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CHAPTER I
INTRODUCTION

Section 1.1. Definitions and Notation

In this section, we briefly discuss the definitions and notation that
are used’throughout this paper. Let X = (X],...,Xk) represent an observ-
able vector valued random variable with values x in a sample space 2 .
Assume X has a k-variate normal distribution with mean vectof 0 and covari-
ance matrix Z. Assume 6 is unknown and let @ represent the parameter

space of all possible values of 6.

It is desired to estimate 6 using an estimate d under the quadratic

loss

L(e,d) = (d—e)tz (d - 68), ' (1.1.1)
where 2 is a known positive definite matrix. The risk of a nonrandomized

estimator 8§ for a particular value of © is defined to be

R(8,8) = E5[L(0,6(x)] = [ L(o,8(x))E(x[0)dx,  (1.1.2)
- x E

where f(x|e) is the probability density function of X given o with respect
to Lebesgue measure. Here E stands for expectation, with subscripts denot-
ing parameter values at which the expectation is to be taken and super-
scripts denoting random variables over which the expecgqtion is to be
taken. -

An estimator 8y is defined to be as good as 8y if

R(8,87) < R(0,5,) | (1.1.3)



for all o cw . The éstimator 81 is said to be better than 62 (or domin-

ates 62) if, in addition to (1.1.3),
R(9.87) < R(e,s,) (1.1.4)

for some p €@ . The estimator § is admissible if there ex%gp; no better
estimator, and is inadmissibie otherwise.

We will be concerned with prior information about the parameter 6,
that is, information available before X is observed. A convenient way of
describing information about ¢ is by means of a probability distribution
called a prior distribution on @ . We denote the corresponding prior
density with respect to Lebesgue measure (if it exists) by =(6). Given
an estimator s(x), the Bayes risk of 6§ is then defined to be

y(m,8) = E"[R(6,8)] = [ R(6,8)n(6)do . (1.1.5)
: ®

If the prior density n depends on1y on a parameter A, we will denote the
Bayes risk of § as y(A,s) instead of y(m,8).

| An estimator 8y is said to be better than P with respect to a prior
a if

Y(Was]) < Y("Tscsz) . T (].].6)

In this paper, we will often consider sum of squares error Toss in-
stead of quadratic loss as in (1.1.1). This can be done without Toss of
generality by transforming the problem by D% . Defining Y = gédg
n =% 240 and d* = 2 d for the estimation of & in the k-variate normal

1 1 )
problem, we have Y - Nk(n,z*) where 1* = 325 n 2 . The Toss (1.1.1) is

then reduced to

L(e,d) = (d-o

which is sum of squares error 10Ss.



Section 1.2. History of the Problem

Let X be a k-variate (k > 3) vector normally distributed with mean
o and known positive definite covariance matrix z, that is X ~ Nk(e,x);
Assume the loss in estimating o is (1.1.1). The classical estimator
s%(X) = X is the MLE and MVUE. For the squared error loss function; that
is 2= 1 in (1.1.1), and for ¢ = I, James and Stein (1961) QEQWed that §°
is inadmissible when k > 3 and that the estimator |

5(X) = (1-%” | (1.2.1)

has uniformly smaller risk than §%. Since the work of James and Stein,
many generalizations have been done.

The James-Stein estimator shows the greatest improvement over the
_‘MVUE near the origin; likewise most alternative estimators.show substan-
tial improvement in only a particular region of the parameter space.
Therefore if a user wants to find an estimator which is significant]yb
better than the usual one for his problem, he should specify a region in
| which he would 1ike the substantial improvement to occur. In other words,
utilization of prior information concerning 6 seems necessary for the de-
velopment of good alternative estimators. If the user.does not have any
prior knowledge concerning the parameters to be eé%%méted: then he may as
well use fhe usual estimator, since any improved estimator will be un-
likely to show much 1mprovemeht at the true va]ue of the parameter.

The James-Stein estimator allows incorporation of information about
‘the prior mean but its main drawback is that it does not incorporate the
higher order moments of the prior in order to adjﬁst its regjoﬁ of signi-
ficant improvement. From this point of view, Berger (1980) developed a

generalized Bayes estimator for this situation which incorporates prior



information in the form of a mean vector i and a covariance matrix A.

For n > 0, Berger considered the generalized prior density

1 1
g, () = [ [BO)|? expi-0tB(0) Tor2n (1K 2)gy  (1.2.2)
0

']c—z, 0<x<1andc=p(z+tA) for some-con§%€ht o. The

where B(Ar) = A
above prior has extremely flat tails, so that the resulting generalized
Bayes estimator is very robust. The estimator which Berger found can be

written as

2 -
s (x) =+ (1~ YUl Crelrem) ™y oy 2

2
|1 X-ul|

where [ [X-u]]% = () ¥z +A) T (X-).

The estimator §*(X) is robust with respect to misspecification of
prior information, is admissible and is sometimes stable in the ridge
sense. Also when k, the dimension of the problem, is large and the prior

-informétion is correct, ¢*(X) will perform like the Bayes estimator using

the conjugate normal prior.

Section 1.3. Work in this Paper

In this paper we will consider two types of robust>§enera1ized Bayes

estimators. We will consider the robust generalized Bayes estimator giv-

en as

( X 2 +A)_-I
) = (1 - 1 i :: :T;z(z ) X, (1.3.1)
X - -

where |[X[|2 = Xt(Z+A)_]X, n= (k-2)/2, o = (k-2)/k and
[
v [ A exp{-av/2}dx
v, (V) = 32 : (1.3.2)

[ a1 expi-av/23dr
0
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Explicit formulas for vy, exist and are givén in Berger (1980). Also
the motivation for the choice of n and p is given in Berger (1980)- 0ft-
en we will consider a 51mp1er version of the above estimator to work with,
namely

(k=2)z(z+A)! v

s(X) = (I - . )
|1x11° =

(1.3.3)

The Bayes risk of (1.3.3) will be obtained easily and explicitly but the
estimator definitely has some disadvantages compared to (1.3.1). The
main drawback is for small X.'s, ||X]|2 becomes small, so that the shrink-

ing factor blows up which makes the estimator bad.

Subsection 1.3.1. Introduction

The major problem which does arise in the case of the robust general-
- jzed Bayes estimators is that the prior may be bad since it forces the co-
ordinate to act together. The performance of the robust generalized Bayes
estimator is best when all coordinates are similar or can be transformed
so that they are similar. As for example, if there are two groups of sim-
ilar coordinates, that is the variation within the groups is small and be-
tween the groups is large in some sense, it will probably be better td
estimate each group separately. In terms of a priar, ihisgcan be inter-
preted as saying thé ei's should be separated into independent similar
groups.
| We will assume that the k-parameters can be divided into s-many
groups of sizes k]’k2""’ks’ where kQ > 3, for all ¢ = 1,2,...,s and

E] kz = k...Sometimes the groups are formed by a natu?é]rdecomposition,
%;ke left handed or right handed players in baseball (Efron gnd Morris

1973). Also the groupings may be done on the basis of prior information.
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We will use a robust generalized Bayes estimator in each group and also
“in the combined problem.

The estimator which will be used to estimate the whole parameter set
will be called the "Combined Estimator" and the estimator which will be
used to estimate thé groups individually will be called thé?fSeparate Es-
timator". The "combined" and the "separate" estimators generally have
" risk functions which cross, that is, the performance of one estimator is
better than the other in one region and worse jin another region. There-
fore, we will use criterion involving Bayes risks to decide whether or
not to.separate.

The prior used to develop the robust generalized Bayes estimator is
not felt to be absolutely correct, so we want to investigate the Bayes
risks of the robust rules under an assortment of plausible priors. To.
obtain the Bayes risks of the combinéd and the separate estimators, we
will assume that the prior distribution of 6 has mean p and covariance
matrix ©. We will consider first the conjugate normal prior so that the
Bayes risks can be computed easily and then several flat tailed priors.

To compare the combined and the separate estimatbr»in terms of the
Bayes risk, we will consider the sum of squares error 10;5 function. The
origind] loss was transferred to sum of squares error loss in Section 1.1,
so that the Toss for the combined estimator is the sum of the losses of

the separate estimators.

Subsection 1.3.2. Previous Results on Separation
In the following, some previous results concerning the problem of
separation will be discussed. First, the results of Efron and Morris

(1973b), concerning the problem of separation of James-Stein estimators



will be discussed. Next, we will consider the results of Stein (1974)
in which the modification of individual coordinate is sharply Timited.

A. Efron and Morris' Results. Efron and Morris assumed that

g = (91’62""’6k) could be naturally divided into two groups as
6 = (6(1),6(2)). If 6 = (5(]),6(2)) was an estimate of o, thgﬁ the loss

function for estimating e(i) was assumed to be

| 1 2 .
Lieayemy) T Byl T b

and that of estimating 6 was
L(e,ﬁ) = —ll(_ IG"GIZ 2

where k = k1 +'k2.

The authors suggested the scale invariant estimators

S:
-1 - k=2 3 -
where
3 2 —1
57 Bl 3705

and Py the "relevance function" determines the relevance of the two

groups of the observation X(]) and X(2) to the estimation of O(i)' The
k.-2

choices pj(X) = 1 and pj(X) = -%:?--%- will lead to the combined and the

separate James-Stein rule respectively. The authors defined the concept

of the "relative savings loss" and obtained the results of separation in

terms of the relative savings loss.

The main drawbacks of Efron and Morris' results were, they did not

use an additive loss function and the estimator they used was not a good
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one. Therefore, unlike the James-Stein estimator, we will choose the ro-
bust generalized Bayes estimator. Our approach will also differ in terms
of the estimators. Instead of relative savings loss, we will consider
the Bayes risks of the combined and the separate estimatoh.

B. Stein's Results. Stein (1974) considered a modificat%gﬁ-of the

James-Stein estimate which Timits the amount by which any coordinate of
the estimate can differ from the corresponding coordiﬁate of X. The esti-
mate he considered was based on order statistics. He was trying to pro-
tect against flat tailed priors. He computed the relative efficiency of
the estimate with respect to the James-Stein estjmate in the case where
the oi's were independently normally distributed with variance~r2, Just
to make sure not too much was lost. From the numerical efficiencies, he
concluded that the loss due to trungation (for a normal prior) was small
enough.

We will explicitely consider the case when the prior has a flat tail-
ed distribution and find the optimum truncation point for several such

priors.

Subsection 1.3.3. Summary of Resu]fs Obfﬁined»in this Paper
Given a set of coordinates, it is known partially what shrinkage
type estimators to use. It is not known however what coordinates to use.
In the case of estimating the mean vector of a multivariate normal dis-
tribution, the question of choice of coordinates is considered. In this,
the question often arises whether to use all coordinates in one combined

shrinkage estimator or separate into groups and use shrinkage estimators

on each group.
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We consider the robust generalized Bayes estimator in the combined
and the separate problems under various priors. Wé first consider the
case of acéurate]y specified priors and show that, somewhat surprisingly,
the combined estimator is better than the separate estimator. In Chapter
2, it is assumed that the prior mean ¢ has a k-variate normal distfibu—
tion with mean 0 and positive definite covariance matrix,A.>fIIfis assumed
that » and A are block diagonal matrices with block sizes kz 5_3,
2 =1,2,...,S; so that the problem is decomposed into S-many groups with
wEﬁ group size kz‘ If an individual group size is less than 3, then the
maximum 1ikelihood estimator is used instead of a shrinkage type estima-
tor for that group. It is proved then that the combined estimator given
in (1.3.3) is better than the separate estimator based on S-groups, in
_ terms of Bayes risk under the normal prior. The separate estimator for
the QEh-group is defined as

(k2'2)222(22¢+A22)i] X

2
2 Xy !

(1.3.5)

where Zog and AM are respectively the 2Eb-partition matrix of » and A

2 _ gt -1 T
and |[X )17 = X(Z)(222+A22) X(p)" . -

The estimator of the form (1.3.1) is then considered; the correspond-

ing estimator for the zzh-group is then defined as

2 -1
Tn (I|X(2)|| /92)212(222+A22)

§, 5 (X) = (1, - =% )X, y»  251,2,....5.
“ XylIF )

(1.3.6)

where n, = (k£-2)/2, o, = (k£—2)/k2 and Y"g(.) is defined as yn(-) in

(1.3.2) with n replaced by N, 2= 1,2,...,S. By Monte Carlo
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Simulations, it is indicated that the combined estimator is better than
the separate estimator with respect to Bayes risk under normal prior for
érbitrary groups.

In Section 2.2 of Chapter 2, a minimax estimator is considered which
was developed by Berger (1979). It is assumed that £ and Aiére diagonal
with diagonal elements satisfying some conditions. It is then shown
that under a normal prior, the combined minimax estimator is better than
the'separate minimax estimator. In Section 2.2.1, an example is consi-
dered for the two groups case which is not covered in the theorem, and
it is indicated that the combined minimax estimator is better than the
separate minimax estimator.

In Chapter 3, various flat tailed priors are considered. The 8
are independently given flat tai]ed‘pkiors so that the coordinates are
not forced to act together. Again it is indicated numerjca]]y that the
combined estimator of the form (1.3.1) is better than the separate esti-
mator (1.3.5) under the flat tailed prior. In Section 3.2 of Chapter 3,'
the asymptotic results for separation are discussed. The combined esti-
mator of the form (1.3.2) and the separate estimator bf §he form (1.3.5)
are congidered. It is shown that for a normal prior, asymptotic separa-
tion i; worse. In general, however, asymptotic separation is shown to
be worse only when.the fourth moment of the prior is small enough.

In Chapter 4, we consider the queétion of inclusion of extreme ob-
servations, when a flat tailed prior is suspected. The motivation for
consideration of flat tailed priors is that most likely the;ei will be
occuring according to é flat tailed prior. This question was first stud-

ied by Stein (1974), who obtained partial answers.. Stein considered a

truncated estimator based on order statistics. We consider a broad
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c]aés of flat tailed priors in Section 4.3 and get the optimum trunca-
tion points in each case for the shrinkage estimator. )
Finally we éonsider in Chapter 5, the situation in which part of
the prior 1nformation may be "misspecified", corresponding to a situa-
tibn in which certain coordinates have much less prior information than
others. It is assumed that x|6 -~ N (6,2), & = N (0,A) and Eﬁé‘problem

has a decomposition into two groups of size k] and'k2 respectively. It

is assumed that one of the groups, say the second group, is misspecifi-

“ed, that is, it has less certain prior information than the other. The

amount of misspecification should be incorporated to develop the gener-
alized Bayes estimator in this situation, as will be discussed in de-
tail in Chapter 5. However for the sake of tractable ca]cu]ation,hwe
will assume that the amount of misspecification o, is reflected only in .
the unconditional covariance matrix Qf the second g%oup. This amount
of misspecification ¢ can roughly be considered to be the ratio of the
uncertainties in the guesses for the prior variances of the two groups;
It is then shown that if p # 1, asymptotically (i.e., the kl > w,

2 = 1,2) separation is better. It is also shown asymptotically that if

k, = gk,and o =1+ —_ then under the misspecifjgafion model,
T /&y

1
Tim A 2 0 accordihg as Y2 z 2(1: ) , where A represents the difference

)

1 .
of the Bayes risk of the combined to the separate estimator. It is

clear that A > 0 implies that separation is better. Thus asymptotical-
ly a region is obtained in terms of the amount of misspecification,
where separation is better. - “

In Section 5.3 and 5.5, attention is restricted to the finite case

and the region where the separation is better is obtained numerically.
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Some tables are made for different cases. It is also indicated how
large k] should be so that the asymptotic bounds coincide with the nu-

merically obtained bounds.
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CHAPTER TII
SEPARATION UNDER NORMAL PRIORS

In this chapter we will consider the separation problem dhder nor-
mal priors. As before we have the problem of estimating the mean of a
k-variate normal distribution under the squared error loss function,
L(o,s) = ||e-6||2. We will assume that e has a k-variate normal distfibu-
tion with mean 0 and positive definite covariance matrix A. Although a
normal prior may not be very realistic, it allows explicit calculation of
ﬁthé Bayes risks of the estimators we are considering. Other more flat
tailed priors will be considered later.:

In Section 2.1, we will consider fhe estimator of the form (1.3.3),
both in the combined and the separate problems for ease of calculation.
We will show that the combfned estimator is better than the separate es-
timator. Then we will consider the estimator of the form (1.3.2) ahd in-
dicate similar results by Monte Carlo simulation.

In Séction 2.2, similar results will be obtained for the minimax

estimator as defined in (1.3.7).

Section 2.1. The Separation Problem for the Robust

Generalized Bayes Estimator

Subsection 2.1.1. The Bayes Risk Calculation -
We have X|o -~ Nk(e,z)'and 6 ~ Nk(O,A). Assume & and A are positive
definite with characteristic roots d]’dZ""’dk and 15855 .-,8) respec-

tively.



14

Without loss of generality we can assume the prior mean u iS zero
(providing the prior mean has been correctly specified), so that as in

Berger (1980) the risk of the estimator (1.2.3) reduces to

R(0.6*)
= tri+ Bl ZY(leléz/p) ttr 2 (zeA) - 2Xt(£+A)i]Z§1§#A)-]X }
C a2 ) e ) T PO P ) o ) xS
‘ 2 >
| [X}] 11X
(2.1.1)

where IIXII2 = Xt(z+A)']X and y' is the derivative of y. For the estima-

tor (1.3.3), y(lleIZ) = k - 2, so the risk of (1.3.3) is given as

R(0.6) = trz+ E [~ 2K2) rer 320m)7 1 2X"(z+A) 52 (+A) "1 }
s 8 2 . 2
X[ | X
. (k—Z)ZXt(Z+A)-lZZ(Z+A)~]X 1. (2.1.2)
[1X]]

Now it is clear that marginally X ~ Nk(O,z+A), so that the Bayes

risk of the estimator & defined in (1.3.3) is given as

y(Ais) = FAIR(6,6)] |
= try +EM- g—(I—<:g%-{t1r 2 (z+A) "1 2Xt(Z+A)_]Z§(Z+A)f1X
| 1X] [IX1
o (k2)2x ) P o) (2.1.3)

Nk

where EX(-) stands for the expectation under the marginal distribution

of X.

To evaluate the Bayes risk in (2.1.3), we have to calculate the ex-

pectations of the terms in the bracket.



We know X ~ Nk(O,Z+A), S0 Xt(Z+A)'1

with k-degrees of freedom i.e., IIXII2 ~ Xi . Thus,

K
e > -]
X 1 1 1 .-y¥/2¥y2
E l=—¢ [ye7""°(5) dy
Tz w jve
_r(k/2-1) _ 1
2r(k/2) k-2 °

Now let @ be a kxk orthogonal matrix chosen so that

_ .t -2 -3
A= 0 (Z+A) 2°(z+A) =20

is diagonal, with diagonal elements Ay 2 Ay > e 3-Xk > 0.

: _1
dom variable Y be defined as Y = ¢ (z+A) =X. Thus we have

HX]1% = xbz+a) T = vy

and
: k
K (eem) e e = B A v = ] ALY
i=]
Therefore,
k
2
ALY
Xe Xt(z+A) 152 (z+A) X R
e ; 1= e[ T
[1¥]] Y
LY
. : i=1 _
= ] ; Ay = ] tr 7 (Z+A
k(k-2) s210F k(k-2)

15

X has a chi-square distribution

if;_ (2.1.4)

Let a ran-

(2.1.5)

(2.1.6)

(2.1.7)

using Lemma 1 of the appendix, since Y?, i=1,2,...,k are independent

2

Now we get the Bayes risk of (1.3.3) by substituting (2.

(2.1.7) in (2.1.3) as

X and by the additive property of the chi-square d1str1but10n, Z Y
- 1 = .

K2

4)
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k-2 1 -

y(Ae) = trn - (52) o xf ) (2.1.8)
Similarly, the Bayes risk of (1.3.5) is given as
(A ,8, y) =trz - (E&:E)tr o (zr +A )—] L =1,2 s
YRG0 () T WM 2y k, YRR AT L 223
i’——i"’» (2.].9)

We will now use the above calculations to prove the following.

Subsection 2.1.2. The Separation Theorem Under Normal Prior

Theorem 2.1.1.  Assume that X|6 -~ Nk(e,z), 9 ~ Nk(O,A) with loss

L(o,8) = |]o- 6||2. Suppose we have s groups of size ky,k,,...,ks sk, > 3,
S
t t t .
= P = K. = ERRE s X y 1
¢ =1,2,...,s and QZ]kQ k. Suppose X (X(1) X(s)) where X,y 1s
kQX1, ¢ =1,2,...,5, and the corresponding partition of £ and A has the
form
1 A
0 0
Zop )
%= _ and A = ) ,  (2.1.10)
0 ) 0
Zss Ass

where Yo and Azz are kQXkR, 2= 1,2,...,5. TheTﬂFhe cpmb1ned estimator
(1.3.3) is better than the separate estimator (1.3.5) in terms of the
Bayes risk.

Proof.  Define

A= Y(A’S) -

1 o~

Y(Agaa(l)) s , (2.].]])

2=1
which represents the difference of the Bayes risks of the coimbined and
the separate estimator. Using (2.1.8) and (2.1.9), (2.1.11) can be writ-

ten as



S

S
: k- - 4 2 -1
A=trz - (Ek—a) tr 22(z+A) T yotr Zoo ¥ Z (k—) tr LM(ZM*AM)
2=1 =1 L
k -2
k-2 , 3 2 -1 2 -1 : ) k-2
< —E-{ZZ] tr o (2 *A ) - tr 27(z+A) 7}, (since, kK, < =)
= 0.

This completes the proof. || e

Subsection 2.1.3. Monte Carlo Simulation Results

In this section a Monte Carlo simulation study for the separation
prob]ém will be discussed. Simulating normal random variables, the Bayes
risk of the combined estimator (1.3.1) and the separate estimator (1.3.5)
will be calculated. It will be indicated as in earlier results of this
section, that the combined estimator is better than the separate estimator
“1in terms of the Bayes risk under a normal prior.

Berger (1980) showed that if A is ihe true covariance matrix of the
prior, then C is chosen as C = p(z+A) where p = (k-2)/k. Therefore, in
our simulation study, we have considered p = (k-2)/k for the estimator
(1.3.1) and o = (k2~2)/k2 for (1.3.5). We have considered the case where
both » and A are diagonal with diagonal elements (d]’dZ""’dk) and
(a],az,..:,ak) respectively. It is assumed that weﬂhavé two groups of
size k] qnd k2 with k1 + k2 = k. The simulation procedure consists of
generating M standard normal random variables. Then making a nonsingular
transformation, normal random variables with desired variances are obtain-
ed. The di's and ai's are chosen in such a way that the unconditional
variances of the Xi's are not much different within thé-broups but signi-
ficantly different between the groups. This would 1ntu1tive]; be the
case in which one would be most Tikely to want to estimate the groups

separately.
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Let us define the difference of the Bayes risk of the combined esti-
mator (1.3.1) to the separate estimator (1.3.5) as
S n,

a, = v(A8") - Z] v(A,8,7) (2.1.12)
9=

n A on, T

where y(A,s") = EM[R(o,5")] and y(A ,8,%) = E Q[R(e(z),é Y152 = 1,25 and
R(0,6") are obtained from (2.1.1) by substituting yn(|IX|[2) for y(]lXI[Z).

In Table 1, values of Ay have been calculated. We have set k = 10
and M = 1000. We have given c; = d1 +as, i=1,2,...,k as input data.
Subgroup sizes of 4 and 6 have been considered. The standard error of
the values of B is found to be about .05. Table 1 shows that all values
of A, are negative, which indicates that the combined estimator is better

than the separate estimator.

Table 1

Difference of Bayes risks for combined and separate estimators.
(under normal prior)
M=1,000, K-=10

K] (C1), i=1,2, ,10 A

4 - (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)° - .78
4 (11, 11, 11, 11, 11, 11, 11, 11, 11, 11) - .13
4 (2, 2, 2, 2,11, 11, 11, 11, 11, 11) - .53
4 (1.01, 1.01, 1.0%1, 1.01, 11, 11, 11, 11, 11, 11) | -1.06
6 (2, 2, 2, 2, 2, 2, 2, 2, 2,°2) - .79
6 (2, 2, 2, 2,11,11,11, 11, 11, 11) |- .3
6 (2, 2, 2, 2, 2, 2, 3, 3, 3, 3) - .63
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Section 2.2. The Separation Problem for the Minimax Estimator

In this section the separation problem for the minimax estimator will
be considered. The prior will be assumed to have a normal distribution
with mean 0 and covariance matrix A. As in Berger (1979), the minimax

estimator is defined as &'(X) whose iEﬁ component is given by

K 5. -
s1(X) = ] alel(X), T (2.2.1)
3 - |
; . k . .
where 0 j_ag <1, a% =0 for j <iand ) a% = 1. The estimator &9 (X)
j7i
is chosen here as
’ . o153 (pdapd)]

sx) = (1, - L=2iz'(z ;A ) (2.2.2)

’ 1] -

]XJ, and 9 and A are the (jxj) upper left

where [|Xj|[2 = th(2j+Aj)_

“corner matrices of » and A respectively. The separate minimax estimator

will be defined as in (2.2.1) with dimehsion replaced by k,, £ = 1,2,...,s.
As before, we have X[o ~ N, (6,2) and & ~ N, (0,A) so that

X ~ Nk(O,Z+A). An orthogonal transformation ¢ is made on E(Z+A)f1x such

that

A= ot o , (2.2.3)
is diagonal, with diagonal elements

A 2 Ap 2 e Z}\k>0. (2.2.4)

Let us now define as in Berger (1979)
Ai/xl if 1<k
O:f = s : (2~2-5)
o= ming ULy s =1 ford = e
2= L of) (2.2.6)
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[1-; (1-0%,,)]

. if i<k
Yi [1- 1 (1 D *)1] - ) (2.2.7)
1 . if 1>k
and
0 , 1f o<
ol = o (2.2.8)
*_ K - A% :
eiega )l Tji] e I
pTL]_TJ(]_pJ)] 2=3+1 L

We will now evaluate the Bayes risk of &' as defined in (2.2.1) under the

normal prior.

Subsection 2.2.1. The Bayes Risk Calculation for the Minimax Estimator
In this subsection we will compute the Bayes risk of the minimax es-
timator §' given in (2.2.1).
Lemma 2.2.1. Let z = diag (d]’dZ"f"dk)’ A = diag (a],az,...,ak) and
v (A,s") be the Bayes risk of ¢' as -defined in (1.3.7). Then

k k .
Y = ) o3 (322 v 3
Y(A,§ ) = trz 123 A jéi oy (55712 Z o5 a3}
2 k . j
< -2 g
= oAy ¥ o335 7 Gt -adr L (2.209)
i=1 =3 &gi .
‘ 42
Proof. - Clearly from (2.2.3), Ay =3 1d , i=1,2,...,k. Then we have
7Y
i - -4 2
s3(X) = (1 - L L5 ., di=1,2,....k, (2.2.10)
B oy
and hence from (1.3.7) o
k Ao .ok y, ko ad(§-2)"
(s%(x):zaw-d—‘%)x—[-d—‘z ‘.2 .,
j=i i fd]e iog=i x|
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k. + X if X>0
since o) = 1, where X =

j=i ! 0 if X<0

Now the Bayes risk of &' is

(o) = El1en-s]1% = £} (000 - (b ] ﬁai(i_ﬂ X121
y(A,8') = §'-0 = =0.) - \g— : EENE
R I I
= (2.2.12)
Let us define gi(X), for all i = 1,2,...,k as
_ 0 Ay ; a%(j-2)+ ( )
g.(X) = - 1 A X 2.2.13
! Gosont
Now
S Iz< ag(j-2)++ 2, X I2< o3 (5-2)*
g =S e —— — . s
8Ky 7 i 2192 di agrdy 555 xd))°
(2.2.14)
Thus by Stein's basic identity as in Hudson (1974),
o kOaBE kWl
R S R () J e e
i=1 dy 3= [[X]]
+ B4 - /20 N W S I
=1 27 e IR izl.HWIXJIIZ
(2.2.15)
Now usiné Lemma 1 of the appendix,
v X a;+d; |
' ——=—F ) = 7= R j 2.
(IIXJII4) G2y for j > 2 (2.2.16)
‘and o
) .
X X a;+d;

> 2. (2.2.17)

E™( : — ) = = for
? 2 (ij,-2) °
ST 3142 2



Therefore,

Thus

Y(A,(SI) =

fl

tr 3

tr x

tr 1

tr ¢
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= tr p + z [ z o (§-2)° = A
i21 df  jEmax(i.3) iG-2)
¥ 0. 9(31-2) (3,-2)
fegreg, (OO
k Ai E ) a1+d1
t 4 ot (j-2) ==
i=1 3479 jEmax(i,3) | iG-2)
5§ j |
= 2 A d-(j—Z) .
i=1 1jzmax(i,3) 1 G-27
= B ) MU B B) M
I A O e e B
T J=1 j=1 =3+
K k a‘}-. k |Z< j
4 Z)\. z _— - 2 z ). o
k k N k K K '
oG | £ g
=t 25540 45 Ty,
2 k . k k kK . .k .
Do LeddPiede | o ] fadide ] o2
=1 J=3 LT N EE R = pmjer 1
k k .
2 1% 1 o1 (339)
i=1 j=max(i,3)
“ ks . k .
Jri=2y. J Q
)\- a-(*—){a.‘kz U'_Z} i
121 1323 I gzj+1
k k . k
J 13-2yv,. J
A- o (—-.-){a +2 CX.-’Z}
";3 1J§1 Vo ,Q,Z,j'i'] !
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k kK . . j .
=trz- | A ] od (332 (2 % a%—a%}
| i3 =i 'Y 2=1
T S . K.
- Yol ag(ljg){Z Ny a%—ag} » (since } u% =1).
i=] Jj=3 2=1 j=i

This completes the proof of the lemma. ||

Subsection 2.2.2. The Separation Theorem for the MinimaifEstimator
In the following theorem we will show that the combined minimax esti-’
mator is better than the separate minimax estimator under a normal prior.

Theorem 2.2.1.  Assume that X|e ~ N (6,£), 6 ~ N, (0,A) and the loss is

L(e,s) = ||6—6||2. Suppose A is defined as in (2.2.3) with diagonal el-
ements Aj satisfying (2.2.4). Assume we have s groups of size k],kz,...,

S

k., k >3, 2=1,2,...,5, and Z k. = k and that the groups are form-

“ed in such a way that within each group the xi's are the same, that is

A= diag{x],...,x1 3 Aoseeeshg 3oeee 3 AS,...,AS}. (2.2.18)

K ko Kg

Then the combined minimax estimator is better than the separate minimax
estimator in terms of Bayes risk with respect to the normal prior.
Proof.  Let us now define, for convenience of notq}ioﬁ,_the sequence of
partial sums )

T sk tkgt vk, n=1,2,0,s, Toz 0. (2.2.19)
Since the xi's are assumed to be equal within each group, it follows from

(2.2.5) to (2.2.8) that

J - .
o 0 for j# T]’TZ""’Ts

¥ >0 for g=1,2.....s ., (2.2.20)
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and

can also be written as

k ok 2 . Kk i i
Y(As') = tr oz § oA ] o) (135)-2 7 a7} (58a] ] o
i=1 " j=max(i,3) J i=1 ' j=max(i,3) g=1
(2.2.21)
Now, using (2.2.18) to (2.2.20) we have
K k 2, s Ty s T T2
Loa o (325) = 1 oA, ] I od(4—)
=11 j2max(i,3) J =1 7 A=T, 4+ = J
(2.2.22)

T
Y(A,6') = trz- ] A, ¥
Ce=1 =

1l
o+
g
™
!
~1
>
=
-
—-Il =
S
I~ =
——
I g 0
jo]
<
g
[p]
It
ot
s
™~
1
t~1
>4
——~
_l{
A
=
-
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Therefore an upper bound for vy(A,s') is

S TQ—Z 7
v(A,8') < trz - EIAQ(-—T—)kQ . (2.2.24)
2= 2

Now using (2.2.5) to (2.2.8) we have for the h group
{ 1 if j= T2

0 otherwise |, = (2.2.25)

2=1,2,...,5. Hence using (2.2.25) and Lemma 2.2.1, the Bayes risk of
sty & =1,2,...,s, reduces to
vy o 2% -
v(A,e2) =trz, - EE Tk 2= 1,2,...,s.  (2.2.26)
Q‘ .
Now the difference of the Bayes risk of the combined and the separate

minimax estimator is defined as

S
A= vy(A,8') - ¥ v(Ag.8,). - (2.2.27)
2=1
Now from (2.2.26) we have,
S S TR—Z
221 v(A,.8,) = trx - 121 AQ(—T}kaQ : (2.2.28)

Therefore using (2.2.24), (2.2.27) and (2.2.28), the proof is complete.

- Subsection 2.2.3. Numerical ExaﬁB1e
In this section we will compute the Bayes risk of the combined and
the separate minimax estimator for the case of two groups in certain.situ-
ations not covered by the theorem of the preceding subsection. The in-
dication is again that the combined estimator is bettef:
In Table 2, we have considered k = 10, with two groups aof different
sizes. We have put the Ai‘s as inputs and compute the ag's and hence the

Bayes risk (2.2.9). Similarly the Bayes risk of the separate estimator
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in computed.  In all cases il i observed that the difference A of the
Bayes risks of the combined and the separate estimator are negative which

indicates that the combined estimator is better.

Table 2

Differences of Bayes risks for combined and separate minimax estimators.
(under normal prior)

k = 10

kT (x1), i=1,2, »10 A
3 | -22.7857
4 -23.0741

(10, 10, 10, 10, 10, 1, 1, 1, 1) .
6 . - 5.5000
7 | - 3.3571
3 : - 5.7437
4 - 1.3413
5 (10, 10, 10, 1, 1, 1, .1, .1, .1, .007) - 1.5669
6 ' - 0.2044
7 | T - 0.2360
5 (10, 10, 10, 10, 4, 4, 4, 1, 1, 1) -11.1048
6 (4, 4, 4, 4,4,2,2,2,2,2) - 5.3333
6 (4, 4, 4, 4,4,1,1,1,1,1) - 4.0000
6 | (2, 2, 2, 2,2,1,1,1,1,1) - 2.6667
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CHAPTER III
SEPARATION UNDER A FLAT PRIOR

In this chapter we will consider the separation problem for the ro- -
bust generalized Bayes estimator under a fTat prior. In Section 3.1, we
will assume that X]’XZ""’Xk are independent normal with E(Xi) ='01 and
v(Xi) = d; (known), for all i=i,2,...,k. Unlike Chapter 2, a class of
flat priors will be assumed. This class of flat priors is no longer de-
pendent on |6] and has flat tails to reflect the possibility of outliers.

As in the Tast chapter, we will find the Bayes risk of the combined
estimator (1.3.3) and the separate estimator (1.3.5) using the flat pri-
or. A Romberg extrapolation method will be used to eva]uafe the inte-
grals involved in the Bayes risks evaluation.

In Section 3.2, we will consider the asymptotic results for separa-
tion. We will consider the combined estimator of the form (1.3.3) and
the separate estimator of the form (1.3.5). Thenﬁgndér,the assumption
of diagdha] covaridnce matrix and finite eighth moment o%:the prior,
we wi]]levaluate the difference of the Bayes risk of the estimator
(1.3.3) and ‘the estimator (1.3.5) for large k. We will show that under
a normal pr%or, the difference is negative. We will then show for gener-
al priors that, under the assumption of a finite eighth moment; the dif-
ference is positive if the fourth moment of the prior is too large.

This is discouraging, since the fourth moment of the prior is rarely

knowable.
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Section 3.1. Numerical Results for a Flat-Tailed Prior™

Assume that, 01|A1 Indep. N](O,b(*i)), i=1,2,...,k where the Ai

-
are independent and identically distributed with density f(2A) = nxn_],

C:
forn >0and 0 <x <1, and b(x) = 5= - dy, i=1,2,....k. The c;'s

M)
1 -
i=1,2,...,k are such that Cy - di > 0 for all i = ]’2}"'?33, The gen-

eralized prior density for ei is

1 2,.n-1
exp{- 0:Ir. dA.. (3.1.1)
Ai ZB(Ai) 11 1

It can be shown asymptotically (for large ej) that gn(ei) behaves 1ike

c-l(o.)"2n

; , for some constant cq- Thus 9, represents a class of flat

prior densities.

Subsection 3.1.1. The Bayes Risk Calculation
Let us assume 3 = diag(d],...,dk), A = diag(a],...,ak) and
¢ = diag(cy,...,c ). Clearly X;[x; IM%P- y (0,c./2.) for all i = 1,2,
.»,k. Thus taking ¢ = £ + A and using (2.1.3) we have that the Bayes

risk of (1.3.3) is

kK d2 -
Covhe) = trr - 2(k2) ] P e g
=1 S £
i=1 4
; 4 2
- i

1, (3.1.2)

—
-t
—_
!

where 1 is the vector i\ = (A],AZ,...,Ak) and where EXIA(-) stands for the

expectation under the conditional distribution of X given A.
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Notice that the unconditional variance of X; is

‘ Leo o ne. ' -
v (Xi) =-g ;; nay dxi = —=, 1=1,2,...,k.  (3.1.3)
Thus in order that v (Xi)< « , one should have n > 2.
It is clear that, to calculate the Bayes risk (3.1.2) we have to cal-

culate the expectations . e

23 Y N B, I, S, (3.1.4)
; 1 42 ; 12 '
'i:] c'i 1 1=] C.i 1
and
2
kK dS k42 2
iy2 d; X
12] Z?-Xi izl El' c:
AL — 1= £ ]
(7 L x%)? (7 X/c;)?
i1 ¢ 1 iz bl
&, X
= .Z] c_ E [ k ], (3.].5)
i=1 “4 '

(1 X5/c)?
i=1

Now notice that since the Ai's are iid, the unconditional distributions

of X§/Ci are indepenident of i. Therefore

2 2 e B

- X5/c. k X5/c. :
kEX[_T—JZ—’E] - 1 [ 1 X[ ‘2 ~]. (3.1.6)

1:
(L Xi/e;) (L Xi/eq) LXires
Usfng (3.1.4), (3.1.5) and (3.1.6) in (3.1.2) we have
2

y(A8) = tr ¢ - iki§l~ V.S, . | (3.1.7)

k
where v = § d?/ci and § = EN[— ! 1.
i=1

We will compute S by a numerical integration technique.
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It is clear that by choosing different values of n, several flat
priors can be generated. Let us take n = 2, for simplicity, and compute
the Bayes risk (3.1.2).

Consider the random variables Zi = X?, i=1,...,k. Clearly
C. N

Zilxi/~ Xl Xf, where x% represents a chi square random variable with 1
i -
degree of freedom. Thus Zi/ci ~ iL~x§. Hence given A the LapTace

i
transform of Zi/ci is

Z:|x; =tZ./c,
2(thy) =€ e T

2t\-3
1= (]*‘X?)

(3.1.8)

It follows that the unconditional Laplace transform of Zi/ci is

o (t) = [j) 2(1 +%-)-:2>\1.d)\1. = 4t é tanh 9 sinh Ze 4tc sinh o cosh ede,

j
the last step follows from the change of variables r» = 2t sinh 26, and

defining 6*=sinh '](1//?f ). Integrating by parts gives

* *

0 0
b (t) = 16t° [ sinh “ado = 16t%(] sinn Sox cosh o%-3 [ sinh “ode}
0 0
= 16t° (7 (3p)¥/2 2L 3 Tsinn 2e- 9797
/7% 20
= JT¥2% - 3t/TF2E + 6t° sinh ~) . (3.1.9)

V2t
Now using the independence of the Zi/c; for i =1,2,...,k, the Laplace
k

transform of 7§

2 . .
L Zi/ci (or 121 Xi/ci) is given as

k

-t Z

1

2 -
Xi/ci

] 1= {(/T+2t (1-3t) + 6t2 sinh — — 1", (3.1.10)
Y2t

Ele

Therefore, by Lemma 2 of the appendix, we have
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§ = E[———1] = [ (/TZE (1-3t) + 6t2 sinh T L 1Kgt.
0 .

Y2t

(3.1.11)
Notice that the expression (3.1.11) involves an improper integral.
Thus to evaluate this by numerical integration using a computer, we need

to approximate the integrand for large and small values.

Subsection 3.1.2. Approximation of the Integral
In this section we will approximate the integrand given in (3.1.11).

Let us_define

F(t) = /TFZE (1-3t) + 6t sinh ' 1 (3.1.12)
V2t :

_We will now study the behavior of F(t) near 0 and e.

Lemma 3.1.1. Let F(t) be defined as in (3.1.12). Then

Tim 2/TF2E F(t) = 1. (3.1.13)
to :
Proof. We have sinh ‘]-7£: = Tog,( -__.+//1+ ) = 1o eil%ﬁ (1+._gi:),
/2t /2t /X JTH%

where X = 2t. Therefore,

S -1 1 1 1 1 ~
sinh ' —— = % log,(1+y) + log_(1+
g ook /TFX
‘ 11 -3
= 3 y-—to(X ")
=4 X 2X2
, 1 1 1

- + - + 0(X-3)}
A 2K T 33/ a(14x)?

1 ] + 1 1 _ oft

-3
- )
e 2028 7 309400372 7 g4 1a2t)?
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Therefore,
6t2/TH0E sinh ~1 1 = 3t2{§]f S o (t™3) 12T (1 +-2Lt)-,%
/2t 8t
L2 1 1 - ] -5/2
+ 6t {1- + - +o(t )}
> JTFPE 3(1+2t) 4(1+2t)3/2
= a(t) + b(t), say.
Now,
- _1
a(t) = 3F - 2+ o(tT)HZE + - o(t7E)y = ¢ VB (17,
2Vt V2
and
b(t) = 62 - 3t T+ )72 4 t(1+.0)7F - 382 (14 )32, o (1oh
/7T 2t 2t 2(2t)372 2t
1
= 6t% - ét £3/2 4 ¢ - I+ 0(t™%)
' /2
Thus it is clear that
2 prme o =1 1 _ .2 2 -3
6t°/1+2t sinh — = a(t) + b(t) = 6t" +t - %+ o(t %).
' /2t
(3.1.14)
Therefore,
__:L — A,i
1im 2/TF2F F(t) = 1im 2{6t° + t - 2 + o(t2) + 1 - 6t - t} = 1,
t*}oo t_)m
which completes the proof of the lemma. ||
Lemma 3.1.2. Let F(t) be defined as in (3.1.12). Then
Tim F(t) = 1. (3.1.15)
t->0 _ :
Proof.  Clearly, 1im /T+2ZE(1-3t) = 1. To find lim t2 sink *1 = tet us
t-0 t~0 2t

define X = ——
/7t

Then
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1im 2 sinh 71 o = 1im —Llog (/14X
-0 y2r X 4X
= tim g 1+ 2],
Xoo 16X7yy /14k hix? |
using L'Hospital rule. Therefore,
Tim t2 sinh T o = Tim L (L3 = 0. - (3.1.16)
£>0 VZE Xew 16XT a2 T |
Hence,
Tim F(t) = lim YTF2E (1-3t) + lim 6t% sinh 1 = 1,
t-0 t-0 t-0 2t
which completes the proof of the lemma. ||
k

Now notice from Lemma 3.1.2 that lim{F(t)}
t->0

3.1.1 and Lemma 3.1.2 it is clear that near zero, F(t) behaves like 1 and
1

= 1. Thus using Lemma

Therefore, there

“ near infinity, F(t) behaves 1ike the function,

: 2/1+2t ]
exists a large number M such that for all t > M, F(t) = , where
| 2/T+2E
! stands for approximate equality. Hence
’&{F(t)}kdt = fa—— % =2 [ (A% (where x = 1+21)
M 2/1+2t 2M+1 2/X
_ 1 1
oK (k-2)(]+2M)~_§—'],

Subsection 3.1.3, Numerical Results

Let us define Sy and v, for the zzb-group as

X |
s = (&) . 1 1, ¢=1.2,....5, (3.1.17)
2 : :

£
2
X:/c.
1ZT + V! .
2-1

and
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L

=<
1
o~ —

d?/ci, %= 1.2,....5. (3.1.18)

=T, 4+l

where TO is defined to be 0 and TZ is defined as in (2.2.19). Now using

- (3.1.17), (3.1.18) and (3.1.2), the Bayes risk of 6(2) as-defined in
(1.3.5) reduces to ‘ ‘

| ] . ]
V(A8 T trzy, - —H— VS, 2= 1.2,s (3.1.19)

Therefore the difference of the Bayes risks A reduces to

2
(k -2) 2
% _ (k-2)
1-—725——— VQS2 T VS. (3.1.20)

>
1]
H~1w

2
Using the numerical integration technique given in the previous section,
the S and Sg's can be calculated and hence (3.2.20) can be calculated.
Note that S and Sz depend only on_the k and kz respectively.

In the numerical study the dimension k is taken as 10 and group
sizes 4, 5, 6 and 7 are considered. Different values of di and c;,
i=1,2,...,10 are taken as inputs. In Table 3, values of the differ-
ences of the Bayes risks of the combined and the sepdrate estimator are
computed for different inputs using the numerica]lgntegrétion technique.
Table 3 shows that the differences are negative, which indicates that the
combined estimator is better than the separate estimator with respect to
- the Bayes risk, even under a flat prior.

Note. For equal group sizes, that is k] = k2, we have S] = $2. Then

(3.1.20) reduces to g

_ 2 (ky-2 .
A:-V{(k_’i)_ S - _]___ S } .
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It is indicated numerically that the expression within the brackets is
always positive and it is clearly constant when k] and k are fixed.

Thus for fixed k] and k, A is proportional to V.

Section 3.2. The Asymptotic Results for Separation

In this section we will consider the robust genera]ized—Bayes esti-
mator of the form (1.3.3). Then under the assumption that £ is a diag-
onal matrix and the prior has finite eighth moment, we will evaluate
the difference of the Bayes risk of the combined estimator (1.3.3) and

the separate estimator (1.3.5) for large k.

Subsection 3.2.1. Evaluation of the Difference of Bayes Risks for Large.k .

Assume that X|e -~ Nk(e,z) where
2 2 2
: )

z = diag(o ’7';’01""’05""’05

k] kS

and the prior on 6 is such that 87:695...,0, are independent with

2
E(0;) = 0, E(65) = 0% and E(65-%)2 =

2=1,2,...,s and the Tg's are defined as in (2.2LJ9): -Suppose also that

£(of) <

V, when T 1< <T s

2-1

< w, for all i=1,2,...,k and o , where T is a constant.

= N

/Gi_j

2
Xe M 2
Lemma 3.2.1. E ['—E__? -1 =2+
%

VZ—ZQ
2. 2
% (o tey

S P N —

5 where EX stands for ex-
+o

pectation under the marginal distribution of X.

2 . o
Proof. We have Xilei ~ N(By,0,)s Ty + 121 T T@erefore
X, 2, 85 Xilo5 o0 8

6 = TE T TO8) = E T(otrel) = oL 4o (3.2.1)

1 1
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Xile; 4.2
We know that E '(Xi_ei) = 302. Therefore,
X.lo. X.Ie.
il o) = £ T -e)t + 4(X;-6.)%0% + o]
_ 2 2
Thus, -
EXx%) = E 302 + 46262 + o]
i i% i
_ 22
= 30, + 6olp£ + VZ +0 .,

(since, E(e?) =V +p (3.2.2)

Now using (3.2.1) and (3.2.2) we have
2 4

+12 P Ly v 1 5y ]
N (g tp,)

X

X
%

il
N
+
=
=

This completes the proof of the Temma. ||



Lemma 3.2.2. EX[ 1__§ =1+ fL +
||X(Q)|| L
Proof.  We have,
IR S
II(Q) _1 2+2
o,y
Therefore,
k k
X Y
L —2—— 1= B[ 5]
1%l Rk

where ¢ is the error.

L i

Observing that the Y? are independent with EY(
Lemma 3.2.1, we have
4
k V-2
1= e A
2 k 2, 2
Xy % (o o)
Now by subtraction, we have
- 2 -
Yo-k
K Z i g
R e A D
LY L g i
.i
2 2
o 1 2 1172
= B {——— - — [ J(¥;-DI%
k, ) Y3 k i
L& %
i
Y [7(v5-1)1° ]
= ' {- ( - =N
ke ) Y? Ky

I A CEa DY R
2

i
Y1-)

+

38

1 and using
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[3(ve-1) 2205 (¥4
1

='E{1 5 Vi }
kz ; Yi
[FOE-DAE-DT LT (e I 0G-1))
oY i i# s
= B 75 2 ¥ 25 2 R
Ky ; Y Ky % Y o

In order to show that e = o(%—), it is sufficient to show the fo]lowing:
(v2-1)3

() Y|-——~7;—- = o1) (3.2.3)

k (Y2-1)2(v2-1)
(33) Q24 > J 1= 0o(1) (3.2.4)
K
and
2 2 2
k (Y4-1 =_1) (Y-
(iii) EY[ g1 )Z(Y% A K ) 1= 0(1) . (3.2.5)
AR -

To show the above, first notice that the conditional distribution of Yi

given g, (T ; + 1 <1 <T)is .
e_i oi
Vilos - 2, 2
//0 +p 02 Py

If g(ei) is the prior density of 0, then the marginal density of Yi is
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f(“y'i) = —;,; f(y1.|e1.)g(a1)de1
2 2
) SRy (y. - 05 )2
i
12 o g "E*pé—*
- ye [ . e : - g(e)ds
2 2
9%y
2
o§+p2 ( e_i . )2
- y — ————
. 20 1 S22
< 14T fe Oﬂ, pQ, (e )de
V! 9195
2
Py
(since —5 < T)
9
< S5 | (3.2.6)
Now to show (3.2.3) we have
2 3 2 3
MR R y5-1]
E° | 2 = f f 5 I f(y;)dy
i e e 1
] s4q 3 .
2 3
o IY1']|
v [ — 1 fly,)dy;
- Zyzia ;‘y'l
Y
= I'I + 12 (Sa}/),
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2
Yi-1 -
Since, Yi is fixed,«—%—— -0 a.s. as kg + o, and by the Kolmogorov
2 k
~ strong law of large numbers, %; ; Y? +~ 1 a.s. Hence i—%?-+_] a.s.
LY
as k, ~ ». Also note that on the set J Y2 > a2,
[ sdsJ
J#i
(v;-1)3 R I N
' R l 2 I(Yi']) = (V-1 )
XY-i VY-i a
i
and by Lemma 3.2.1
E (ve-1)2 < o

Therefore, using the Dominated Convergence theorem I] + 0. Now to show

12 + 0, we have

L= [0y [ —— T fly;)dy,
- 2.2 )} y5 J#i
LYisa g
J#i

(by independence of Yf's)

clearly, [ |y§-1l3f(yi)dyi < » (by assumption).

Now using (3.2.6) - - .

k2-1
——
J -1ty < (2D P —p Uy,
ji 0 dre2 jgi 9 I
k,-1 kg:f__ kg:1
= (]i) 2 (a2) 2 K 2
2m k£+1
F(‘—g—*)

(by Lemma 4 of the appendix).
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ky-3 (1+T)e ' .
Now choosing a = 2M where ? <M < = and using the Stirling's

: k +1
approximation for r( g ), it can be shown easily that 12 + 0. Thus

(3.2.3) is proved.

To show (3.2.4), we will use the identity _ »fii,

2
Y :
Ly = L5 - - . (3.2.7)
Zy1' Z.‘y'i (Z.Y])(Z y1)
i i#3 1#] i
Using (3.2.7) we have,
2 \2,.,2 2 (2, 2
k, (Y5-1)7(v3-1) k, (y5-1)"(y3-1)
AR 12 7z —1- ) — ; 7 1 fly;)dy,
X Y i
O R i#3 i
2 \2, 2 2
ko (y5=1)"(y5-T)y
oy : % ZJ Lo f(y;)dy;
y Y 1
R 1#3 i
(3.2.8)

Integrating over yj, it is clear that the first integral in (3.2.8) is
zero.

Consider the second integral in (3.2.8). First notice that,

1 1
< (3.2.9)
(107 T (1 4P
2#3] % 27,1
Now we can write,
2 2, 2 2 2 2 2 2
k(y)(-)- o k(y-1)( 1)
rk (I y)Q y i =y y2>a2 Z y Z_y i
i#] i o #3 [
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2 02,2 12
© k, (ys-1)%(ys-1)ys
+ f et Lot (y; )y,
= oy 2.2 (Tyyh i
L ypsat Dy
27J

3+ I, (say),

where a will be appropriately chosen. Now to show I3 > 0,*gguhaVe for

fixed Yi and Yj’

kz(Yf-l)z(Y?-1)Y?

- and

J J 50 a.5. as k - =,
(JYD( ¥ :
iJ i
(v;-1)? 2 ]
i lYi']l(] + '7) s
) Y; a
:
K k | k -3
22 < —%— = “g%r' (choosing a2 =~%%T—).
X Yi a ]-'E_-
i#] [

Therefore by the Dominated convergence theorem, I, -+ O.

Now uéing (3.2.9) we have,

- Tk, (V5125 -
Ip< [ 1 (y. )dy.
4= 2\ 2 AN A
-00 Z y2<a2 ( z. ,yl) 3
L LF1,]
7
< J DTy [ ysOg-Ddyy o I fy)dy,
- e 2.2 0) y,)" ety 70
R TN
L1, ] 2
- E(vE-n)2E(y2-1)v2 S ey
B i Ty, 1y,
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Now using Lemma 4 of the appendix, we have

k2-2
k2—2 k2—6 —5—
kz 1+7, 2 kza (Vr)
f T 20 H‘ _f(yg)d\yg < (_2?‘) k
P ykaa? (L ) e (%)
iy M e
(3.2.10),
- g kg3 (1+7) |
Again choosing a~ = W where 5 < M < » and using the Stirling's
k

approximation for F(—&) for large k_ , it is easy to show that (3.2.10)
2 '3

goes to zero. Thus 14 + 0 which completes the proof of (3.2.4).
Now (3.2.5) can be established as was (3.2.4). This completes the

proof of the Lemma 3.2.2. ||
4

‘ s (V -20 )k
L_em323 EX[ k 5 =1+ ‘i— + ]7- z —2"2——22"‘2— + 0(%) .
| 1X]] kT eEl (o)

Proof.  Similar to the proof of Lemma 3.2.2. |

Theorem 3.2.1.  Suppose X|e -~ Nk(e,z) where ¢ and o satisfy the condi-
tion given in the beginning of subsection 3.2.1. Then a, as defined in

(2.1.11), is given as

S o vz-ng s (vj-zp?)Tj
N = le] 2+ 2‘ {Z(TSL—]) + ———“‘—( 2+ 2)2 - Tl Z] ( 2+ 2)2—‘ } + 0(])9
99 Py 997Pq 373
(3.2.11)
where kQ = Tzk, =1,2,...,5S. 3
Proof.  From (2.1.3) we have _
t -1.2 -1
V(As) = trp o+ B 22) e 2yl 2XIGETAL_To(aHA) X
| [X]] | 1X]]
y (k-2)2x ()2 (o) X

x
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2 2 2 2
where A = d1ag(p1,...,p],...,ps,...,ps)
k1' ks
Similarly from (2.1.9) we have
,  (k-2)%] :
y(Ap,ﬁ( )) = k,Q,OQ, - 5D E[ 5 =152, s S
+
o Py o t0, ||X(%9|l -
Thus using Lemma 3.2.2, we have
2 (kg'z)z o 2 Vyo%, 1
Y(Az’a(z)) = kloz - K ) {1+ o F + O(E_>} >
2 o +p2 2 k2(02+pz) 2
221,2,...,5 ,
(3.2.12)
Similarly by Lemma 3.2.3, we have
4 _
S 2 9, s k_ (V -20,.)
2 ,
yhe) = ] kol - LR F e ae e § Tl o,
e=1 k 2=1 cz+pz k™ 2=1 (0£+p1)
(3.2.13)

Now from (3.2.12) and (3.2.13), the difference of Bayes risk (2.1.11)

reduces to
s (k-2)2  o* ) v zpﬁ ¥
p= y 2 2ok {1 + &= +o(—~)}
L T2 2, 2 %, Tk (0 Zo)2 K,
= 3 ALY AN AL
(k-2)2 f: s 1S k(v -2p4-) ,
i e v AL By 21—7“2')2—“+ o))
L= 02 p2 2=1 (
S 04 S G4T S 04 v —2p4‘ S. 204T
R 22{2+ v R N
2=1 o +p 2=1 o _+p 2=1 o (c"+p%) 2=1 o 4p
2 2 L2 2 ,Q, Q, g " 2 '3
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s o.T s (V,-20,)7
2Ty [ RS
-l e WL g 1 o(l)
2=1 (0Q+p2) =1 (02+pl)
s o V20" s (vj-zpﬁ)T.
= Z {Z(Tﬂ,-]) +W - T,Q, _"2 22J }*"*: 0(1)
2=1 o +o] (o %e) j=1 (Gj+pj) _ -
(3.2.14)

which completes the proof of the theorem. ||

Comment 1. If g, =05 Py =P and VQ =Y vye=1,2,...,5, then as k

goes to infinity (3.2.14) reduces to -

! (1)) —Z—ZV‘2°4 (1)
A = T-1.)1 - 2} + o(1
02+02 2=1 J (02+o )
4 4
= % V=20 _ 2y 4 o(1). (3.2.15)

Subsection 3.2.2. Some Examples

Example 3.2.1.  Assume the ei's are independent and identically distri-

buted with a N;(0,c%) distribution. Then marginally X ndep-y (0,0%41%)

i=1,2,...,k. In this case p2 and V, as defined in Theorem 3.2.1, become

2) 2 E
and

X(G?-TZ)Z = E(eq) + T4 - 2T2E(9§) = 2T4 .

V=E j

Therefore by (3.2.18), we have for large k

4
3 20 (s-1) “
A=- = <0,

c *tp

which shows that asymptotic separation is worse.
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Example 3.2.2. Suppose the prior distribution of & is defined as

2
L

7(0) = p and p(zy) = % (1-p) where 0 < p < 1. Then p and Vi, as defin-

.ed in Theorem 3.2.1, reduce to

2 2
o, =Y (1-p)
and T
_A
v, = yp(1-p).
Therefore,
4
V -2 ‘
L L —)p 2 as y—)ico
( 2+ 2)2 1-p
99 "Pg
Thus from (3.2.15)
4
s % p_
A~ Z _?—_?{(]—Tl)(1-p -4)} >0
=1 02+p2

if p > %—. Thus for p > %3 asymptotic separation is always better.

Example 3.2.3.  Assume the prior distribution has a Student's t distri-

bution with o degrees of freedom, i.e.,

o _ afl C
o) = —— (1+%) 2, —a<oca.
aB(%,3) a
Th learly, E(o) = 0, E( 2) = —QE and E(e4) = 3a4 where o > 4
en c ear y, 6 ) 9 - G,_Z (1-2 (1“4 o -

Thus pz and V, as defined in Theorem 3.2.1, reduce to

2 -
p2 - E(ez) __a

a-2

and
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V= E(6%)-1E(6%) 12 = Vv-20%-20%-462,2

6 o+l
I PR Sl SR S S Po
2% (a-2)2(a-4) a2 o2

Since ¢ is fixed, for a > » we have from (3.2.18) that o > 0 provided

4 < a < 7. Hence for a Student's t prior with degrees of f%éedom be-
tween 4 and 7, the asymptotic separation is better.

Comment 2. If Mo =_E(X§) and g = E(X?) then clearly we have My = oi

and g = 3u§ + (y2—2p3). Therefore under the assumption of g, =0,

p, =pand V, =V, (3.2.15) reduces, in terms of the marginal moments

of the Xi's, to

2
_oM(s-1) M7

A 5 -2} + o(1)
)
M2
- 2
4 Ua=5u
—ols-1) A2 0y . (3.2.16)

u
2 Ho



49

CHAPTER IV
INCLUSION OF EXTREME OBSERVATIONS

Section 4.1. Introduction

In this chapter we will consider the question of inclusion of.ex-
treme observations when a flat tailed prior is suspected. We will mod-
ify the combined and the separate estimators developed in the previous
chapters using Stein's truncation method (Stein 1974), which essential-
ly Timits the amount by which any coordinate of the separate or combin-
ed estimate can differ from the corresponding coordinate of X.

Assume that Y|e ~ N(6,z) and e is such that E(e) = 0 and V(o) = A.

Also assume that ¢ = ozI and A = pZI. Then
2
s(v) = (1 - iﬁiglg—)v
Yy Y3
i=1 !

. | -~
is a usual shrinkage estimator for 6. Suppose X1~a-——;Le—
.. /7,7

1

and

ng = e for all i=1,2,...,k. Then
o tp
2
) = (1 - —eBle— (4.1.1)
(o%+p ) LS
i= -

is a usual shrinkage estimator for n. The truncated estimator for n-

will be defined coordinatewise by
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(3) - (1-2)c° '
ng (X)) = X, - K (sgnX:) (1X;] A Z(Q)),
2, 2 2. L2
(c"+p") T (XynZi )
s 90 )
(4.1.2)
where ¢ is a large fraction of kK, -
Z] = [X-Il’ 1=],2,...,k | (4.].3)
and
Z(-I) < Z(Z) vee < Z(k)
are the order statistics of 7,,Z,,...,Z,. (4.1.4)
- () _ 7 (1)
-Under the above set up, the Bayes risk of o = (z+A)® n under
squared error loss can be shown, as in (2.1.3), to be
~(g) 2 ot X 1
r(A007") = k - (2-2)° - E°[ 1. (4.1.5)
o *p ¥ (X2n 25
FETR (2)

Therefore, the improvement in the risk of 5(2) compared to the risk of X

is
4 2 )
_ + )
o *p jZ](xj/\ 2(2))

where EX stands for expectation under the marginal distribution of X.
Also note that the improvement in the risk of the estimator (4.1.1) is
given by
4
(

] X
A, = E°[
k 02+p2

1. ) (4.1.7)
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It happens that frequently the o, will occur according to a flat
prior. If the prior is flat some of the Xi's will be extremelyvlgrge.
Therefore from (4.i.7) the improvement, Bs will be small. It is thus
natural to truncate the large Xi's.

We will assume that the ei's are independent and have,e common
f]at_distribution, so that, marginally, the Xi's have indepehﬂént and
identical flat distributions. It would be aesthetically more pleasing
to work with a given class of flat priors, but the marginals would then
be messy and hard to work with. Luckily t-marginals are similar to mar-
ginals obtained for many standard flat priors. Therefore in Section 4.3
the marginal distribution of the Xi's will be chosen to be the t-distri-
bution. We will then find the optimum truncation points (y) for differ-

- ent degrees of freedom of the t-distribution.

%)

Section 4.2. Evaluation and_Asymptotic Properties of Aé

Suppose x],xz,...,xk are marginally 1ndependent.and 1dentica1]y dis-
tributed random variables and 21’22"'°’Zk are defined as in (4.1.3).
Then Z]’ZZ""’Zk are independent and identically distributed random vari-
ables with marginal distribution function, say G(zli We will derive the
asymptoti& properties of Aél) as defined in (4.1.6). )
Lemma 4.é.1. Suppose ¢ = [yk], where 0 <y < 1 and [x] denotes the near-
est integer to x. Also Tet a(y) denote the th fractile of G that is

G(a(y)) = y. (4.2.1)

Then as k » = , ‘ - | . |
> a(y) almost surely. *(4.2.2)

Z(4)

Proof.  See Rao (1973). ||



Y4

Theorem 4.2.1.  Suppose G(z) admits a probability density g(z) which is

bounded then

1= (4.2.4)

Proof. Define,
_ v2 L 42 - 2
Uj,k = XjA Z(Z) and Vj Xj/\u (y)
We will first show that
: k - kk = o(1) . (4.2.5)
y UL yov,
351 j.k 551 9

Using the inequality
2. 52 2. 2; 0\ 2 2
X5AZ - XiA Z -
| j (1) j o] (Y)‘ ﬁ_l ) o (Y)l s

(2
we have,
k k
1 1 2 2
» ) E&Z1(VJ—UJak) E&Z1IZ(2)'“ (¥)]
T TR AR R “afu a5y e
U, v, L T TE T LT TE )
j=1 i,k j=1 J kJ=] Jsk kJ=] J kJ"']j’k kJ_'l J
Using (4.2.2), we have |
J 1 K 2 2 '
E—j;}]l(l)-a (y)] >0 a.s. as k=, (4.2.7)
and by the strong law of large numbers,
1 K 1
X y V. »>— a.s. ask-oe. (4.2.8)
, B |
Combining (4.2.7) and (4.2.8) we have )
k
1 2, 52 1
- ) Xinl >— a.5. as k> (4.2.9)
kJ._:'l J (,Q,) Uz

Thus from (4.2.7), (4.2.8) and (4.2.9) we have (4.2.5).
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From the assumption of the theorem we have g(z) < B, where B is a con-

stant. Thus G(z) < Bz. Now, we can choose A > 0, such that AB <"1 and
: k

A< az(y)_ Then using the fact _Z] ng\Zfz) z_(k_g)z%l) we have, on the
J:
set {Z%z) > 2},
K k 1 k c
k = k- . STk=20x <%
1 Us k (2) }
j=1 =
where ¢ is a constant, and
k k k 1 k 1 c
K = K = k- 2 2 h k-2 2. = 7
YoV, L V A Z%l) o) Z(g)A a”(y) (k-2) Ana (y)  ana(y)
=1 3 =

Using (4.2.7), (4.2.8) and the Dominated convergence theorem, the two in-

tegrals converge on {22 >A} as k+« . Now on the set {22 <1}, we have
(2) (2)

_k ; (z.)dz. < — ; z.)dz.
JZ'( ) j§1 Y.k m —-iﬁz) 2%2) 3= s
and
/ 'jzk““ ; g(z;)dz, < [ —%i— ; g(z.)dz, (since » < a(y)).
2y fug 57 ] J_qu Zgyy =1
J=1
Now,
4, ZZLJE] (23)42; = ()T (}) 2 2[6(2)1 7 1-6(2) ¥ Mg (2) a2
Z(R)<A (2) ,N- )
) 5-(2-]§i(k—2)! ;%' L%?%f (;ince Gzz)iB). (4.2.10)

Using the Stirling's approXimation, (4.2.10) goes to zero, since AB<l.
Therefore the expectation of the left hand side of (4.2.5) goes to zero

as kK > » . Therefore,

2 .
11m-— E E—EL&—Q————J = 1im (QEZ)ZE[ K k ] = Xf , (4.2.11)
o € 5 eazf,, b ] Xsnzg "
which comp]etes the proof of the theorem. ||

2)
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Now notice that

a(y) @
up = EOEAGP)) = 20 [0 xPF(0d + aP(y) [ F(x)axd
0 a{y)

(4.2.12)

where f{x) is the common density of Xi's. Using the definition of a(y),

(5.2.5) can be written as

OL(_Y) ? 2
wy =2 é x“f(x)dx + a"(y)(1-y). (4.2.13)
Define,
2
L Y : (4.2.14)

2 [ xPE(x)dx + af(y)(1-y)
0

Thus r(y) is the asymptotic improvemént of the truncated James-Stein esti-

mator. The following lemma will give the behavior of r(y) near 0 and 1.

Lemma 4.2.2. If r(y) is defined as in (4.2.14) then

(i) Vim r(y) = 4[f(0)1°
y~0
and
(i1) W]YY P V(X) <
Tim r(y) =
y-1
¢] if V(X) = . : (4.2.15)
Proof. We have
‘ 7 - |
G(z) = P{-z < X1 < -z} =2 [ f(x)dx. (4.2.16)
0

Define,

6 '(u) = infiz: 6(z) > u} ., (4.2.17)
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Then clearly the yzn-fracti1e of G is given by

a(y) = 67 (y) . ' (4.2.18)
Hence, '
2
Tim r(y) = lim - [G(a(y))] -
o sk T e + P Dsa)]
= }iT 23G§“(]2%f§“§ ) (by L'Hospital's rule),
aly)»0

i 8LFlay))I° + 46(a(y))F' (a(y))
(ihso  2L-C(a(yIIT = 4aly)Fla(y))

(by L'Hospital's rule),

aF(0)1%
. which completes the proof of part (i) of the lemma.
To prove part (ii), notice that as y -~ 1, a(y) + . Now clearly,

(o]

. aly) - ' '
2 ] 25 (x)dx > 2 g’ K2e(x)dx + [a(y)1201-G(a(y))]

V(X)

aly)
2 tf)yxzf(x)dx+[a(y)]2(1-y).

Therefore if V(X) < =, then

lim [a(y)1%(1-y) = 0 . (4.2.19)

a(y)re
Using (4.2.19) in (4.2.14), part (ii) of the lemma follows. ||
Now using Lemma 4.2.2, r(y) is between 0 and 1 and seems to look
like a bell shaped curve with a maximum tending to occur somehwere be-

tween 0 and 1. -
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Section 4.3. t-marginal

We will now consider the case where X]’XZ?""Xk are independent and
identically distributed, with X, having (marginally) a t-distribution with

a-degrees of freedom; that is, Xi has density function

flx) =c (1+ 2)-(at1)/2

A0 2

9 o > 15 | (4-3.])

where

c - T((a"‘]_)/z) .
@0 o r{a/2)o

Observe that

E(x;) = 0 and v(x,) = -2 6%y (a52), 1=1,2,...,k. (4.3.2)

Now the distribution function G(z) of Z as defined in (4.1.2) is

given as

H}

: z 2
- = _x"y-(a*1)/2
G(z) = P{-z < X; < Z} 2Ca,0 6 (1+ 2) dx

og

-1
_ tan 'z/Voao _ _o-T o =
an 0/& o é cos® 'p do. (substituting x=/o otan o)

(4.3.3)

Also to calculate y(y) given in (4.2.11) we have

() 2 2, +%2)-((#1)/2 N

2 -
x5F (x }dx Coio é

o
0 G
tan"Va(y)/oVa

a,003a3/2 é tan” a cos®*”

]e de.

(4.3.4)
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Subsection 4.3.1. Cauchy Marginal Problem
- Suppose that marginally the Xi's have independent Cauchy distribu-

tions, i.e., t-distributions with 1 degree of freedom. We then have,

f(x) =-————;%T~zr-, mean and variance undefined. (4.3.5)
ra(1+x° /") ‘

Substituting o = 1 in (4.3.3) and (4.3.4) we have

6(z) = %—tan‘l /s (4.3.6)
and
a o 2
_ é(y)xzf(x)dx = #%— é(y)xz(li-i?d'] dx. (4.3.7)

Using (4.2.1) , we have
- _ 2 -1
y = G(a(y)) = = tan" " a(y)/o
Therefaore,
z(y) = o tan I . (4.3.8)_

Now to evaluate y(y) as defined in (4.2.14)we have

C!(,Y) 2 2 G(Y)/c 2 2 2 u(y)/a 1+ 1
2 x“f(x)dx = = ———7? = ——5~if-dx
é o é T+ K é o Tx
- - _2_ 2 o:,(!) -1 OL(_Y) _ —2 .2 45 lrl
0 { S - tan . } =0 { tan 5 ¥}.
(4.3.9)
Substituting (4.3.8) and (4.3.9) in (4.2.14) it follows that
(y) v
y\y; = . (4.3.10)
oz{g-tan EX—-y+(1-y) tan2 LNA ¥ -
T 2 2
Using Lemma 4.2.2, we get )
Tim v(y) = —sz- and lim y(y) = 0. (4.3.11)

y+0 o y+1
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Now to get the optimum truncation point in this case we have to
find the maximum of y(y) and the maximizing point will be the optimum
truncation point.

It is found numerically that the funcion y(y) is maximj;ed at
y ~ 0.24. In Table 4, values of czy(y) are calculated for affferent

~ values of y.

Subsection 4.3.2. t2~margina1 Problem
Suppose that marginally the Xi's have t-distributions with 2-degrees

of freedom, i.e., the density is

2
Flx) = —— (1 + 2573/, (4.3.12)
V2 o 20
Then
E(x) =0 and v(x) = . (4.3.13)

Substituting o = 2 in (4.3.3), we get

tan"1z//2 o 1 2 7
G(z) = 22 —=— [ cos 8 do = sin tan =
220 0 o/2 /252
~ B} (4.3.14)

and from (4.3.4)

(¥) 5

) tan_]a(y)/c/f
x“f(x)dx = ¢~ [

tan“ 6 cos ¢ do
0

, tanla(y)/a/Z L
o (sec 8 -cos a)de, (4.3.15)

where a(y) = G_](y). Therefore

, (4.3.16)
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and hence .
aly) = yol2_ (4.3.17)
- .
v 1-y

It follows from (4.3.15) that

/ly)veel | aly) _ aly) .
o ()t

[ x5f(x) dx = cZEZn(
O R

, 2
(since, az(y)+202 = 202)
1-y
= o2l (——+ —X ) _y] . (4.3.18)
1-y2 //1-y2
Substituting (4.3.17) and (4.3.18) in (4.2.14), it follows that
, |
v(y) = > ] J "
25“[on +—Y )yl + (1-y)e” 2Ly
1-y2 / 1-y 1-y
2
= J (4.3.19)
2 - ) L] -
26" Lon () - 5] |
1-y
Using Lemma 4.2.2 , we have
- Tim v(y) = = (4.3,20)
y+0 20
and
Tim y(y) =0 .
\ad

It was found numerically that y(y) is maximized at.y = 0.44. Thus
y = 0.44 is the optimum truncation point. In Table 4, the values of y(y)

are shown for different values of y.
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Subsection 4.3.3. t3-margina1 Problem
Suppose that marginally the Xi'S‘have t-distributions with 3 degrees
of freedom , i.e.,

2

fx) = —2= (1 + 272, o>0. = (4.3.21)
mav3 3o T
Then,
E(X) =0 and  v(X) = 3o°. (4.3.22)
Substituting o = 3, in (4.3.3) we have
-1
tan” 'z/0V3 )
G(z) = 230 cos?e do = 2 [tan™! X + %Z/§é] (4.3.23)
mov3 0 m o¥3 z7+3¢

and from (4.3.4)

(y) 2

-
a t a(y)/oV3
é x“f(x)dx = fan Y

sin"o de , (4.3.24)

3 |o

0

where o(y) = G_](y). Therefore,

1aly) , oa(y)/3 ]
3 al(y)+36°
c a \y o

y = Glaly)) = £ [tan”

: -2 [panl el 1, = 5 T
" o e
= H(QEY)) (definition). (4.3.25)
Then,
aly) = ot (y) . T (4.3.26)

It follows from (4.3.24) that

2 .
(Y)xzf(x)dx = §9—-[tan'] aly) %(Y)°/§é] . (4.3.27)
m ov3 a (y)+30

O R
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Clearly from (4.3.26), “—?’l is independent of o. Now define,
b(y) = 2) (4.3.28)
o¥3
Then from (4.3.27),

2 ‘ N
(y)xzf(x)dx = §%—-[tan_]b(y) - —~9§%133, T (4.3.29)
T+b™ (y ’

O

where b(y) will be obtained from

[tan”"b(y) + —2) 7 . (4.3.30)

1+b"(y)
Now using (4.3.28) and (4.3.29) in (4.2.14) we have

ERI]

y:

2
v) = = , ;’ ) = . (4.3.31)
89 rtantb(y) - —20) 7 + 36%2(y) [1-y]
1+b " (y)
Using Lemma 4.2.2. , we have

of 1im y(y) = 4(-2)% = 18 = 0,54, (4.3.32)

y>0 V3 m 3n
and

o2 1im v(y) = V(]U - 1= 0.3

y>1
It was found numerically that, y(y) is maximized at yfz 0.55. Thus
y = 0.55 is the optimum truncation point. Table 4 shows the values of

v(y) for different values of y.

Subsection 4.3.4. t4—margina1 Problem
Suppose that marginally the xi's have t-distributions with 4 degrees
of freedom, i.e., *
0 2

f(X) = (1+ X2

)—5/2
mov3 3o

» o> 0. (4.3.33)



Then,

Substituting o = 4

3 tan

20

G(z)

3 .
[E—s1n

1l

and from (4.

(
Y)xzf(

where a(y)

Thus,

It follows from (4

Z(y)xzf(x)dx

Clearly from (4.3.3
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E(X) = 0 and  v(X) = 20°. (4.3.34)
in (4.3.3) we have
-1 -1 .
z/2c 3 tan 'z/2% 3
cos” o do = E-é (z cos 3o+ 7 cos o)de
_'[ )
tan 'z/2¢ 2., 2
0- 5 sin® o] . _zéz_iggg%i , (4.3.35)
0 (z"+40%)
' ) tan-]a(y)/ZU 3
x)dx = 36° [ (cos 6 - cos” 8)de, (4.3.36)
Therefore,
: 2 2
- = a{y){a"(y)+65"}
{a"(y)+4o"}
Ot(g’){(oto(,z))2+6}
((21)214372
= H(Eégl) (definition) . (4.3.37)
aly) = i (y) (4.3.38)
.3.36) that
2 _'l a( tan—]u(y)/ZG 3
= ¢“[3 sin tan —?%l -3 é o co§ o do]
=g s1'n3 tan—] aéz) = 02{-————9419—“-}3 (4.3.39)

8), gégl-is independent of o.



Now define,

Then from (4.3.39)

where b(y) will be obtained from

y = bM(y)r6)
(b (y) 441>/

Now using (4.3.40) and (4.3.41) in (4.2.14), we have
2

y(y) =

7/ bz(y)+4
Using Lemma 4.2.2. , we have |
. _ ‘w12 - 9 _
Tim y(y) = 4[f(0)1° = 1z = 0.56
y>0
and

]

Tim v(y) = V) 0.5.

y
2021243 4 221y [1-y]

63

(4.3.40)

(4.3.41)

(4.3.42)

(4.3.43)

(4.3.44)

It was found numerically that y(y) is maximized at y = 0.65. Thus

y = 0;65‘15 the optimum truncation point. In Table 4, values of y(y) are

calculated for different values of y.

Section 4.4. Conclusion

In Table 4, the values of y(y) are plotted agains%‘the values of y

when the marginal distributions are Cauchy, Student's t with‘degrees of

freedom 2, 3, 4 and normal. From Table 4, it appears that y = 0.6 is a

reasonable compromise value for truncation.
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~ Comment 1.  For the normal case, Stein (1974) computed the asyﬁbtotic
relative efficiency of the estimated improvement in the risk of the esti-
mate 5(1) with respect to the estimated improvementin the risk of the
James-Stein estimate (nonzero since the prior variance is_finite). We
are considering the quantity v(y), since in our case the véf%ance may not

‘exist always. The two measures are clearly proportional when the vari-

ance does exist.

Table 4

Values of r(y) for Cauchy, tos tas ty and normal marginals

y Cauchy t2 t3 t4 Normal
0 .40 .50 | .54 .56 .63
N .43 53 .57 .59 .70
.2 44 .55 .61 .63 .74
.3 43 .57 .63 .65 .76
.4 42 .58 .64 .68 | 79
.5 .39 .57 .65 769 - .83
.6 .35 .56 .66 .70 .87
7 .29 .53 .65 71 .91
.8 .21 .49 .62 .69 .94
.9 1 .40 .56 .67 .97
1 0 0 .33 .50 h ]
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CHAPTER V
SEPARATION UNDER MISSPECIFICATION OF NORMAL PRIORS

Section 5.1. Introduction

In this chapter we will consider the separation problem under mis-
specification of normal priors. We will consider a misspecification
model in which under certain conditions separation is better. Suppose a
priori it is known that some of the ei's are quite different than the
rest, in that there is more uncertainty in their prior variances. In

that case ¢ can be partitioned as ¢ = (e(]),e(z)), where 6(1) is kix]’
i = 1,2. Suppose the random vector X.is partitioned as X = (X(]),X(z))
where x(i) is kixl, i=1,2. SuppoSe X(]) and X(Z) are independent, so

that the covariance matrix reduces to

Suppose the prior ¢ is felt to have a k-variate distribution with mean

zero and known positive definite covariance matrix A of the form

A1 0
A =
0 A2
Suppose for the two groups, we know the prior information within

each group is correct in terms of the mean, and is proportionally cor-

rect in terms of the variances, i.e., the true covariance matrix for the
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iEh-group might be p;A;, 1 =1,2. The p; could differ, corres;onding to
a condition in which there is a differing amount of confidence in the
prior information for each group.

An appealing way to proceed would be to proceed as in Berger (1980),
but assume that the covariance matrix of & given °y and pzif§

pq(zy+A;) 0 gy O
Bloys0p) = - >
0 p2(22+A2) 0 Lo

where 01 and P have some (possibly joint) prior distribution. By intro-
ducing the pj» One achieves, robustness, admitting there is uncertainty
about A. The introduction of two different p's allows one to deal with
a situation in which one is more uncertain about Ay than about A,. The

generalized prior density of 6, in this case would be

1
a(o) = [ 1B(oq0,) | 7% expi-0"B(oy5p,) " 10/23du (07 )dv(o,).

O— 38

where p and v are probability measures on o and 0y respectively. Unfor-
tunately, in this case the calculations become too hard to work with.
Also one could not specify measures p and v easiTy. -

We thus will restrict ourselves to consideration of the usual com-
bined and separate estimators, and evaluate their Bayes risks under a
simpler misspecification model. 1In particular, we will assume for simpli-
city that the prior is normal, and furthermore pretend that the misspeci-
fication is in the marginal of X. If A were the prior covariance matrix,
then (marginally)

LqtA, 0
X ~ N(O, ) .
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Usually Ai is much Targer than Lis SO misspecifying Ai by a factor P
will approXimate]y correspond to misspecifying Iy * Ai by a factof_pi.
Thus our assumption in the calculation of Bayes risks will be that
o1(zy%A;) 0
X~ N(O, )
0 p2(22+A2) o
Furthermore, it turns out that the desirability of separation"depends

only on the ratio pz/p]. Hence it suffices to consider

(z]+A1) 0

X~ N(O, )y . (5.1.1).
0 p(z,%A))
Ke will consider (5.1.1) as our misspecification model. It is also as-
" sumed that the two groups are homogeneous, in the sense that
, .
(

A =3 z+A)'] = diag(x1,...,A] ; Az,...,xz). (5.1.2)

In section 5.2, the Bayes risks of the combined and the separate es-
timators are obtained under the misspecification model. In section 5.3,
theoretica]‘reéu]ts are obtained for finite group §jgeé,;which'detennine
a region Qhere the separation is better. In section 5.4, %heoretica] re-
sults onlseparation are obtained asymptotically as the group sizes go to
infinity. It is proved first that for o # 1, separation is asymptotical-
1y better. Then it is shown that if @ = Tim ;%- exists, the boundary

K0
for separation is of the form - -

ko

in the sense that if
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tim 7k, (o-1) = v,
k=<

+
separation is better (or worse) as Y2 3_gi%gﬁl (or YZ 5_2(] ) ). In

7
section 5.5, the exact boundary is obtained numerically for finite group

sizes. It is observed that as the group sizes increase, tﬁé;asymptotic

theoretical bound obtained in section 5.4 is approached.

Comment. The quantity o introduced in (5.1.1) can roughly be measured

as follows. Suppose

6 ~ Nk(o, )9
0 12A2
then if I] and 12 are confidence intervals for g and T, respectively

then p can roughly be taken as the ratio of the lengths of'I] and 12.

Section 5.2. The Bayes Risk Calculation

In this section we will evaluate the Bayes risks of the separate and

the combined estimator under the misspecification model.

Let us partition X as X = (X%l)’X%Z))’ where X(i) is x;x1. Then

from (5.1.1) we have,

t -1 2

Xy (A Xy - X, ( )
5.2.1

t -1 2

X(Z) (22+A2) X(z) ~ pXkZ s

and the two quadratic forms are independent. Thus --

HXI |2 = Xt(Z'*'A)_.I X . Xﬁ] + pxi? . (5.2.2)

Using (5.1.1) and (5.2.2), the Bayes risk (2.1.3) reduces to
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(Ass) = tr T - 2(k-2)(kyh oy ) El—p]
o Xk]+PX2

A'Xz +pA X2

PRI 1 4
+ (K*-8)E[—————] » (5.2.3)
(Xk]+pxk2) i

where E stands for the expectation over the chi Square réndomeAriables.
- Now using (5.1.1) and (5.1.2), the Bayes risk of the separate esti-
mator reduces to
y(A1,6]) =trzy - (k1-2)x]
and
(Az,az) =trz, - (k2-2)x2/p . (5.2.4)
- Thus the difference of the Bayes risks of the combined and the separate

“estimator reduces to

_ AZ k]A1+k
Xk +pXk
1
2 2
) Mk, PRk,
+ (k '4)E[ 2 ! A (5.2.5)
(x, *ox, )
. k k2 —. ]

Section 5.3. Separation for Finite Group Sizes

In this section we will assume that the group sizes k] and k2 are
finite and X, and 1, as defined in (5.1.2) are equal. We will get re-
gions in terms of the group sizes, where in one region‘separation is bet-
ter and in the other region separation is worse. Unfortunaté]y the re-
gions which will be obtained are not complementary, so the exact boundary

is not determined.
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Theorem 5.3.1. If A] = A2 then

. (ky-2)kp-2) ke (ky+2k,-4)
A>0 if g K (2K ¥y 2) (k]-z)(kZ—Z))

and
k2 -2 k

. 1
A <O if (-—~k—2- T-z—) - (5.3.])

Proof. Using Ay = A, in (5.2.5) we have

(k -2)

' 2
XE—— (ky-2) + - (k-2) E[le +'pxi 1. (5.3.2)
2

Now using the fact that XE + pxi > xﬁ , we have
1 2 1

1 11 1
Ely—] < bl = — -
[Xk +0X 1< [X ] S

1 KTy
- Therefore
k,-2 2

A 2 (k-2)
— > (k,-2) + -

Hence —
ko 2)lky2) 1i 0 (5.3.3)

p < — implies A > 0, .3.
k2(2x]+k2 q)
. 2 2 2
Using Xk] + 0 xk2 > P sz » we have

E[ ] < .
XE +pxﬁ (k -2) :
1 2

Therefore



Hence,

and

Therefore,

. (k2-2) k-2)2
> (ky-2) + o é(k2—2)'

A
Ao

(2Kptky-4)k;

o > (k]—2)(k2—2) implies a > 0.

Now clearly p > 1 implies x2 +oxf <oxZ +ox&
1 2 1 2
1 1 1
([t 1> E[-L] -
B ARy (=)
X, toX P X
kP Xk, K
(k,-2)
A i 278 k2
Ao < (kl 2) + P p

Hence,

For p < 1, Xk +

Thereforé,

Hence,

p <=y Timplies a4 <0O.

PXp < xi + xE which implies that
2

2

E[— ! 71> k12

X, to X
STRELY
k-2)
A _ 2 _ _
A, (ky-2) + > (k-2)
k2-2 ]
P> implies a > 0.

2

Combining (5;3.3) through (5.3.6), the proof is complete. ||
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(5.3.4)

(5.3.5)

(5.3.6)
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Section 5.4.

Asymptotic Results for Separation

In this section, we will compute the Bayes risk (5.2.3) asymptoti-

X
k
cally when k] and k2 go to infinity. It is clear that E(—Ei) =1 and
2 i
N ' o
V(_E_) = 0 as ki > oy, 1=1,2. Thus ' o
i i
2
XK,
—— > 1 in probability, i =1,2. (5.4.1)
;
Using (5.4.1), it is clear that
kytek,
- 5 > 1 in probability.
Xk +o Xk

(5.4.2)
1 2

We will now show that the above convergence is also in mean.
Lemma 5.4.1.

k]+p k2 _2
E | - 1 =0(k 2 (5.4.3)
X, toX
k1 k2
Proof. Using the Cauchy Schwarz inequality, it is clear that
- 2. 2 B :
kytok,” (Xk1+:pxk2) 2. 2 SN 1 (243

E < [E(x, Yoxp ~kq=pk,)1*  [E(——)1%.

X2 +X2 k] k2 1 2 2 +o 2

: X Xk .

ST ky "7kp

Now,
) 2.1 2 2 .1 1 1
[E(Xk]+pxk2-k]_pk2) ]2 = [V(Xk +pxk2)32 = (2kT+2p§2)2 S_C]kz ?
where 4 is a constant, and
1 (22 1,243 My -2) 3 o
- 2
[E(—gi:—jfd ] §_C2[E(—?) 1= = 02[ K 1% < * °
Xg . OX) Xy r'(z)
1 2



73

where c2 is a constant. Thus

“1%°%,

_- = | - P4 ’

7,2 Tocgek ®,
ky 77Ky

E

which completes the proof of the lemma. ||

Now again using (5.4.1) and 5.4.2) it is clear that

2 2 :
AXp TeAox +

’ K1 FpA K ( 5 g )2 + 1 in probability. (5.4.4)
B

The following lemma will show that the above convergence is also in mean.

lLemma 5.4.2.
2 2
A]xk]+pA2Xk2 k]+pk2 > B
[ ( )°1 = 1 + 0(k™%). (5.4.5)
A]k1+pX2k2 2, 2
Xk_l Osz

Proof. Let us define for simplicity

2 2
Ay Ao

Ao 2
Akqtedok,
Hence
2 .- 2 -
AMXg FPAoXK K ok ky+ok
1 2 1 "2 24 _ : 1 2 +\2
EL K For K (—=-)"1 = E[A + A{('ir———jr0 - 11]
AN B R A Xk *pxk Xk +pxk
1 2 1 2
{kytok & -ox2 Hkytok S toxo)
2 kg Pk M Tk tox)
=1+ E[A : > 2,)2 ].
X tox . :
STV

Let us define, B = k]+pk2—xi]-px§2, cC = k]+pk2+xil+pXi2 and
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D= (Xi +pxi )2. In order to prove the lemma,it is sufficient to show

2
that E(A%Q) - 0(k™2).

Now applying the Cauchy Scharz inequality we have,

1 ~o- 1
ECRY| < [e(8*E(EH?1E - ,/v(x2k1+pxk22)[E(ﬁ‘%;}z . (5.4.6)
Now,
2 2
max{Aysip} (Xk]+pxk2)
A < —
—-m1n{x],A2} k]+pk2
Hence,
ac | MaxtapApt g 1
DT (o v S il s i B (5.4.7)
Prored b toxg 1Ko
| ya
Also,
1 ) 1
2 2 = . 2 2
X, *ox min(1,0)(x, *x, )
k.l k2 k1 k2
Therefore, from (5.4.7)
) AC i L, 2 = ;
Y kytoky
1 2
where ¢y and Cy are constants.
Now we have,
c2 2C,C
AC,2 200142 2 1°2 1
E(F)" < ciE(=)" + > + -
p/ =2 ook )2 Kok, K2
k 1 2
c2 cz 2¢-C (o
.4 R 12 %
k2D " i)? | TPk (2] 2

(5.4.8)
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where ¢ is a constant. Combining (5.4.6) and (5.4.8) we have
e(285) = o(k°®),

which completes the proof of the lemma. ||

We will now establish the following theorem concerning separation.
The theorem will establish for p # 1; that separation israsymptptica11y
better. —

Theorem 5.4.1. Define g = AZ/A] and ki = [nai], i = 1,2 where o and

a, are constants such that 0 < d.

_|<1, i=1,2,a]+a2=1and [nai]

is the nearest integer to na..

j Then for any fixed p # 1,

lim & > 0. - (5.4.9)

N>

Proof. Define:¢, = ay/ay. Using Lemma 5.4.1, we have

ket
(k ]A]+k2 2) kqApHkong 1" k2

E[ - = — EL ]
xﬁ +pxk Ky tek xﬁ +oxﬁ
1 2 1 2
) Aq0qFA 50 _1
= ]a-l+ 2 2 + O(n 2),
17P%2
(¢B+])A2 _1
= _—CEJ_"'—D——- + O(n 2). (5.4.]0)
Similarly using Lemma 5.4.2 we have B ;
2 2 2 2
A
MG, agkpteagky  (kprekn)® A%k TP
f—y——] = 2 Lok lpx ey —7 77
(xk1+oxk2) (kqtek,) 1717°P42%2 (Xk]+xk2)

XTa]fpxéaZ . O(n_3/2) -
n‘a.'ﬁ'pqz'j °

Therefore,
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2 2
A +0A,_ X
1 k 2"k . (B q;+p))\ _3/2.
(k#2)E[—gl—y—2] = {n{ay o) +2H—— e + O(n"2)3
(xk]+oxk2) ' n(gte ) o,
Tte)Bete)r, 2(Betp)r 1
(«to) n(o+p) o, .
(5.4.11)
Therefore (5.2.5) reduces to
na2—2
A= {(na]—2)3+ ; }
i
+ xz{na2(1+¢)_2-}{(1+¢)(Bcp;p) Z(Bcp+p)+0(n—%;) 2(((!827!';) o(n~3).
(w+p) n(g+p ) o,
Hence,
A (”wz—Z)B . na2‘2 ) 2(1+<p)(8<g+p) _ 4(Bcp+p) + 4(5:5:])
"2 P (wtp) n(¢+p) oy P
2
N naz“*’@) (B(D"'p) . 2(]+(P)(B({’J+p) ) 2na2(]+(p)(3cp+]) N O(H%).

(w+p)2 (cp'*o)2 “re

Hence,

!.

; 2
- A I, ()" B gtp) (1+¢)(Bcp+1) -1y
{gB+ — + - + 0(n ")
2 2B @ﬂp)z @re.

Ce(cp+Bo)(1-p2>)2}+ oy,
o(g +o)

Now letting n go to infinity, the proof is complete. ||

Therefore in the misspecification model, separation is asymptotical-
ly better for o # 1. Now naturally one should search for a boundary
-where the separation is better. It turns out that the boundary is of

- the form p.= 1+ y//EE - In the following theorem, the values of y will



77

determine an asymptotic region within which the combined estimator is

better and outside'of whiéh the separate estimator is better.
- K

Theorem 5.4.2. Let g = /A, and p = 1 + v//k, and assume ¢ = 1im A
172 2 Koreo k2
exists. Then under the misspecification model
1im A 2 0 according as y2 p 2(*e) - (5.4.12)
ke M o
Proof. Let us define,
2 2
) 1 kg Thy
S=blp——l, Ty =Ep—gpl and Ty = Ep—yl
X, tox (x, +ox, ) (X *ox, )
k k k k k k
1 2 1 2 1 2
(5.4.13)

Thus from (5.2.5),

A
A= {(k]-Z)x]+(k2-2)-:r} + (k -4)(;1T]+A2T2) - 2(k-2)(k]A]+k A,)S.

272
(5.4.14)
Now we have
1 . :
s = E[ ] (since p = 1 + L)
(X #xE +L ¢ ) K,
1 ™2 /EE' 2
X2 X
k 2 k B
o 1 2 2 ~5/2
=y = = ot 5y} + (k)
X, +X K, (O wE ) K (k8w )
ko "k k, "k k, *k
1 "2 1 72 1 72
. 2 2 2 ..
Using the fact that X toXe ot X and is independent of
1 2
2 -

X .
2'k22~3e(;£,521), "
1 "2

we have
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2 K, +2 |

R 2 -5/2,.

S = {1- + . ‘ }o+ ok TIT).
k-2 /g 1+ kZ 1+ (]+(p)k2+2

(5.4.15)

Now using the fact that 1 - p = - —Y we have -
5 =

XZ
K

]

T, = E[
1
(o iy i, 1410 D )

1}
m
L |
™)
N

I
——f
m
—
N
N
——
+
nNo
12
—~
—

Using the fact that . .

3Y2 (CPkZ"'Z) ((Pk2+4)
Zk (k+2) (k+4)
)

] + o(k™¥/?),

(5.4.16)
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Similarly,

T, = Bl

2 2 2 - XZ
2 2y 1, & 2ya3r 1 ko 31
Ko " 32 ax? X8 8

+X X
ki Tky kg kg

K, (ky+2) (K *4)

k-2 R(KF2)(kEa)

|
©
r~
=~
—
=)
1
N
~—rA
]
RSl
=~
]
n
~
—
==
+
N
~—t
=

2 (ky¥2) (kyth)

e
T k-2 THe b7 k+2 © Tk, (k+2)(k+4)
K, 2

!
—
{aam]
—
N
<
+
w

(5.4.17)
Now we will consider (5.4.14) term by term. First note that
- 22 ek “2){1- Y_ 13__ -3/2
(ky=2)ay+(ky-2) —= = ek, -2g+(ky-2){ = > 0§k2 )}

- |
= -2(14+8)+k, (1+pg) - L= (kp=2) + = (k,-2) + 0(k™#).
7k, 2
(5.4.18)

Next note that
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| 2 :
(kB-) K1y = (e2) - BEER) 4 3 () - o (k)
1 K, 2
2 6y’ -3
+ LL @pk2+2)—-—%—-(¢k2+2) + o(k™®)
7k, 2 .
+'§Y—2( k,+2) (gk,+4){ 1 - 0(K™2)3{1- (k 5} + o(k7E)
k, \¥r2TCNh K -
) 3.2
= (k42) + =L (pkyt2-k-2) + = (k+2-2¢k,-4)
3 12 -3
+ _KE ((Pk2+2)(¢}k2+4) { X - 0(k )}+ O(k 2)
— 2 2 -1
= (k-2)-20/k, + 3y“(1-g+ ) + o(k%). (5.4.19)
Simi]ar]y,
(K-4) £ 1, = (e2)(1+2) - L (kp#2) (141

2
2 K, /K /%

L3 (1+ ) (k,#2) (kt8) T+ = 0(k™2)} + o(k™2)
k 2 2 k

'
] 2 -
= (k#2) + 2= (k+2) - =L (k,#2) - S= (k,*2)

/Eg /Eg 2

2 k2+6k.+8

(1+ ) (-5—2—) + olk

-t
3

)

= (k+2) + L (ko =k,-2) + I-2--( 2k 44—3k2) + o (k" F)
2752 K 2" :

(5.4.20)

Finally,
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—2(k—2)(6k1+k2)s

k,t2

) - .2 .2
_ : Y 1. Y 1 2 -5
T 2etlol- —— gt e et ok
2
2 -2
= -2(B¢+1)k24-]+¢,2/ﬁ‘ (Eet1) - ]+¢,2(sw+1)(k +2){ -0(k™ %)}
-1 e
+ o(k =)
‘ 2y YZ 2(Bgt1)
= -2(Be+l) + THe ’/R; (Beotl) " T (k2+2)
¢ 2 (l+g)
-1 .
+ O(k 2). . (5.4.2])
Therefore using (5.4.18) to (5.4.21) and (5.4.14) we have,
' +g @
= -2(14g)kp(1450) + (k+2) Le¥
o 2k B % ¢k, -k,-2
+—Y——{——1%‘g2k2 ky+2 - ]E(p + fwz }
/F_
2 T+p¢
+ s (kgr2) - B 2(kp02)
2 (T+g)
k 2(k,+2) 3k p
3g% v 2 2 2
+ Tre (ky=9k, +=) - — + } +o(k =)
T+@ 2 2 T+g 1+¢ .(]»ﬂp)Z
) 5 2(148% 2% )
= -2(14g) + EEH - o B
2 3K B% - 3k BEP - 2k,y-4
Flg (k2] t T+
3B ky-2ky 2Bk, -d-d8g+ 3k,
+ — }+ O(k™ &Y

(1+%)2
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. 2 - .
S o 2Bt 2 BYE o E BYO T 214 o(k™3).
e ch(1+w)2 oK) = g e ok %)
(5.4.22)

Now Tetting k go to infinity completes the proof. ||
Note 1.  The conclusion of Theorem 5.4.2 does not depend dhis. It de-

pends only on how far p is from one, and on the ratio of the group sizes.

Section 5.5. Numerical Results for Separation

In this section we will compute the Bayes rjsk given in (5.1.6)
numerically. We will find the cut off points for o which will determine
a kegion in which separation is better. First we will consider the case

Ap T A, and then will consider the case Ay = BA, for 8 # 1.

Subsection 5.5.1. Numérica] Results for A] Ry
For M= Ao, the difference of the Bayes risks of the combined and.

the separate estimator is given by (5.2.5). We know that Xﬁ is indepen-
1

" dent of xi in the expression (5.2.2). Thus the joint Laplace transform
2
of Xi and pXi is
1 2 . )
-t(X2 +px2 ) 1 k2
kg kg e "7
Ele 1 = (1+2t) (1+2tp)
Hence by Lemma 1 of the appendix, we have
.
2 2 _ 1 2 2
E[—5 5 > ] = é (1+2t) (1+2tp) = §f 1+E) (1+tp) dt.
Xk +9Xk ' 0 o
1 2
(5.5.1)

Clearly from (5.3.2), for given values of k] and kZPA is a function of p.
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Empirical studies indicate that A{p) is inverted bell shaped and has two |
rodts. We will determine the roots which will define an intervaluout—
side of which the separation is better:

In Table 5, the root between 0 and 1 of the equation a(p) = 0 is
_ givén for various group sizes; The other root is obtained from symmetry
considerations as indicated in the follwoing comment. e
Comment 1. If °g is a solution to A(p) = 0 when the first group size
is k] and the second group size is k2 then 1/p0 is a solution to A(p) =0
when the group sizes are interchanged. In particular when k1 = k2, if
Po js a solution to A(p) = 0, then 1/p0 is the other solution.

In Table 5, we have considered group sizes from 3 to 20. The roots
of A(p) are also obtained for higher group sizes in Table 6. It is
- clear from Theorem 5.4.2 that the asymptotic lower bound when k1 = k2 is

p6 =1 - 2//??’. In Table 6, it is indeed observed that as the group

size k] increases, the theoretical Tower bound is approached.
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Table 6
Comparison between theoretical and numerical Tower bounds

ki = k, and A, = A

1 2 1 2

20 25 36 49 64 | 100

Po .62 | .65 .71 .74 .77 81 |-~
of | .55 | .60 | .66 | .71 .75 | .80

Subsection 5.5.2. Numerical Results for A] # X2

In this section we will consider A = By for g # 1. To find the
cut off points for the separation we will calculate T] and T2 numerical-

1y in the expression (5.4.14). Clearly the joint Laplace transform of
2 2

“x, and x, is
-k ky
N k2
¢ (ty.ty) = (142t)) ¢ (1eatp) C . (5.5.2)
The partial derivatives of ¢(t],t2) are
(_ ) k]+2 k2
g t1,t2 - —— < =5
e G ON
and
_ k k,+2
pulty . tp) -7 - '
————gfg—— = -k2p(1+2t]) (1+2t2p) (5.5.3)

Now using Lemma 3 of the appendix we have,
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) k]+2 ) EE
_ 2 2
T, = [tk (1+2t,) (1+2t,0) dt,
) kq+2 k,
15 2 A
= 7 é t(1+t) (1+tp) dt, - (5.5.4)
and
) ) El ) k2+2
_ 2 Z
Ty =0 é tk, (1+2t4) (1+2t,p) dt,
kg k,+2
koo = - > - 55—
= [ t(1+t) © (1+te) dt. (5.5.5)
0

It is easy to observe that in (5.5.4) and (5.5.5) we need to approximate
the integrand near zero. Clearly qu t near zero

k.2 - k

] _ 2 _ k+2
t(1#t) 2 (1+te) 2 - t(14t) 2 (5.5.6)
where '.' means approximately equal. Therefore using (5.5.6) we have
K+2 k]+2 k2
M "7 T i 2
- - { t(1+t) dt + [ t(1+t)  “_ (1+tp) dt
- 1 O € E
where & is small and M is large. Thus
) K " ) k]+2 ) é;
1 4 2 1 T+4e 2
T~ 7 by * 20014) (g - 1) + £ t(1+t) (1+tp) dt].
- (5.5.7)
Similarly we have, -
K k] k2+1
T, - kzp e so(1ee) 2 (Lo 1EEy ; t(1+t) 2 (1+te) 2 dt]
'TK”?Y k-2 " :
€
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" Now substituting (5.5.1), (5.5.7) and (5.5.8) in (5.4.14), we notice
that A is a function of k], k2’ g and po. In Table 7, we have con;fdered
k] = k2 and, fér d{fferent values of g, the roots of A(p) = 0 are obtain-
ed. Corresponding to each B and k], only one root is given in Table 7.
The other root is obtained as indicated in the following comment.

Comment 2. If 00 is a solution to A(p) = 0 when the first ;}Eup size 1is
k] and the second group size 1is k2 and the ratio A]/AZ is B fhen 1/p0 fs
a solution to a(p) = O when the group sizes are interchanged and the
ratio x]/xz becomes 1/8 (for g < w);

Comment 3. For g = », (5.4.14) reduces to

Loy (K2-4)T; - 2(k-2)k;S.

In Tables 7, 8 and 9, the cut off points are obtained for different
values of g and k]. In Table 8, k2 is taken as k] + 2 and in Table 9, k2
is taken as k] + 4. |
Comment 4. The Tables 7, 8 and 9 show that for g8 = 0 the combined esti-
mator is better than the separate estimator when p belongs to the region
obtained from the tables. This will not be true if the estimator (1.3.1)
is considered instead of (1.3.3). Indeed if the estimator (1.3.1) is con-
sidered then for g = 0 the separate estimator is a]&ays bélter than the
combined‘estimator. This difficulty with (1.3.3) will occur maih]y for

extreme g.



Table 7
cut off points

B Vs. k] (k = 2k1)

d 3 4 5 6 7 8 9 10 15 20

8 .
w 10 .17 .21 .23 .25 .26 .27 .28 .31 .33
20 11 .18 .22 .23 .25 .21 .28 .29 .32 .34
15 11 .18 .22 .23 .25 .27 .28 .29 .32 .35
10 11 .18 .22 .23 .26 .27 .28 .29 .33 .35
7 11 .18 .22 .24 .26 .28 .29 .30 .34 .36
6 11 .18 .23 .24 .26 .28 .29 .30 .34 .36
5 A1 .18 .23 .25 .27 .29 .30 .31 .36 ¥
4 1 .19 .23 .25 .27 .29 .30 .31 .36 .38
3 11 .19 .24 .26 .29 .30 .32 .33 .37 .40
2 12 .20 .25 .29 .31 .33 .34 .36 .41 .44
1 14 .23 .30 .36 .40 .43 .46 .48 .57 .62
0.5 |.19 .30 .43 .55 .64 .58 .72 .75 .83 .8]
0.3333 |.23 .37 .55 .67 .74 .78 ~+80 .83 .88 .91
0.25 | .26 .43 .61 .73 .78 .81 .8 .85 .90 .92
0.2 |.29 .48 .65 .76 .80 .83 .85 .87 .91 .93
0.1666 | .31 .51 .68 .77 .82 .84 .86 .88 .92 .93
0.1428 | .33 .53 .69 .79 .83 .85 .87 .88 .92 .94
0.1 | .37 .s6 .79 .80 .85 .86 .88 .89 .93 .94
0.0666 | .40 .60 .74 .82 .85 .87 .89 .90 .93 .94
0.05 | .42 .62 .75 .82 .86 .88 .89 .90 .93 .95
0 47 .66 .85 .86 .88 .89 .90 .91 .94 .95




Table 8
cut off points

89

B vs. k] (k2 = k]+2, i.e. k = 2(k]+1))

K 3 4 5 6 7 8 9 10 15 20

B
= | .12 .19 .23 .26 .27 .29 .30 .30 -:32 .34
20 12 .19 .24 .26 .28 .29 .30 .31 .32 .34
15 J2 .19 .24 .26 .28 .29 .30 .31 .32 .36
10 12 .20 .24 .26 .28 .30 .31 .32 . .33 .37
7 2 .20 .24 .27 .29 .30 .31 .32 .34 .38
6 13 .20 .25 .27 .29 .31 .32 .32 .35 .39
5 13 .20 .25 .27 .29 .31 .32 .33 .36 . .40
4 .13 .20 .25 .28 .30 .31 .33 .33 .37 .41
3 A3 .21 .26 .29 .31 .32 .34 .35 .39 .41
2 13 .22 .27 .30 .33 .35 .36 .38 .43 .45
1 15 .25 .32 .37 .41 .44 .47 .49 .57 .62
0.5 | .18 .32 .44 .55 .61 .67 .70 73 .82 .86
0.3333 | .22 .41 .56 .67 .73 .77 .80 .82 .88 .91
0.25 | .27 .49 .63 .73 .78 .81 .84 .85 .90 .92
| 0.2 | .31 .54 .68 .76 .80 .83 .85 .87 .91 .93
0.1666 | .3¢ .58 .70 .78 .82 .84 .86 .87 .91 .93
0.1428 | .37 .60 .72 .79 .83 .85 .87 .88 .92 .94
0.1 | .43 .65 .75 .81 .84 .8 .88 .89 .93 .9
0.0666 | .49 .68 .77 .83 .85 .87 .89 --.90 .93 .95
0.06 | .52 .70 .79 .84 .8 .88 .89 .90 .93 .95
0 .59 .74 .81 .85 .88 .89 .90 .91 .94 .95
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Table 9
cut off points
B vs. kg (ky = kytd, T.e. k= 2(k;+2))

) 1 s 4 5 6 7 8 9 10 15 2
m 13 .20 .25 .27 .29 .31 .32 .32 .35 .37

20 | .13 .21 .25 .28 .30 .31 .32 .33 .36 .37
15 | .13 .21 .25 .28 .30 .31 .33 .33 .36 .38
10 | .13 .21 .25 .28 .30 .31 .33 .34 .37 .39

7 |13 .21 .26 .28 .30 .32 .33 .34 .37 .39

6 | .14 .21 .26 .29 .31 .32 .34 .35 .38 .40

5 | .14 .21 .2 .29 .31 .33 .34 .35 .38 .41

s | .14 22 26 .29 .32 .33 .35 .36 .39 .41

3 | .14 22 .27 .30 .32 .38 .36 .37 .41 .43

2 | .14 23 .28 .32 .3 .36 .38 .39 .44 .47

1 | .16 .26 .32 .38 .42 .45 .48 .50 .58 .63
0.5 | .19 .33 .44 .54 .60 .65 .69 .72 .81 .86
0.3333 | .23 .42 .56 .66 .72 .76 .79 .81 .87 .90
0.25 | .28 .50 .64 .72 .77 .80 .83 .84 .89 .92
0.2 | .34 .56 .71 .76 .80 .83 .85 .8 .91 .93
0.1666 | .39 .60 .74 .78 .81 .84 .8 .87 .91 .93
0.1428 | .43 .63 .76 .79 .82 .85 .87 .88 .92 .94
01 | .51 68 .79 .81 .84 .86 .86 .89 .92 .9
0.0666 | .57 .71 .81 .83 .8 .8 .89 .90 .93 .95
0.05 | .60 .73 .82 .8 .8 .88 .89 .90 .93 .95
o | .68 .77 .85 .86 .88 .89 .90 .91 .94 .95
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APPENDIX

Lemma 1. If {Xi} i=1,2,...,5 is a sequence of 1ndependen£irandom

vafiab]es with X, ~ x2 ,» 1 =1,2,...,5 and a,,a,,...,a. are scalars,
i ki 1°72 S

then
S
Loaik .S -
=S I ey L M (A1)
(1 x) =]
=1
S
- where k = ) ks
i=1

Proof. By the additive property of the chi-square distribution, we

S
know that ) Xy - xi and it can be easily shown that
i=]
Xi B Ei. k-ki )
§ et 2 2 ’
X
i=1
Therefore
X1 ki/2 k1
E( S )_ k/2=T’ 1=],2, ,S
LoXs
i=1
Xi S
Now by Basu's theorem S is independent of ) Xi,“f = 1,2,...,S.
z Xi i=1 -
i=1

Therefore
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Thus we have

m
™
-

—
1| it~ W0

-
—
-
-re
H
—
-

which completes the proof. ||

Lemma 2.  Suppose Z > 0 is a random variable such that its Laplace

-tZ) exists. Then

transform E(e
JU Z £(e™t)at. (A2)

Proof. Let F(Z) be the distributioh function of Z. Then

[ Ee gt = | | e tldr(z)dt
0 00

o] .

_ _t7 .
- e _ e
-6~ & | 1=
which completes the proof. ||
Lemma 3. If Z]’ZZ""’Zk is a sequence of independent random variables
such that )
¢ (ty,t) = Efe ]

is finite and differentiable, then
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Zi ® 3¢ (t],t)
EL K 1=-/1t Y dt (A3)
Proof. We have,
-t Z.-t ) I,
174 . j
9% - _ J#i
at, E[Z;e 1 -
and hence
k
) Z;
3 J=1
—_ = - E[Z.e 1.
at1. t]=t i
Therefore,
. k
pele et ) ’ [t £z, i Z] dt
- = .e
0 3ty t;-t 0 1
k
- -t ) Z,
= [ [ tz.e 971 T4t]
0
; k
-t Z. -t ) Z.
o =1 J @ o j=1 J
= E[Z_I{[-t K ] “+ f —°—E———— dt}]
_ 00
Yoz, Y oz,
j=1 4 j=1 J
4
- £l — 1,
(1 2,7
j=1

which completes the proof. |] --



n n-2, /—n
Lemma 4. f ' n] nodX; = a (n(/%;
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of the origin as:
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Consider the polar transformation in the spherical neighborhood

Xq ¥ I COS 8y COS 6,...C0S 8, 5 COS B 4, 0<6,_yz2m
_ . T i
X, = T COS 67 COS 0,...C0S 6, Sin 6,1 - 320, 555
- . ' E. LS
X, = r sin 6., . | - 728273
Then it can be shown that the Jacbbian is
n-2 .
J=v"""1 (cos ei)n'H,
i=1
f 2
and 7§ Xy = Then (A4) reduces to
i=1 = -
a /2 /2 21 N-2, —n
/ P 3dr f cos" %0 de. ... [ cos s__,de [ de Sl € iy
1771 n-2 "n-2 n-1 n
0 -w/2 -m/2 0 T(§+])

(A5) follows similarly. ||
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