A4), induction on p will be used. For p=3, (A4) can be

verified by direct calculation. Thus assume (A4) holds for p=n, and we

must show that it then hd]ds for p=n+l. _Now»(neca]]ing that A1 = 0),
1 n+l
1T .1,2, .M 1,2 2
=+ g+ 2 ) — ) 5(a3-q5,4)
e A T S A
1 . 2q q n

1 1,2 oy " 1,2 2 1,12 n+1 n+1 1
=-(—+t ey *t2 ] — 1 Fdi-a5,)He ] + E ) -——}

qq 3 1=]'q1 Liw 3779 j+1’ n'n (n+1) n 551 qJ
S AT R R

23 1 i-1 321 q (n+1) n 31 qj

the last step following from the induction hypothesis (i.e., (A4) applied
with p=n, so that q§+1 in (A4) is zero). But this last expression is
precisely the right hand side of (A4) for p = n+1, completing the
induction argument. '

The bound on r(ﬂ;GMB*) in (3.4) follows from the observation that

1

LU
'|q

—t

‘I_
1*

<

2

lll\/.ll
_O

J

since g* > g% > ... z_q; > 0. This completes the proof of Lemma 2. ||
] -
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