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INTRODUCTION

Selection and ranking (ordering) problems in statistical inference
arise mainly because the classical tests of homogeneity are often in-
adequate in certain situations where the experimenter is interested in
compar{hg k (> 2) populations, treatments or processes with the goal of
selecting one or more worthwhile (good) populations. Mosteller (1948),
Paulson (1949), Bahadur (1950) and Bahadur and Robbins (1950) were among
the earliest research workers to recognize this inadequacy and to for-
mulate the problem as a multiple deciSion problem aimed at the selection
and ranking of the k populations.

In the thirty years since these early papers, selection and ranking
problems have become an active area of statistical research. There have
been two approaches to these problems, the 'indifference zone' approach
and the 'subset seiection' approach. In the first approach, due to
Bechhofer (1954), the experimenter wishes to se]e;;:one pOpulation (or
a fixéd number t > 1 of population) which is guaranteed to be the one
of interest to him with a fixed probability P* whenever the unknown
parameters 11e-outside some subspace of the parameter'space, the so-
called indifference zone. Important contributions using this approach
have been made by Bechhofer and Sobel (1954), Bechhofer, Dunpett and
Sobel (1954), Sobel and Huyett (1957), Sobel (1967), Bechhofer, Kiefer

ahd Sobel (1968), Mahamunulu (1967), Desu and Sobe]v(1968, 1971) and



Tamhane and Bechhofer ( 1977, 1979)among others. A quite complete
bibliography may be found in Gupta and Panchapakesan (1979) (see also
Gibbons, 0lkin and Sobel (1977)).

The second approach pioneered by Gupta (1956, 1963, 1965) assumes
no a priori information about the parameter space. A Sﬁhé?%.popu1ation
is not necessarily chosen; rather a subset of the given k populations
is selected depending on the outcome of the experiment. It is guaranteed
to contain the population(s) of interest with probability which is at
1eas£;equa1 to P* (the basic probabi]ity requirement) regardless of the
true unknown configurations of the parameters. Some recenf contributors
in the category of subset selection include: Deely (1965), Gnanadesikan
v(1966), Gnanadesikan and Gupta (1970), Gupta (1967), Gupta and Studden
(1970), Nagel (1970), Gupta and Nagel (1971), Gupta and Panchapakesan
(1972), Rizvi and Sobel (1967), McDona1d (1969), Gupta and McDonald
(1970), Santner (1975), W. T. Huang (1972), D. Y. Huang (1975), Gupta
and Huang (1975a, 1975b) and Gupta and Huang (1976).

Subset selection procedures can also be thought of as screening
procédures whiéh enable the experimenter to select a.subset of pop-
ulations (under study) which contains the popu]é%?ons of interest so
that- the populations in the selected subset can be further studies.

Sequential and multistage aspects of the ranking and selection
problems, have been explored, based on the indifference zone approach
by Bechhofer, Dunnett and Sobel (1954), Bechhofer (1958), Paulson
(1962, 1963, 1964, 1967) and Bechhofer, Kiefer and ébée] (1968).

Barson and Gupta (1972), Huang (1972), Gupta and Huang (1975). Gupta
and Miescke (1979) and Carroll (1974) have investigated subset selection

procedures, based on sequential sampling.



Contributions to optimﬁm properties of subset selection procedures
have been made by Lehmann (1961), Studden (1967), Deely énd Gupta (1968),
Berger (1977, 1979), Gupta and Hsu (1978), Gupta and Miescke (1978),
Berger and Gupta (1980).

In the decision-theoretic approach to the subset selettfbn problems,
Goel and Rubin (1977), Chernoff and Yahav (1977), Bickel and Yahav (1977),.
Gupta and Hsu (1978), Miescke (1979), Gupta and Kim (1980), Gupta and
Hsiao j1980) have given different formulations under different loss
functions and carried out investigations which indicate that the Gupta-
type maximum (minimum) means procedures are quite 'optimal' and 'robust'.

The main purpose of this thesis is to study some problems using
the subset selection approach and provide procedures and results for
some unsolved problems.

Chapter I considers the problem of selecting a subset containing
all populations better than a contfo] under an drdering prior. Here,
by an ordering prior we mean that there exists a known simple or
partial order relationship among the unknown parametérs of the treat-
metns (excluding the control). Three new selection procedures are
proposed and studied. These procedures do meet the usual requirement
that the probabiTity of a correct selection is greater than or equal

to a p;e-determined number P*. Two of the three procedures use the
isotonic regression over the sample means of the k. treatments with
respect to (wrt) the given ordering prior. Tables which are necessary
to carry out the selection procedures with isotonic apbfoaéh for the
selection of unknown means of normal populations and gamma pdbu]ations
are given. Monte Carlo comparisons on the performance of several

procedures for the normal or gamma means problem were carried out in



several selected cases; these are given in Table V and Table VI at the
end of Chapter I. In each case ten thousand simulations were performed.
The results of this study seem to indicate that the procedures based on
isotonic estimators always have superior performance, expecially, when
there are more than one bad populations (in comparison'ﬁft;:the control).
Chapter II deals with a new 'Bayes-P*' approach about the problem
of selecting a subset which contains the 'best' of k populations. Here,
by best we mean the (unknown) population with the largest unknown mean.
I'he (%on—randomized) Bayes—P* rule refers to a rule with minimum risk in
the class of {(non-randomized) rules which satisfy the condition that the
posterior probability of selecting the best is at least equal to P*.
Given the priors of the unknown parameters, two 'Bayes—P*' subset selec-
tion procedures wB and wﬁR (randomized and non-randomized, respectively)
under certain loss functions are obtained and compared with the classi-
cal maximum-type means procedure wM. The comparisons of the performance
of wB with wﬁR and wM, based on Monte Carlo studies, indicate that the
"procedure wB always has higher 'efficiency' and smaller expected select-
ed size of the selected subset. Also wB appears to he robust when the
true distributions are not normal but are some other symmetric distribu-

tiong_such as, the logistic, the double exponential, Laplace, and the

‘gross error model (the contaminated distribution);



CHAPTER I
SELECTION PROCEDURES FOR POPULATIONS — =
BETTER THAN A CONTROL UNDER ORDERING PRIOR

1.1. Introduction

Inithis chapter, three new selection procedures are given for the
problem of selecting a subset which contains all populations better
than a standard or control under simple or partial ordering prior.
Here by simple or partial ordering prior we mean that there exist
known simple or partial order relationships (defined more specifically
later in Section 1.2) among unknown.parameters. The procedures de-
scribed do meet the usual requirement that the probabilities of a cor-
rect selection are greater than or equal to a predetermined number P*,
the so-called P* condition.

Many authors have considered the problem of comparing populations
with a control under different types of formulations (see-Gupta and
Panchapakesan (1979)). Dunnett (1955) considered the problem of sep-
arating those treatments which are better than the control from those
that are worse. Gupta and Sobel (1958), Gupta (1965), Naik (1975),
Brostrom (1977) studied the problem of selecting a subset containing
all populations better than the control. Lehmann (19613 dis;ussed

similar problems with emphasis on the derivation of a restricted mini-

max procedure. Kim (1979), Hsiao (1979) studied the problem of



se]ecting popu]atiohs close to a control. In all these papers it is
assumed that a]]kpopu1ations are independent and that there is no in-
formation about the order of unknown parameters. However, in many sit-
uations, we may know something about the unknown parameters. What we
know is always not the prior distributions but some partigiuor incom-
plete prior information, such as the simple or partial order relation-
ship among the unknown parameters. This type of information about the
ordering prior may come from the past experiences; or it may arise in
the éxperiments where, for example, higher dose level of some drugs
always has larger effect (side-effect) on the patients.

In Section 1.2 definitions and notations used in this chapter are
introduced. In Section 1.3 we consider the problem for location pa-
meters. We propose three types of selection procedures for the cases
when the control parameter is kann or not known (fhe scale parameter
may or may not be assumed known). Some equivalent forms of the pro-
cedures are given, and their properties are discussed. In Section 1.4
the problem for scale parameters of the gamma distributions is consid-
ered and three analogous selection procedures are proposed. In both
Section 1.3 and 1.4 simple ordering priors are dassumed and some theo-
rems in the theory of random walks are used. In Section 1.5 a selec-
tion procedure is given for the problem of selecting all populiations
better than the control under partial ordering prior. Seétion 1.6
deals with the use of Monte Cario techniques to make comparisons among
the selection procedures proposed in Section 1.3 ahH’thbse in Section

1.4, respectively.



1.2. Notations and Defjn1tions

Suppose we have k + 1 populations To> Tpoee Tge The population
treatment T is called the control or standard population. Assume

that the random variables X.. associated with F(-;6.) and X.q,...,X.
1J i - 3] in,

i=1,...,k, is an independent sample from - Assume that wé have an
ordering prior of 61""’9k'- First we assume that the ordering prior
is the simple order, so that without loss of generality, we may assume
that,'e]f_..; < 0. In Section 1.5 we will consider the partial order-
ing prior case. Note that the values of ei's are unknown.

Suppose our goal is to find a non-trivial (small) subset which con-
tains all populations with parameter larger (smaller) than the control
% (known or unknown) with probability not less than a given vé]ue P*.

The action space G is the class of all subsets of set {1, 2,...,k}.
An action A is the selection of some subset of the k populations. 1i€A
means that s is included in the selected subset.

Let 6 = (eo, e],...,ek). Then the parameter space is denoted by 9,

k+1|

where @ = {8 €R 8] < @) < ... <85 - @ <8< =} is a subset of

2 _
e . . k+1 o
k + 1 dimensional Euclidean space R" .
The sample space is denoted by X where
n1+...+nk

X = {5§:R | x = (x]],...x]n], xz],...,xk],...xknk)L

Definition 1.2.1. A (non-randomized) selection procedureA(ru1e) §(x)

is a mapping from X to G.



A population " (i =1,...,k) is called a good population if

0; > 0

j , and we say a selection procedure § make a correct selection

0
(CS) if the selected subset contains all good populations. A selec-
tion procedure & satisfies the P*-condition if

Pe(CSIG) > P* for all pé€Q -
that is B

inf P_(CS|6) > P*. (1.2.1)
8EQ  —

Let 8 = {51;25 RQ(CSIG)_i P*} be a collection of all selection
procedures satigf;ing the P*-condition.
| in the sequel we will use the isotonic estimators (see Barlow,
Bartho]bmew, Bremner and Brunk (1972)). Hence we give the following def-

initions and theorems.

Definition 1.2.2. Let the set J be a finite set. A binary relation
"<" on J is called a simple order if it is
(1) reflexive: x < x for x€J

(2) transitive: x, y, z€J and x <y, y <z imply x < z

TA

(3) antisymmetric: x, y€J and x <y, y < x imply x =y
(4) every two elements are comparable: x, Y€J imply either

) X <yoryc<x.

A partial order on J is a binary relation "<" on J, such that it
is (1) reflexive, (2) transitive, and (3) antisymmetric. Thus every
simple order is a partial order. We use poset (J,<)_to denote the set

J that has a partial order binary relation "<" on it. -



Definition 1.2.3. A real-valued function f is called isotonic on poset

(7,<) if and only if (1) f is defined on J, (2) if x, y€J, x < y imply

f(x) < fly).

Definition 1.2.4. Let g be a real-valued function on J and=let W be a

given positive function on J. A function g* on J is ca]]edran isotonic
regression of g with weights W if and only if:

(1) g* is an isotonic function on poset (J,<)

2) T To(x) - g¢(0)T2(x) = min T [o(x) - F(OT2M(x),
xX€J fesd xeJ

where ¥ is the class of all isotonic functions on poset (J,<).

From Barlow, et. al. (1972), (see their Theorems 1.3, 1.6 and the

corollary there), we have the following theorems.

Theorem 1.2.1. There exists one and only one isotonic regression g*

of g with weight W on poset (J,<).

Definition 1.2.5. A set S is convex if Sy and s, €5 and 0 < o <1

then asy + (]—a)SZES.

Definition 1.2.6. A set S is a cone if s €S then for any non-negative

real number c, cs €S.

Definition 1.2.7. A poset (J,<) is a lattice if sup H and inf H exist

for any finite non-empty subset H of J.

If f and g are two isotonic functions on poset (7,<), we define
fAag and fvg as
(fAg)(t) = F(t) Ag(t) = min(f(t), g(t))
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and
(fvg)(t) = f(t) vag(t) = max(f(t), g(t)).

Then we state the following:

Theorem 1.2.2. The class & of all isotonic functions on poset (7,<) is

~a convex cone and a lattice.

There are some algorithms, such as the "pool-adjacent-violation"
algorithm (see page 13 of Barlow, et. al. (1972)) or Ayer, Brunk, Ewing,
Reid;and Silverman (1955) or the "up-and-down blocks" algorithm, Kruskal
(1964), which show how to calculate the isotonic regression under simple
order.

The following max-min formulas were given by Ayer et. al. (1955).

Theorem 1.2.3. (max-min formulas)

Assume that we have poset (J;S) where J = {e],...,ek}, e1 <. ea<Bs
and that function g: J > R, then the isotonic regression g* of g with
weight W has the following formulas:

g*(ei) = max min Av(s,t)
s<i t>i

= max min Av(s,t)
s<i t>s '

. = min max Av(s,t)
t>7 s<i

= min max Av(s,t)
t>7 s<t

where
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Corollary 1.2.1. (g + c)*=g*+c,

(ag)* = ag*, if a > 0.

Corollary 1.2.2. [p(g*)g + @(g*)1* = o(g*)g* + «(g*), where o is a non-

negative function and ¢ is an arbitrary function. _

1.3. Proposed Selection Procedures for the Location Parameter Probiem

To discuss some more general results, we assume that population s

has an absolutely continuous location-scale distribution function

X=U. _
- F(x3 ws, 02) = F(—), where 0 < F(x) < 1 for all x,- «» < x < « and

1 a

the values of Hyseoeo and W, are unknown, but their ordering, say,

Hp Soeee Sy is known. Note that in this case we replace 0 in the
parameter space 2 by u, all other quantities remaining the same.
Let us define the subspace Q; = {p €9 Moi < Mg S Mpien!] for
i=1,...,k-1 and let subspace Qk'= {u €q] Mo 5_u1}and subspace
k

= {p€gq] M < gl then we have @ = 'UOQi' Note that the control
'I:

could be known or unknown. If ng is unknown, we assume that the

29

u
0
distribution of population L is F(x; Hg> 02) and we take independent

obserVations XO]""’XOn from T and the samp]e'space x>furns to

1n0+.;.+n
{x€R X, )}. Using the parti-

""SX ,X 30 v 3
01 On0 21 knk

tion {QO,...,Qk} of parameter space 2, we have

K| x = (x

inf P_(cS|s) = inf {inf P (CS|s)y,
ueq * T<i<k peq; E

for any selection procedure s €8. Hence the P*-condition is equiva]ent

to
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inf P (CS|s) > P*, for i =1T,...,k.
uEQi 2

Note that inf P (CS|s8) = 1 for any selection procedure & since there

H
1169.0

exist no good population in this case.

Suppose Xi = X is.the outcome of the sample mean of p6§u1ation-n1,

i=1,....k. Llet J denote the set {u, uy,...ou F where uy < ... <,

-2

and let w(ui) =N " =W, g(ui) = X3 i=1,...,k. Then by the max-

min formulas, the isotonic regression of g is g*, where

g*(”i) = max min
T<s<i s<t<k

The 1isotonic estimator of My is denoted by Xi'k’ i=1,...,k where

t

b OX.ws

j-_-st\]

><>
|

max min
1<s<i s<t<k J w
J

ik
j=s

(1.3.1)

]
=
[«7}

|A X
—
><
fu——l

where

X.ow.+X. . w. X,w.+...+X W

L= . sens .o (1.3.2)
J:k J Wj+wj Wj+"'+wk

1.3.1. Proposed Selection Procedure 5]

Case 1. known, common variance 02 known, and commdn sample size n.

UO



Definition 1.3.1. wé define the procedure 6] as follows:

Step 1. Select T i=1,...,k and stop, if

; (1) o
X1.k 2 ¥ ~ 99k =

b

otherwise reject ™ and go to step 2. i

Step 2. Select e i =2,...,k and stop, if

otherwise reject L) and go to step 3.

Step k-1. Select T i = k-1, k and stop, if

>

v (1) o
Xe-1:k 2 ¥o ~ ¢

k-T:k =2

otherwise reject -1 and go to step k.

PN

X

Step K. Select Ty and stop, if

> -d]—g—

k:k = ¥o é-k ’
- . ‘/rT

otherwise reject e

€8, that is §, sat-

Here dg!a's are the smallest values such that ¢ 1

1

isfies the p*-condition.

13
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1.3.2. On the Evaluation of inf P“(CSIG]) and the Value of the
neQ. -
o =

(1) (1)
Constants d]:k""’dk:k

For any y€g., 1 <1 <k, let Z;'s i.i.d. ~ F(+; 0, 1) then

PP_(CSIG])
k-i+1
” 1) o
=P ( U {X,.,, >u -d(._ —1})
u j=] J.k has 0 J'k /ﬁ
k-i+1 j =2 (

1) o
=P (U U{X_., >uy-d:i.) —=})
B 5o pe r:k 0 jk /n

k-i+1 j = M. H
sP( U U{Z +Y‘—Q>-d(.1)})
- r:k = Jik
B 3=1 r=1 o/V/n ’

which is decreasing in Mo 7= T,... k=141,
Hence

inf P (CS189) 2 P(Z)_qyq.4 2 - dé]3+1fk)
o, b : :

On the other hand,
inf PU(CS|6])

k-1+] A (])
P . X. -dyl) 2
g <Pl 8 Py 2 vo ™ ik )
_ o(s _ 4
= P ie1:k 27 decianak!
whenever u* = (uo, - oL, - o, UO’f"’UO)Egh )
Thus, we have ! .
. oo _ (1)
inf P (CS]8q) = P(Zy sy 2= i)

E-EQi -
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. . _ A S 4
. . k-i+1 k
Since Z, siq.k = Min {Z _4iy5--0s 3 } has the same
distributions as
N Z-I +--.+Z_i
Z]:i = min {Z],..., : -1}, - ?i{
1 = : |
et Vi 21:1 (1.3.3)
E .
= min -— Z.,
T<r<i "= d
we have
. _ (1) _
inf P (CSIG]) = P(Vi > - dk-i+1:k)’ i=1, .k (1.3.4)

€. B
u€q,

Theorem 1.3.1. 1In case I, (uo known, common known 02 and common sample

(1)

size n), if dy 4]k is the so]ution.of equation

P(V; > -'x) = P* (1.3.5)
where
1 °
v, = min — ) Z. and Z, are i.i.d. ~ F(-),
1<r<i EY J

_i =1,...,k then 6] satisfies the P*-condition. _ .

Proof.- For any i, 1 < i <k,

) _ (1) - px
;251 PHKCS[61) P(Vi > dk—i+1:k) P,

S0 6] satisfies the P*-condition.
Therefore, the problem of finding the dg!&'s reduces to finding the

distributions of V , and V This is achieved by using gome theo-

100 K-
rems in the theory of random walk.
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1.3.3. Some Theorems in the Theory of Random Walk

Suppose Y], Y2"" are independent random variables with a common

distribution H not concentrated on a half-axis, i.e. 0 < P(Y] < 0),

P(Y] > 0) < 1. The induced random walk is the sequence of random
variables - E;ﬂ

SO =0, Sn = Y] ...+ Yn, n=1,2,
let

Ty = P(S] 0,500,551 20,5, > 0) (1.3.6)
and

t(s) = J s, 0<s <1 (1.3.7)
n=1

Then we have the following theorem which was discovered by Andersen

(1953). Feller (1971) gave an elegant short proof.

Theorem 1.3.2.

log ~ = T S p(s. > 0) (1.3.8)
97703 ns1 " n ) T
Theorem 1.3.3. (Feller (1971))
Let o
. P, = P(S]> 0,...,5, > 0),
then
.5 n_ 1
p(s) = nZ]pns = 1) (1.3.9)
hence -
Tog p(s) = ) 7T'P(S > 0). (1.3.10)
n=1 n
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By symmetry, the probabilities

a, = P(S; < 0,...,5, < 0) (1.3.11)

have the generating function q given by

(1.3.12)

© sn
log q(s) = 21 5 P(s,
. ne

IA
o
~—

Note: The above two theorems remain valid if the signs > and < are

replaced by > and <, respectively.

Now, let
]r
Ul = max — ) b, §=1,2,..., (1.3.13)
b 1er<i T is
and
L sy ( )
Vi= min - v Z!, §=1,2,..., 1.3.14
LS iy

where Z%'s are i.i.d. with absolutely continuous c.d.f. G(-). We
would Tike to apply Theorem 1.3.3 to get the distribution of Uj and
Vj, J=1,2,...

Remark 1.3.1. The distribution of Ui, j = 1,....k for some k > 1,
will bé used whenever our goal is changed to select a subset contain-

ing no population with parameter smaller than the control.

Theorem 1.3.4. The generating function q(s) of P(Uj_i X), j=1,2,..."

is

) sj P(U: < x) = exp



18

where

S =
n

N~

(2 - x), n=1,2,...,
i=1

if the distribution of Y1 = Zi - x is not concentrated on a half-axis.

Proof. Since the distribution of random variable Yi = Z% - x is not

r
concentrated on a half-axis, and Yi's are i.i.d. Tlet S, = ) (Z% - X),
i=1
r=1,...,k. Then
! = l =
{Uj < x} = {1max. - S, < 0} {5 5_0,.,.,Sj < 0}.
<r<j
By Feller's Theorem 1.3.3, we complete the proof.
Similarly, {Vj > X} = {Si >0, i=1,2,...,3},
where
;
S, = J (Z! - x)
i
r=1
Theorem 1.3.5. The generating function p(s) of P(Vj > x) is
T J 1 _ : - 1T n /e
Y osd PV >x)=exp{ )] —~s P(S >0} (1.3.16)
3=1 ! n=1" - |

if fhe distribution of Y1 = Zi - X is not concentrated on a half-axis.

Corollary 1.3.1. Both Theorem 1.3.4 and Theorem 1.3.5 hold for all

x such that 0 < G(x) < 1.



Proof. Let Y] ='Zi'- X, then

P(Y] < 0) = G(x)
and
0 < G(x) <1, .

hence Y] is not concentrated on a half-axis.

Corollary 1.3.2. Both Theorem 1.3.4 and Theorem 1.3.5 hold for all

X whenever G = ¢, c.d.f. of N(0,1), or G = F which is defined at the

beginning of Section 1.3.

Proof. Followed immediately by Corollary 1.3.1.

Note that in the case of location parameter of normal population,

P(Uh < - Xx) = P(Va > X).
Let
a5(x) = b = P(s'j 50), j=1,2,...,
© n
s
= 2 A,
a(s) nzl n
we have
p(s) = I s7 PV 2 %) = exp (af3)).
J=1
Lemma 1.3.1. (n+1)(é) = g (g) p(j)(s) a(n+]_j)(s), Vn.

Proof. Since p'(s) = p(s) « a'(s), the result can be _proved by induc-

“tion on n. .

19



Theorem 1.3.6. Under the assumption of Theorem 1.3.5

) = oL Tim d"o(s)

P h+1 = - ()t s—>0+ dsn+]
10 : .
= H;T-jzo POV 2 )8 gpqs M= 0505 250 = (1.3.17)
where
P(Vd >x) =1, W

Proof. By Lemma 1.3.1, we have

P(Viyy 2 %) = 15%777'11m+ p(n ) (s)

s~0

_y ] L) .
} jZO (1)1 j!(ﬂ_j)! pJ7(0) [(n-3)! Bot1-31
_ 1 n '(J)(O)
ot J-ZO TIT O A
1§ ,
= EIT_jZO P(Vj z-X)An+]aj'

Similarly, we have

< 0). (1.3.18)

ho~13

P(U! < x) P(S.

- N
. P(Un+1 < x) = ntl 24 n-i+1 = i

1’

1.3.4. Limiting Distributions of Uﬁ and Vﬁ

Let Fn(x) = P(Ué < x) and F_(x) denote the limiting distribution
function as n » « of Uﬁ. Suppose the distribution of random variable

Y] = Zi - x is not concentrated on a half axis, then we have

20
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n
1 - F(x) = P(S;>0) + Y'ZZ P(Sy < 0,...55, 4 <0, 5. > 0),

1 - F_(x) = 1im (s),
s»1"

and apply Andersen-Feller Theorem 1.3.2, we have

(o2

F(x)=exp (- I +P(S >0 (1.3.19)
r=1 r :
Simi]ar1y,
6.(x) = exp {- ] - P(S. < 0)) (1.3.20)
r=1
where
6_(x) = P(V! > x)
Let

G (- d]("”) = p*, o (1.3.21)

If Zi’ i=1,...,k, are independent identically distributed
~ N(0,1), then we can use the recurrence formula of Theorem 1.3.6 to

solve the equations P(Vi > - dk—i+1:k) = P*, i 5_1,..:,k. Hence in

Case I, Aj(x) = o(~ x/7).

Remark 1.3.2. From formula (1.3.4) we know that d£13+1-k (i =1,...,k)

(1) (1)

does not depend on k. And we have dy _t.,., = dy.j. These values for
k=11(1)6, 10, » and P* = .99, .975, .95, .925, .9, .85, .8, .75,

.7, .65 are tabulated in Table I.



1.3.5. Some Other Forms of Selection Procedure 8

1) .. . c
. 1s increasing in 1i.

- (
Lemma 1.3.2. dy.;

Proof. By Remark 1.3.2 and the fact

- AP 21+1)
i+1 T R

Lemma 1.3.3. If cj, 1 <Jj<i <k is decreasing in j, then -

i . 2
Uui{X,.,, >-c:t= U{X, , >-c.}
j=1 Jtk I° 0 5oy Ik J
- i 1 =
Proof. UA{X,., >=c¢c.,} 2 U{X..,, >-c.}
j=1 Jik J© = yap ik J
since
Xj:k i-Xj:k’ 1<J=<k

X ., >-¢ for some r, 1 <r

| A

then

Xe., > - C for some s, 1 < s <

since

., = max {i e
r:k l<s<r s:k
Because c; is decreasing in j, this implies X ., > -

1 <s <r.

—

qs for some s,

22



Hence we have

therefore the lemma is proved. .

Definition 1.3.2. We define a selection procedure Si by replacing

the inequality in the ith step of procedure 6] by the inequality

X. > un = di S i= 1,k
itk =70 ik Jn _

where d%-k""’dﬁ'k are the smallest values such that ai satisfies

the P*-condition.

Theorem 1.3.7. The selection procedure 8 and ai are identical and

1 :
d( ) - di

itk i=1,...,k.

Ko ]

Proof. For any i, 1 < i < k, by Theorem 1.3.1
P = inf P (CS|6,) = P(Z
BEQ_i LS

S a1y,

k-i+1:k 2 7 %k-i+1:k

On the other hand, using the same arguments as Section 1.3.2, we

have ' R 7
) P* = inf Pu(CSIGi) = P(Zk—i+1:k > - dk—i+1:k)'
a EE91 -
L) o -
Hence we have d;. = di, ., i =1, »K
Since i]-k z i]'k’ the first step of 6] and 6{ are identical. For

i=2,...,k, the event - -



3
' : " 1) o
{select m.,...,m |8,3 = { U (X.. >, - d(._ -}
1 ki1 J=] J.k 0 Jk/a-
i -

~ 'l) g

- U (X, 2l o
(9 v ™ Gaie )

{select "i""’“k|61}

by Lemma 1.3.2 and Lemma 1.3.3. Hence selection procedures 6] and Gi

are identical.

1.3.6. Some Other Proposed Selection Procedures 62, 63, 64

In Case I, we proposed some other selection procedures:

Definition 1.3.3. We define a selection procedure 62 by

. . s v _ o s
8,0 Select m; 1f and only if Xi:k > ug - d i=1,...,k

/n

where d is the smallest value such that 62 satisfies the P*-condition.

Theorem 1.3.8. Under assumptions of Case I, and selection procedure
8o if we select population Tis then we will select populations T
for all j > i.

Proof. Since Xi:k f_ijk for all § > 1.

Evaluation the Value d of 62

For any i, 1 < i < k, we have

A

inf Py (oianzk 2 ¥

inf P (CS[s,) =

B B
HGSzi EEQi

)

Sls

=P(V1.3-d)

24
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by the same argument for selection procedure 6] and here

v, =7 17

. = Zy.. = min {< 1.

T e T

We need the constant d such that P(Vi > - d) > P* holds for-all i,
(1) o

1 <1<k. By Lemma 1.3.2 we have d = d]-k' Hence we have fﬁe follow-

ing theorem.

Theorem 1.3.9. Selection procedure 8, satisfies the P*-condition
b g = gll)
with d d]:k'

Corollary 1.3.3. If S1 and 52 are the selected subsets associated

with selection procedures 6] and 855 respectively, then S] < 52'

Proof. Proof follows from Lemma 1.3.2.

Definition 1.3.4. The procedure 63 is defined as follows:

Step 1. Select »., i > 1 and stop, if
o

R;U'd—a
1 =50 1 J

otherwise reject ™ and go to step 2.

Step 2. Select i i > 2 and stop, if

-d, <,
2 Jn

otherwise reject Ty and go to step 3.

Step k-1. Select Mis i >k -1 and stop, if

X1 249 - d



otherwise feject LI and go to step k.

Step k. Select T and stop, if

R TR
/n -

otherwise reject T

Here Xj = max {X],...Xj} and di's are the smallest values such that

83 satisfies the P*-condition.

Evaluation of di's

For any i, 1T <1 <k,

k-%+1 ) i
inf P (CS|8,) = dinf P (] Xy >ug- d.-Z})
EEQ_i L] 3 HEQi roj=1 J 0 J /n
= o
Pu(zk—1+1 dk-i+1 V-~
P(Z 541 2= dyipy)

= P*, Zi ~ F(+3 0, 1).

This implies dk—i+1 = d for all i, and

- FT(1-pR),

Q.
H

i . (P*), if F is symmetric
I PN . . 2
= ¢ (P ), if X'I N(U.i: 9] /n)

Similar to the selection procedure 815 we have the following theorem:

Theorem 1.3.10. Selection procedure 83 satisfies the P*-condition with

di = - F(1-P¥).
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Definition 1.3.5. Selection procedures 83 is defined as follows:

Step 1. Select i i > 1 and stop, if

otherwise reject ™ and go to step 2.

Step 2. Select w,, i > 2 and stop, if

otherwise reject L and go to step 3.

Step k-1. Select s i>k>1and stop, if

' g
k120 4o
otherwise reject The
Here

- F(1-p%)

Q.
1]

= F-](P*) if F is symmetric.

Theorem 1.3.11. The selection procedures 63 éatigfies'thg P*-condition.

Proof. For any i, 1 <i <k,

inf P _(CS|6L) > P(Z, .., > - d) = P*.

Theorem 1.3.12. The selection procedure 63 and-Gé are identical.

Proof. The proof is simple hence it is omitted.
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" The following procedure §, was given by Gupta and Sobel (1958),

without assuming any ordering prior:

Definition 1.3.6. The selection procedure 64 is defined as follows:

Yk Select ™. if and only if Xi >y - d 1 =-T,..%,k

9
/n
where d is the smallest constant such that 64 satisfies the P*-condition.

It was shown that the value d is determined by the equation

or

1.3.7. A Dual Problem

We start with the same assumptions as in Section 1.3.1 Case 1, but
change our goal to select a subset which contains no bad populations;
the definition of a correct selection (CS) will now be changed to select

~a subset that contains no bad populations and thguP*icondition will be
defined based on this new definition of correct se1ect10; (cs).

In Tocation parameter case, this problem is a dual problem of the
original problem, namely, "select a subset which contains all good
populations under ordering prior assumption®.

One method to solve this problem is that, first,_change the signs
of all statistics and the control to opposite sign; then use a procedure

§ for selecting a subset which contains all "new good" populations,
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where the '"new good"»popu1ations are the "old bad" populations before
changing signs; finally, reject the selected subset and keep the re-
mainders as the desired selected subset. Let wi, i=1,2, 3, 4 denote
the above procedure which corresponds to 85 i=1, 2,3, 4 respec-

tively.

Theorem 1.3.13. The selection procedure Vis i=1,2, 3, 4 satisfies

the P*-condition in which the correct selection (CS) means that it

selects a subset which contains no bad population.

Proof. Given P* and observations, for any selection procedure Wi’
i=1, 2, 3, 4, after changing the signs of all associated statistics,
the probability that the selected subset S contains all "new good"
populations is not less than P*. If We reject the selected subset
S, then the complement subset sC of S contains any '"new good" pop-
ulations with probability Tess than 1-P*, but the "new good" popu-
lations are the originally bad populations so what we have is that
the subset S contains any originally bad population with probability
Tess than 1-P*, in other words, subset s¢ containghno'bad-popu1ations
with pfobabi]ity greater than or equal to P*. Since thisiis true for

all arbitrary true configurations, we have completed the proof.

Remark 1.3.3. It is easy to see that the value di'k(¢1) of 0y which

was used by y, in the ith step is determined by the equation
1 .

P47 < dyogelog)) = P

where

1 r
U ., =  max Y ..
e P R IS B
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If the distribution F is symmetric, then

1
di . (wq) = d1§:|)<'

1.3.8. Some Proposed Selection Procedures ng), i=15 2,?3;—4

When o is Unknown

2 .
Case 1II. "o unknown, common o~ known, common sample size n.

Definition 1.3.7. We define a selection procedure 6%2) by replacing

the inequalities

X. | > X - d(?) <., i =1,...,k, respectively.

XOi/n’ dgg) i=1,...,k are the smallest constants such

0 . k’

n
Here X, = )
1'_“

1
that the selection procedure 6(2) satisfies the Ef—céndition.

Similar to the Case I, we have the following theorem:

Theorem 1.3.14. For any i, 1 < i <k, dé§$+].k is determined by the

equation

[Pzt - ) () = P (L3.22)



3

It is easy to see that d£?3+]:k = d%?g. The foliowing theorem -
(2)

gives us an identical form of the selection procedure 8] .

Theorem 1.3.15. The selection procedure 6§2) will not be éﬁéhged if

the statistics ii-k’ i=1,...,k, are replaced by ii'k’ i=1,...,k,

respectively.

Proof. The proof is the same as that in Case I and hence it is omit-

ted.
2)

.-i’

k=1(1)6, 8,10, andP*= .99, .975, .95, .925, .90, .85, .80,

The values d§ i=1,...,k are tabulated in Table II for

.75, .70,.65.
Similar to the Case I, we propose a selection procedure aéz) as
follows:
Definition 1.3.8. We define a selection procedure 6é2) by
s{2). select =, if and only if X X -dZ §=1 k
2 i itk =70 I 2o

where d is the smallest value such that 6§2) satisfies thg P*-condition.

Then, -similar to Theorem 1.3.9 we have:

Theorem 1.3.16. Under assumptions of Case II, the selection procedure

Gézy satisfies the P*-condition with d = d%?z.
(2)

Next, we define a selection brocedure 63 which s similar to 83

but replace i by XO’ the sample mean of population T



32

)

Definition 1.3.9. The selection procedure ng is defined by replacing

v g . by T
X; > g - dy 7% in 8, (Definition 1.3.4) by X; > X, - d; . i ],...,k

2)

110

where di,...,d' are the smallest values such that sg satisfies the

k
P*-condition. -

Similar to Theorem 1.3.10 we have:

(2)

Theorem 1.3.17. The selection procedure 84 satisfies the P*-condition

with di =d, i=1,...,k where d is determined by the equation

[ 01 - F(t-d)]dF(t) = P*, (1.3.23)

-0

[ F(d-t)dF(t) = P*, if F is symmetric.

-0

And ng) will not be changed if the statistics ii is replaced by Xi’

the sample mean of population s for i = 1,...,k.

(2)

The following selection procedure 64 was proposed by Gupta and

Sobel (1958):

(2)

Definition 1.3.10. The selection procedure 64 s defined by

52). Select . if and only if X; > X, -d -2 1i=1,...,k
1 i="0 /n—
i

where d is determined by the following equation if F is normal dis-

ok . .
[ T [F(t//-;1 + d)]f(u)du = P*.- - (1.3.24)
e i=1 0

tribution:
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For the special case ny =n (i =0,1,...,k)

Im FX(t+d)F(t)dt = P*. (1.3.25)

-0

If F is normal distribution N(0,1), the tables of divafugs sat-
isfying the Equation (1.3.25) for several values of P* are given in

Bechhofer (1954) for k = 1 (1) 10 and in Gupta (1956) for k = 1 (1) 50.

1.3.9. Some Proposed Selection Procedures 6$3), i=1,2,3,4

. 2 .
When Common Variance o~ is Unknown

. . »
Case III. 1y known, common variance o unknown, n, = n>1.

In this case, we assume that F(x) = @(x) which is the c.d.f. of

N(0,1).

(3)
1

Definition 1.3.11. We define the selection procedure 3 by replacing

the inequalities

” (1)
ik 20~ Y4k

in procedure 6, (Definition 1.3.1) by
1

. ii'k - dg?a i=1,...,k, respectively,

>

2 ¥y

31 |

(3)
1

where d(3)'s are the smallest values such that ¢ satisfies the
P*-condition, S2 denotes the pooled estimator of 02 based on
v = k(n-1), that is | -

| k n -

2 2
$¢ = VT (X - X))V, (1.3.26)
i=1 j=1 91
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2 : .
Note that V% has the chi-square distribution Xg with v degrees of
?
a
freedom.

By using similar arguments as in Case I, we have:

Theorem 1.3.18. The equation which determines the constant'dé?2+]_k
is
P(Vi-i dk P40k 0) = p¥ (1.3.27)
or
fo P(V1 > - dk-i+];k y)qv(y)dy = px (1.3.28)
where
1 r
V, = min < y 7.
" dersd T =1 Y
. . s _ X%
and qv(y) is the density of = —

We can rewrite Formula (1.3.28) as

JoP(; 2 - k1+1k/)

0

T .

L2

or

5 -1
” t' e -
fP(Vii— 1+]k/ ) _t_—P-*. (1.3.30)
rz)



Remark 1.3.4. The values of d£?3+1,k, i=1,....k depend on v = k(n-1),
(3) (3)
hence dy_i+1:x 7 4134

By using Rabinowitz and Weiss table (1959) (with n = 0, N = 24),
we have evaluated and tabulated the values of d£§2+],k,-i = 1.,k
in Table III, for k = 2 (1) 6, P* = .99, .975, .95, .925, .90, .85,

.80, and .75 with common sample size n = 3, 5, 9, and 21.

For k > 6 and n > 21, we can use ds!g as an approximation of
(3)
de-i+1:k
Definition 1.3.12. We define the selection procedure 6£3) by
6(3): Select =, if and only if i._ > Uy - d(3) S i=1,...,k
2 i ik =0 iy
where S is defined as in procedure'6§3), and d(3) is the smallest
constant such that 5&3) satisfies the P*-condition.
As before, it can be shown that d(3) = d&?z.

Remark 1.3.5. Theorem 1.3.7 still holds for Case IIl, i.e. the
selection procedure 6%3) will not be changed if wénfeplaCé the isotonic

statistics ii-k by ii-k’ respectively. But this is not necessarily

(3)

true for selection procedure 8577

Definition 1.3.13. The selection procedure 6§3) is defined to have the

(2)

same form as procedure 63 except that the inequality defined in the

(2) ]

ith step of procedure 63 is replaced by

S

-d =
/n

i 2 Mg for i =1,...,k.
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The proof of the following theorem uses the same arguments

as that in Case I, hence it is omitted.

Theorem 1.3.19. The equation which determines the constant d of

(3) . -

selection procedure 8377 is =

(o]

fO o(yd)q (y)dy = P, (1.3.31)
Gupta and Sobel (1958) gave a selection procedure 6£3) in this
case. It is as follows:
(3). : : S -
64 : Select s if and only if Xi > ug - d— =1, .k
/ﬁ}
and the equation which determines d is
fo <I>k(yd)qv(‘y)dy = P*. (1.3.32)

1.3.10. Some Proposed Selection Procedures 6§4), i=152,3,14

When Both Control Mo and Common Variance 02 are Unknown

Case TV. o unknown, common variance 02 unknown and_common sample

$ize n.
We assume that in this case distribution F is the c.d.f. N(0,1),

and denoted by . We replace o in each selection procedure 5(3) by

(4) ’

X5, 1<j<4, and get four procedures 5j » 1 < <4, respectively.

Os
Let Xi(t) denote the c¢.d.f. of the chi-square distribution with
(4) -- 4

v = k(n-1) dedrees of freedom. The constant dk-i+1-k’ i=1,...,k,
(4) )
i

of procedure § is determined by
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f: [: P(V; > u - déf3+] K //g)d¢(U)dx§(t) = P*x.  (1.3.33)

o

The constants d'of procedures 6§4) and 6£4) are determined by

fm Im¢r(u + td)dé(U)dxg(t) = p¥ (1.3.34) .

- 00

with r = 1 and k, respectively, and their values for selected values

of P*, k and v are given in Gupta and Sobel (1957) and Dunnett (1955).

1.3.11. Properties of the Selection Procedures

Under simple ordering prior, it is natural to require that an ideal

selection procedure is order-preserving as defined below:

Definition 1.3.714. A selection procedure § is order-preserving if it

selects T with parameter Wi and if My < E then it also selects 'y
Procedure § is weak order-preserving or monotone if

P(ni is selected|s) < P(m, is selected|s) whenever by < owg

.
J
It is easy to see that any order-preserving selection procedure
is weak order-preserving, but the converse is not true.
Now, let a§1) =5, 1=1,2,3 4

Theorem 1.3.20. The selection procedures 6%1), 6%1) and 6§1) are

i)

order-preserving and procedure 5£ is monotone, for i = 1, 2, 3, 4.
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Proof. The proof follows immediately from the definitions of the pro-

cedures.

. is the sample mean

Given observations X = x = (Xj,...,X ) where x,

of population T i=1,...,k, and Xg = Mg if g is known; otherwise

Xg is the sample mean of population T Let
 i(x, 8) = P(n; included in the selected subset|X = x, ¢)

for i =1,...,k.

Definition 1.3.15. A selection procedure § is called translation-

~invariant if for any 56Rk+1, c€R

lp].(x0 T XpF ChealnXy H G §) = wi(xo,;..,xk; §) i=1,...,k.

(1) (1)

Theorem 1.3.21. The selection procedures 6] > 857

LW —~

are translation-invariant for i = 1, 2, 3, 4.

Proof. By Corollary 1.3.1 the isotonic regression is a linear operator.

On the other hand,

o~
—
+
(@]
~—

Il &™~13
>

X..
1 W

hence we have the result.

Expected Number (Size)of Bad Populations in the Selected Subset

Suppose the control 1o is known and we have common sample size n
. 2 . -
and common known variance o~ ; without loss of generality, we assume

that uy = 0 and o//n = 1. Let E(S'|s) denote the expected Bumber of

0
bad populations in the selected subset in using the selection procedure



§, then for any j, 0 <J <k,

sup EU(S'IST)
Eﬁﬂk_j

HEQk_J- Y‘=1 -

i roa
) P(U{z
r=1

It

L]

On the other hand, for procedure 8,

sup
peQ

E(Slidz) = %

r=1

k-3

P

r
(v
=

sup f P (U{X .

=1

.
I d§:&})

{zz:j Z-

1

1
i

1)

(1.3.35)

(1.3.36)

Formula (1.3.36) is increasing in j and is greater than or equal to

Formula (1.3.35),

since

1) _ 400

di:& 1:

)
k-

2+]

<d

Therefore, we have the following theorem.

Theorem 1.3.22.

For any i, 0 < i

sup E(S'ldz)
Eﬁﬁi

<

>

k

(
1

1

)
1k’

sup E(S'|61),

u€Q

i

sup E(S']éz) = sup E(S'lsz).

uER

neQ

0

Theorem 1.3.23. In Section 1.3.1, Case I, for any j, 0 < j 3vk

where q = 1 - P*,

sup E(S'|65) = § - a(1-q))/P*

Hﬁgk—j

(1.3.37)

39



Proof.

where q = (1-P*),

Theorem 1.3.24.

sup

_EEQk_J-

Proof.

is increasing in x, for 0 <a <1, 0 <b <1, and 0 < X < =,

In Case I of

sup E(S'163)
weR, .
Ll k‘J

= sup

I~

. i=1
J

P ( max
5 1= B q<r<i

1
(%]
<
~
[ (2

il
[
1
Il ~1a,
ol
-~d

1l
.
1

0
—
—]
]
L
-y
o
~
o
*

sup E(S'Id3) is increasing in j, hence

HﬁQk_jv

EE(se1ect “i|63)

Xp > - d)

E(S'[8,) = sup E(S'[6,) = k - q(]—qk)/P*T (1.3.38)

9

Since the function

f(x) = x - ab

Gupta (1965) showed that

]
sup E(S'|64) = kP*",

uen

k

(1.3.39)

40
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When the orderihg prior among the unknown parameters is unknown,
we can use the selection procedure of Gupta and Sobel (1958) or use

' the ordering of the sample means as the ordering of unknown parameters

and apply the selection procedure which is originally used_under order-

ing prior. With the latter approach, the substitution }mp1{%§ that th
isotonic regression of the sample means turns to the usual ordered
sample means, and that the selection procedures sgi) (i=1, 2, 3, 4
j =2, 3) are the same as Géi) (i =1, 2, 3, 4), respectively, and the
selection procedures 6%1), i=1,2, 3, 4 become ééi), i=1,2, 3,4
respectively, which are equivalent to the procedures proposed by Naik
(1975) and Brostrom (1977), independently.

It has been proved in some quite general situations and studied

by using Monte Carlo technique in SQMe selected cases by Naik (1975)

and Brostrom (1977), separately, that 8¢ (= 6§1)) is slightly better

than §,. The values dgq& in the ith step of the procedure aéj),
j=1,2, 3,4, are given by Brostrom (1977) as follows:
iy 1
(1) _ i |
d’i'k =F [1-(P*)'1], . (1.3.40)
. / ®1(X + d(?))w(x)dx = P*, (1.3.41)
- ik
T 4(3) B} ,
fo o (xd;7)a (x)dx = P*, (1.3.42)
and -
[ 1 et tr yal®elxa (ndx dy = pr (1.3.43)

0 -w

where q, is the density of S/o.

e



1.4. Selection Procedures for Scale Parameters of Gamma Popu]ations

Suppose we have k + 1 independent populations LA The pop-

ulation " has a gamma density function

i=1,...,k. The ordering prior of 815005 and By is assumed known,
say, 0 < 0y <6, < ... <8 <o Note that thevaluesof 6,,..., and

0, are unknown, ai's are known.

k
In this section we define population i i=1,...,k, as good

population if the scale parameter ei 5_60. Let ¢ = (eo, e],...,ek),
then the parameter space is denoted by 9, where

o= {oeR"

[0 <8y < ool <85 0 <0y <)

is a subspace of (k+1)-dimension Euclidean space B?k+].

Suppose we have independent observations Xi (i = 1,...,n1) from

J
population s (i =1,...,k). Let vy T N0, then

n
X, = 21 Xij/ni has density g(-«; Vi ei/hj)’

and

Xj/eifhas‘dens1ty g(=s Vi 1/n1).
Suppose our goal is to select a subset which contains all good popu-
lations under the ordering prior with probability greater than or
equal to P*, a predetermined value between zero and -one.

Let 255 i= ,...,k, be the subspaces of parameter space @, such

k
that @ = U Q. where
=0

1



Q. = {§_€Q|61 < 0g < 054q)s IF 1= 1,000, or k-1,
= {8€ale, <8}, if i =k,
= {8€aloy < 6y}, if i =0, -

1.4.1. Proposed Selection Procedures 51, i=6,7,8,9

Case I. Control %9 known and common sample size n.

Definition 1.4.1. The selection procedure 86 is defined as follows:

Step 1. Select T i < k and stop, if

~

Yok < Ckek o0

otherwise reject T and go to step 2.

Step 2. Select T i<k-1and stop, if

~

Xe-1:k < Sk-1:k %o°

otherwise reject L and go to step 3.

Step k-1. Select T i <2 and stop, if

Xo.k < 2.k 8o

otherwise reject L and go to step k.

Step k. Select Lg and stop, if

S

X1:k < ©1:k %02

otherwise reject T



Here Ci.p (> 1), i=1,...,k are the smallest values such that the

procedure 66 satisfies the P*-condition.

Theorem 1.4.1. Assume we have common sample size n and a; = o> 0,

i=1,...,k, and the constant Cilk (> 1) is determined by fﬁe'equation

P(Ui 5—Ci-k) =P*, i=1,...,k (1.4.2)
where
Y Y,
+,..+ 1]
U, = max (5= (1.4.3)
i 1<s<i i-s+1

and Yi are i.i.d. with density
g(+5 v, 1), and c.d.f. G(+3 v, )
2 2 n 9 . . . 3 3 n
then the procedure 56 satisfies the P*-condition.
Proof. For any i, 1 < i_<k, if the unknown true 6 €q;, that is if

there are i good populations, then, under the procedure 66

inf P, (CS|s;)

0ER, —
- 1
(k“ ))
=inf P (U (X,,, <c..® —
Qﬁﬂi g—j=1 Jj:k j:k 70
E k

= inf P (U ( max  min K oot Xy <c 6.))
gﬁgi = J=1 T<s<j j<t<k t-s+1 - 73:k 70
X X
.
k s S et
=inf P (U ( max min Py
o€, — j=1 T<s<j j<t<k

Ot

<-C.

ik %))

44
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k YS 63 +...+ Yt ]
inf P (U ( max min oy < Chlg 00))
o€, < j=1 lss<j jet<k I

]

k A
Po_ax( U ( max min e <S5 O y

= = Jj=1 1<s<j j<t=i

Ys oot Y1

=

P( max
1<s<i

PIU; < Cjpd

where Yi's are i.i.d with density g(-; v, %0,

* = © <<}

[} (eo, BgarersBps ®seees )
i+]

and

Corollary 1.4.1. Cig = .

(Y: - x),n=1, Z;qu.,'30i= 0. Since

Ho~s13

For any x > 0, let Sn =

0 < P(Yi - x < 0) = G(x, v, %& < 1, the distribution of Y] - x is not

concentrated on a half-axis. By Theorem 1.3.4 the probability generat-

ing function of cumulative distribution functions P(Uk < x), x >0,
k=1, 2,..., is given by ..

w Kk .
exp { ) %Z-- G(xkn; kv, 1)7.
k=1



Hence by Theorem 1.3.6, we have the following recurrence formula for
all x = 0

P(Upyq < %)

= 1 < x) - G(x(3*1)n; (3+)v, 1) = (1.4.4)

T P(U

0

H 1%

. k-j
j J
where

P(U, < x) = 1.

0
When x = 0, both sides of Equation (1.4.4) equal to zero, henée it
also holds for x = 0.

Note that

: 1
1= = G(xs rv, 75

I ~1-3
—<
A
x
S
n

G(xrn; rv, 1). (1.4.5)

The values Ck:k(p*’ a, n) which satisfy Equation (1.4.2) are
tabulated in Table IV for k = 1 (1) 10, P* = .99, .95, .90, .75,
w=2,4, 6, and n = 4, 6, 8, 10, 15, 20.

Lemma 1.4.7. Cip < for all 1 <1 <k - .

i+1:k

Proof. The constants Cik (i =1,...,k) are determined by (1.4.2),

respectively.

U > U, a.s. dmplies c, .\ < Ciutak for all 1 <1 <k - 1.

i+l i:
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Theorem 1.4.2. The selection procedure 66 will not be changed if the

isotonic estimators ii'k’ i=1,...,kare replaced by Xi-i’ i=1,...,k



a7

where
Xi- = max X'-i
Toagged
X +...+ X, _
= max —5—7—7rr—él =
l<s<i 173

Proof. The proof is similar to that of Theorem 1.3.7.

Next, we define a selection procedure by using an isotonic
estimator and a fixed constant which depends on P*, k, common sample

size n and common as = o

Definition 1.4.2. The selection procedure 67 is defined by

84 Select s if and only if Xi:k <chy 1= 1,...,k

where ¢ (> 1) is the smallest value such that procedure 84 satisfies

the P*-condition:

Corollary 1.4.2. The constant ¢ = c(P*, k, n) of the selection pro-

cedure 84 equals to Cr-k which is determined by Equation (1.4.2).

Proof. Follows immediately from Theorem 1.4.1 and Lemma 1.4.1.

Definition 1.4.3. The selection procedure 8g is defined as follows:

Step 1. Select Ty j < k and stop, if

><

k - -
— < C, 6pn>
k0 .

otherwise reject Ty and go to step 2.
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Step 2. Select 5 j <k -1T1and stop, if

< %1 %o

.
y 1)

otherwise reject -1 and go to step 3. R

Step k-1. Select T j < 2 and stop, if

otherwise reject o and go to step k.

Step k. Select i and stop, if

Q|><
— | —

0,

| A
e
_C

[a]

otherwise reject ™ -
Here the ci's are the smallest real values (3_1) such that the pro-
cedure 8g satisfies the P*-condition.

Theorem 1.4.3. The constants c. are determined by

Proof. For arbitrary i, 1 < i <k, if 8 €q,

inf P_(CS|s,) -
oca; 8



ey
=mfP(U(iic.eH
oo, Ly=i % I 0
k X, 8
= dnf P (U (=L <c. ) -
e€a, = =1 3% J 95 - N
) (L < ¢ 20)
= P*( U <C. =%
=i %% T Y
= P(Z_i < ¢y v1)
niXi _ _
where Zi = 5 i=1,...,kare i.i.d. with the gamma density

" * = oo [o) 1 =
gl Vi 1), & (90,...,60, ,...,®). Hence Ci» i 1,...,k are

i+] |
determined by (1.4.6). If VI T eees =V then ¢y= ... = c,.

The following selection procedure 69 was given by Gupta and Sobel

(1958).

Definition 1.4.4. The selection procedure 8q is defined by

X.
: i WL ! SR T
8g: Select s if and only if a ¢l 1 T,...,k.
where c' is determined by
k vicl Xi -1
1 > -u -
1 {——;——-[ u e “du} = P*, (1.4.7)
i=1 r, iy 0
()

For v. = v (i = 1,...,k), it turns to -

k (1.4.8)

49
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The left hand side is the c.d.f. of %xs with v degrees of freedom,

hence the value c' can be easily solved with the help of a table of

chi-square distribution.

Application to the Selection of Variance of Normal Popy]afigns

If 0, = 20?, i=0,1,...,k are the scale parameters fbf'the k + 1
normal populations and X33 (3 =1,...,n5 1 =1,...,k) are the n ob-
servations on the population s with the mean ¥ (known). We assume
that the order 0$ < o 5-°§ is known.

In the application of selection procedure 66 or 67, what we need

to do is to evaluate the isotonic regression of S? which is the sample

Tk

variance of population Mo i=1,...,k and denote it by S
then directly apply 66 or 67. The constant we need is determined by
Equations (1.4.2) and (1.4.4) where we replace v by n, the reason being
that 2nS§/6i has Xﬁ distribution with n degrees of freedom and

Yi 52/01 has the c.d.f.

G(2nt; n, 2)

.
G(ts n, ),

hence

.<t)-

; G(trn; rn, 1).
1

P(%—

I~1-5
-
I
It

i
The application of 68 is similar to that of 69 (see Gupta and Sobel
(1958)). What we need to do is to replace Xi in 8g and 8 by Si and
replace v in Equation (1.4.6) and (1.4.8) by n, i = 1,..:,k.
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Remark 1.4.1. 89 (Gupta and Sobel (1958)) does not depend on the order-

ing prior and’thé sample sizes for each population need not be equal.

If the means Mo i=1,...,k are unknown and common sample size

(Xss = X.)Z/n-1 and use n - 1 in p]aée of?S*Equation
11 i

Hi~N—S

n>1, let S? =
3
(1.4.4), (1.4.6) and (1.4.8) which determined the constants Ci-kls’

¢ and c¢' for 56’ 68’ and 69, respectively.

1.4.2. Selection Procedure 6§2)’ i=6,7,8,9

Case II. eo unknown.
The assumptions are the same as in Case I except that "o observa-

tions, viz., XO]""’XOnO are taken on Ty

(2)

For selection procedure g "> the inequalities defining the pro-

cedure and corresponding to ii'k < Ci 8 (i = 1,...,k) is replaced by

X . 5_c§?z Xo (i =1,...,k), respectively. The equation determining

itk
cgza is obtained as before and is given by

jz P(U; < Ci?ll t)f(t)dt = P* o (1.4.9)

where P(Ui < x) is the same as that in Thoerem 1.4.1, and f(t) is the

p.d.f. of X0 of population =

0
If population L has gamma distribution with density g(x; %g> 00)
- . Ay -
(aO known and %, unknown), then f(x) = g(x; Ngg> nO).

2)

For selection procedure 6§ , the inequality defining the procedure

is
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and it can be shown c¢' = cé?a.

For selection procedure 6§2), the inequality defining the procedure

and corresponding the (k-i)th step is - R

X, X

0 _
— ;6- where Vo = Moo (1.4.11)

—_

(2)

The equation determining ¢ of 68 is given by

Ve
ot Ui 0
= Y0 2 “u L2 Tt
[ J € du dt = P*, (1.4.12)
070 o 1)
2 2

For selection procedure déz), the inequality defining the pro-

cedure 1is
X, X _
S, (1.4.13)
i 0

and the equation determining d is given by Gupta and Sobel (1958)

as follows:
Vv -
Sote Uiy 0
) © k Yo 7 -u £2 ot
[ [n [ Y du] € dt=P*x.  (1.4.14)
0 i=1"0 Vi Y0
(%) r(%7)

1.5. Selection Rules for the Location Parameter Under Partial

Ordering Prior Assumption

Assume that we have only a partial ordering prior of k unknown

location parameters, that is the parameter space



k

@ =1{0|e€R" and there is a partial order relation "<" among oi's}

Our approach is to partition the set {91,...,0k}into several sub-

N Cx

sets, say BO,...,B , So that Bi N Bj =g, ifi1#73, ?j :5{1],---,0Q

¢ =10 T
and for each Bj (j =1,...,%) there is a simple order on it and there
is no order relation among the elements of subset BO‘

Let bi = IBi" the number of elements contained in Bi’ i=20,...,¢,
so we have

b. = k.
o1

Ik

.i
If we denote the new induced partial order by "<'", then we have
a parameter space 2' D Q. We use an example to illustrate how to find

an induced partial order.

Example. Suppose k = 8, and we have a partial ordering prior 01 1 Ogs

< 8 ~ 2~ 3~
represent this partial ordering as in Figure 1.

e] < B e] <06, <8 <e4, and 62 < 66 < 67. We use a "tree" to

4
: 93 T 97
8, %
95\
L/n 68
G-I -

Figure 1. Original partial ordering
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Then we have an induced partial ordering By < 8, < 03 < By, Og < 6,

as in Figure 2.

By ¢ _
0 - s
03¢ 7 85" Og -
0
8, ¢ 6
G-lp

Figure 2. Induced partial ordering.

And
BO = {8;, 98}
B, ='{el, 62’ 035 04}
B, = {84, 61

It is clear that the induced partial order is not unique, for
example, we can partition {e],...,eg} into three other subsets

BL, BY, B) where

0> "1 2
Bé = {65, 68}
Bi-= {095 855 055 041 -
E Bé = {85, 8,1

For the location parameter case, a selection procedure P can be

defined as follows:

Définition 1.5.1. We define a selection procedure 57 as follows:

Suppose Bo’°"’89 are the induced subsets and that for each subset

Bj, j=1,...,2 there is a simple order on it. We choose a proper



selection procedure § for each subset Bj’ such that the corresponding
probability of a correct selection is not less than P§ =P

o

subset B0 we may use selection procedure 64 or 8¢ With P6

Theorem 1.5.1. The selection procedure sP satisfies the P*-condition.

Proof.
inf Pe(cslap)
0€n =
> inf P (CS|s)
peQ' —
L
> 1 inf P(CS|sP)
i=1 oy
1.
2 by
L%
S P*1=O = p*
where @

B is the parameter space associated with the subset Bi'
i

Remark-1.5.1. For the selection problem of the scale parameter of the
gamma-distributions, under partial ordering assumptions, an analogous

selection procedure can be proposed easily, hence it is omitted.

1.6. Comparisons of the Performance of Basic Rules

1.6.1. The Location Parameters of Normal Distributions

In this section we use Monte Carlo techniques to compare the per-

formance of selection procedures 815 895 835 and 8q° Suppose we have
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k independent populations, each population with distribution N(“i’ 02),
with common known variance 02 and common sample size n. Assume that
the mean 1o of the control is known; without loss of generality we

assume that My = 0 and o/V/n = 1. .

In the simulation, we use Rubin and Hinkle's RVP-RandomJVériab1e
Package, Purdue University Computing Center, to generate random
numbers. For each k, we generated one random number (variable) for
each population, then abp]ied each selection procedure separately
and repeated it ten thousand times; we used the relative frequencies
as an approximation of the exact values of the associated performance
characteristics for each procedure. In Table V we use the following
notations:

0 = (01,...,ek), 01 is the parameter of population e

PS = P(CS)
PI = P(correctly rejecting all bad populations)
PC = P(correct classification of all population)

where the correct classification means that we select all good

populations and reject all bad populations. ~

EI = Expected number (size) of bad populations contained in
the selected subset.
EJ= ) (o, -6 )2 P (w. is selected)
. i 0 i
B.<H
i 0
ES = Expected size of the selected subset.



Table V.1 consists of four parts, namely, the four values of
k=2, 3, 4, 5. For each value of k we assume that the first pop-
ulation is the one and only one bad population with parameter -1 which
is less than the control eO = 0. A glance at the téb]e_in&?t@tes that
the performance can roughly be ordered as follows: |

85 > [8,, 8,1 > 5,
i.e. procedure 63 is the best one and slightly better than 8, and §q»
62 and 6] are very close and bqth are better than 64. The performance
fs based on the characteristics PI, PC, EI, and EJ which are explained
in Section 1.6.1. As the number of populations k increases from two
to five and the three additional populations are good populations with
parameter 1, 2, and 3, respectively, we find that El(&i, k=5)—EI(Gi, k=2)
(i=1,2, 3, 4) is 0.0124, 0.0124,‘0.0031, and 0.1211 respectively.
This means that when k increases and the additional populations are
good, then 84 is the most sensitive procedﬁre with k.

Table V.2 has the same structure as Table V.1 but in Table V.2 we
assume that we have two bad populations for each k. ‘In this case based
on the-performance characteristics PI, PC, EI or EJ, wévﬁave the per-
formance ordering as follows:

8 > 8, - 6

7 8y 7 837 Gy

1
In Table V.3 we assume that we have three bad populations for

k > 3, and that both populations are bad for k = 2, this table indicates

the same trend as Table V.2, i.e. 81 > 8, > 83> 8. If k is increased

by adding strictly good (parameter strictly larger than control)
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populations, then EI{s.), i = 1,2 does not increase but decreases.

A
S

i
This is because X . > X ke @S- T <1 <k.
In Table V.4 we assume for each k, k = 2, 3, 4, 5 that every

population is bad. Based on the quantities PI, PC, EI, and EJ, we

find that performance is as follows: 6] > 62 > 63 > 64. Tﬁﬁé is
the same result as before.

In Table V.5 we assume that the ordering prior of unknown parameter
is incorrect; i.e. the true configuration (-2, -1, 0, 1, 2) is replaced
by (-1, -2, 1, 0, 1, 2). The simulation results indicate that, based
on PI, PC, EI and EJ we have performance 81 > 62>[63, 64]. Thus here
again 81 is the best. If we compare Table V.5 with Table V.2, we see

that s, does not change (the small differences are because of random

4
fluctuations), EI(63) and EJ(63) inérease quite appreciable. For ex-
ample, in case k = 5, EI(63) the increase is 0.3737 and EJ(53) in-
creases by 1.7534; EI(GZ) decreases by 0.0375, and EI(a]) decreases
by 0.0374; EJ(62) increases by 0.7173 and EJ(G]) increases by 0.7171.
From these five tables, it appears that the over all performance
of these procedures is: 61 > 8y > 84> 64, if the okdering prior is

correct; otherwise for an incorrect ordering procedure 64 seems to be

moréfstab1e'than the others.

1.6.2. Performance of Selection Rules for the Scale Parameters

of Gamma Distributions

In this section we again use Monte Carlo techniques to compare

the selection procedures 56’ 67, 68’ and 69. We assume that each of
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populations has exponential distribution (gamma distribution with
a = 2) with unknown scale parameters 81550, where 0, <...< 0.

In the simulation study, the common sample size used four, and
we used Rubin and Hinkle's RVP sub-program to generate yanéé@lnumbers
(variables) with specified exponential distribution. The sfﬁﬂ]ation
results are based on two thousand sets of random numbers. The no-
tations in Table VI.1 and Table VI.2 are the same as those in Section
1.6.1 but the meaning of a bad population is different in that now
" a bad population has a parameter which is greater than the control
(assumed one).

A good population means that its parameter is less than or equal
to one. The results of Table VI.1 and Table VI.2 uniformly indicate
that we have the performance 56 > 57 - 58 > 59, one exception being

that 68 is slightly better than 67'if there is only one bad population.



(1)
Table of d 1k

values (satisfying (1.3.5) and (1.3.21)) necessary to

TABLE I

60

carry out the procedure §1 for the normal means problem under the simple

ordering prior.

p” 5

.99 .975 .95 .925 .90
1 2.3264 | 1.9600 | 1.6449 | 1.4395 | 1.2816
2 2.3337 | 1.9775 | 1.6780 | 1.4872 | 1.3430
3 2.3339 | 1.9787 | 1.6817 | 1.4942 | 1.3538
4 - - 1.6823 | 1.4956 | 1.3563
5 - - 1.6824 | 1.4960 | 1.3571
6 - - - .- 13573
- 2.3340 9787 | 1.6824 | 1.4960 | 1.3574

d(}: p"

K .85 .80 .75 .70 .65
! 1.0364 | .8416 | .G6745 | .5244 |  .3853
2 1.1239 | .9537 | .sl04 | .6836 | .5677
3 11428 | L9815 | .s473 | .7300 | .6238
T 1.1485 | .9911 8615 | .7491 |  .6482
5 1.1506 | .9951 8679 | .7584 |  .6607
6 1.1514 | .9969 | .8710 | .7633 |  .6678
7 11517 | L9977 | 8727 | 7661 | .6720
10 1.1518 | .9984 | .8744 | .7688 |  .6775
- 1.1519 | .9985 | .8749 | .7706 |  .6800

The '--

in the same column.

' in Table I means that the value is the same as the preceding one
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TABLE II
Table of d($3k values (satisfying (1.3.22)) necessary to carry out the
procedure 5($) for the normal means problem under simple ordering prior.
g2 -
k .99 .975 .95 .925 _i}iiwv- A
1 3.2886 7711 2.3258 .0355 1.8122
2 3.3449 .8494 2.4267 .1530 1.9434
3 3.3605 8730 2.4589 L1917 1.9874
4 3.3673 .8840 2.4723 .2105 2.009]
5 3.3711 . 8901 2.4832 .2215 2.0219
6 3.3734 .8941 2.4890 .2286 2.0303
8 3.3761 . 8988 2.4960 .2375 2.0406
10 3.3776 .9014 |- 2.5000 .2426 2.0440
@ 3.3787 .9032 2.5021 .2448 2.0487
G - o
k .85 .80 .75 .70 .65
i, 1.4656 | 1.1901 | .9538 | .7F16 | ~:5449
.2 1.6198 .3639 1.1453 .9496 .7689
3 1.6728 .4247 1.2131 .0240 .8495
4 1.6993 .4554 1.2475 .0620 .8909
5 1.7151 .4738 1.2683 .0850 z9]6]
6 1.7259 .4860 1.2822 .1004 .9330
8 1.7386 .5013 1.2996 .1198 .95&3
10 1.7463 .5105 1.3100 .1285 .9618
o 1.7476 .5108 1.3100 . 1287 .9622
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TABLE IV .
The value Ch-k? 1 < k < 10 (satisfying (1.4.2)) necessary to carry out
the procedure 8¢ for the gamma means problem (with common sample size n
and common «) under simple ordering prior.

*
P =0.99

1] 2.5113 2.1849 2.0000 1.8782 1.6964 1.5924
2 | 2.5217 2.1922 2.0056 1.8829 1.6998 1.5951
3| 2.5222 2.1924 2.0059 1.8831 1.7000 1.5952

1| 4.0003 3.5817 3.3429 3.1845 2.9460 2.8081
21 4.0113 3.5899 -.3494 3.1900 2.9501 2.8116
4 3| 4.0117 3.5902 3.3497 3.1902 -- --
41 4.0118 -- - - - -

11 5.3725 4.8851 4.6050 4.4190 4.1372 3.9737
2| 5.3846 4.8939 4.6122 4.4252 4.1419 3.9776
6 |- 3| 5.3851 >4.8942 4.6125 4.4255 ;'4.1421 3.9777

The '--' in Table IV means that the value is the same as the preced-

ing one in the same column.



TABLE IV (continued)

= 0.95
k : -
4 6 8 10 15 20
1] 1.9385 .7522 .6435 5705 | 1.4591 | 1.3940
2 | 1.9746 .7783 6644 5882 | 1.4724 | 1.4048
3 | 1.9797 .7818 6672 .5906 | 1.4741 | 1.4062
4 | 1.9807 .7825 .6677 5910 | 1.4744 | 1.4065
5 | 1.9809 .7826 .6678 .5911 -- -
6 | 1.9810 .7827 .6679 -- -- —-
0| -- -- -- -- - -
1 | 3.2870 .0346 .8872 7879 | 2.6361 | 2.5470
2 | 3.3288 . 0656 .9125 .8097 | 2.6527 | 2.5608
3 | 3.3344 . 0697 .9157 8124 | 2.6548 | 2.5625
4 | 3.3354 .0704 .9163 8129 | 2.6551 | 2.5628
5 | 3.3357 .0705 .9164 8130 | 2.6552 | 2.5629
0 -- -- -- -- -- --
1 | 4.5519 .2499 .0732 9541 |=~3.7715 | 3.6642
.2 | 4.5984 . 2850 .1020 9790 | 3.7908 | 3.6803
3 | 4.6045 .2894 .1057 9821 | 3.7931 | 3.6823
4 | 4.6055 .2901 .1063 .9826 | 3.7935 | 3.6826
5 | 4.6058 .2903 .1064 9828 | 3.7936 | 3.6827
0| -- -- -- -- o —-

67




TABLE IV (continued)

-—

6 8 10 20
11 1.6702 1.5458 1.4714 1.4206 1. = 1.295]
2| 1.7285 1.5888 1.5063 1.4505 1. 1.3139
3| 1.7406 1.5974 1.5132 1.4563 1. 1.3175
4 | 1.7440 1.5998 1.5151 1.4579 1. 1.3184
51 1.7451 | 1.6005 1.5156 1.4584 1. 1.3187
6 | 1.7455 1.6008 1.5158 1.4585 1. 1.3188
7| 1.7456 1.6009 1.5159 1.4586 --
8 | 1.7457 -- -- -- --
10 -- -- -- -- --
1| 2.9427 2.7667 2.6615 2.5903 2. 2.4145
2 | 3.0126 2.8191 2.7051 2.6279 2. 2.4389
3| 3.0264 2.8293 2.7133 2.6350 2. 2.4434
4 | 3.0301 2.8320 2.7155 2.6368 2. 2.4445
5 3.0313 2.8328 2.7162 2.6374 2. 2.4448
6 | 3.0317 2.8331 2.7164 2.6376 2. 2.4449
7| 3.0318 2.8332 2.7165 2.6377 2.4450
8 | 3.0319 -- - -- --
10 -~ -- -- -~ --
11 4.1495 3.9344 3.8064 3.7199 3. 3.5058
2 | 4.2286 3.9948 3.8569 3.7635 3. 3.5385
31 4.2439 4.0062 3.8663 3.7717 3. 3.5398
4 | 4.2480 4.0092 3.8688 3.7737 3. 3.5411
5| 4.2492 4.0101 3.8695 3.7744 3. 3.5415
6 | 4.249 4.0104 3.8697 3.7746 3. 3.5416
71 4.2498 4.0105 3.8698 3.7747 3.5417
0




TABLE IV (continued)

20

4 6 8 10 15 .
1 1 1.2774 | 1.2371 | 1.2106 | 1.1914 | 1.1600 | 1.1404
2 | 1.3798 | 1.3155 | 1.2757 | 1.2480 | 1.2041 | 1.1776
3 11.4108 | 1.3387 | 1.2948 | 1.2645 | 1.2168 | 1.1882
4 | 1.4237 | 1.3483 | 1.3026 | 1.2711 | 1.2219 | 1.1924
5 11.4300 | 1.3529 | 1.3063 | 1.2743 | 1.2243 | 1.1944
6 | 1.4333 | 1.3553 | 1.3083 | 1.2760 | 1.2255 | 1.1954
7 11.4353 | 1.3567 | 1.3093 | 1.2769 | 1.2262 | 1.1959
8 |1.4364 | 1.3575 | 1.3100 | 1.2774 | 1.2266 | 1.1963
9 {1.4371 | 1.3579 | 1.3103 | 1.2777 | 1.2268 | 1.1965
10 1 1.4375 | 1.3582 | 1.3106 | 1.2779 | 1.2270 | 1.1966
1 | 2.4211 | 2.3534 | 2.3108 | 2.2808 | 2.2327 | 2.2033
2 | 2.5514 | 2.4546 | 2.3957 | 2.3551 | 2.2913 | 2.2530
3 | 2.5806 | 2.4838 | 2.4201 | 2.3763 | 2.3079 | 2.2669
4 | 2.6052 | 2.4956 | 2.4299 | 2.3848 | 2.3145 | 2.2725
5 | 2.6126 | 2.5012 | 2.4344 | 2.3887 | 2.3175 | 2.2750
6 | 2.6165 | 2.5041 | 2.4368 | 2.3908 | 2.3191 | 2.2763
7 1 2.6187 | 2.5057 | 2.4381 | 2.3919 | 2.3200 | 2.2770
8 | 2.6199 | 2.5066 | 2.4389 | 2.3925 | 2.3204 | 2.2774
9 | 2.6207 | 2.5072 | 2.4393 | 2.3929 | 2.3207 | 2.2777
10 | 2.6212 | 2.5075 | 2.4395 | 2.3931 | 2.3209 | 2.2778
1 13.5301 | 3.4420 | 3.3873 | 3.3491 | 3.2883 | 3.2514
> | 3.6818 | 3.5606 | 3.4874 | 3.4370 | 3.3581 | 3.3107
3 | 3.7257 | 3.5946 | 3.5158 | 3.4618 | _3.3776 | 3.3273
4 | 3.7435 | 3.6082 | 3.5272 | 3.4717 | 3.3854 | 3.3338
5 | 3.7518 | 3.6146 | 3.5324 | 3.4763 | 3.3889 | 3.3368
-6 | 3.7562 | 3.6178 | 3.5351 | 3.4786 | 3.3908 | 3.3383
7 | 3.7586 | 3.6196 | 3.5366 | 3.4799 | 3.3917 | 3.3392
8 | 3.7600 | 3.6207 | 3.5375 | 3.4806 | 3.3923 | 3.339
9 |3.7608 | 3.6213 | 3.5379 | 3.4811 | 3.3926 | 3.3399
10 | 3.7613 | 3.6216 | 3.5382 | 3.4813 | 3.3928 | 3.3400
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TABLE V. 1 -

Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
1.6.7) under simple ordering prior.

*
P = .900
k=2, 0=(1,0) .

6] 62 63 64'
PS .9453 .9490 . 9579 .9470
PI .3854 .3854 .3937 .2676
PC .3307 .3344 .3516 .2530
EI .6146 .6146 .6063 .7324
EJ .6146 .6146 .6063 .7324
ES 1.5599 1.5636 1.5642 1.6794
I( = 39 0 = (']5031)

6] 62 63 64
PS .9531 .9535 . 9638 .9616
PI .3741 .3741 .3826 .2044
PC - .3272 .3276 .3464 .1970
FI : .6259 .6259 .6174 .7956
FJ .6259 .6259 6174 7956
ES 2.5771 2.5777 2.5803 2.7574
k = 43 _9_ = ("] 3031:2)

61 62 63 64
PS .9580 .9582 . 9640 .9765
PI .3664 . 3664 .3834 .1683
PC .3244 .3246 L3474 .1640
EI .6336 .6336 .6166 .8317
EJ .6336 .6336 .6166 T .8317
ES 3.5902 3.5904 | 3.5801 3.8081

k=5, 0=(-1,0,1,2,3)
.9 8, 83 o4

PS , .9554 .9554 .9623 .9794
PI .3730 .3730 .3906 .1465
PC .3284 .3284 .3529 .1431
EI .6270 .6270 .6094 ©.8535
EJ .6270 .6270 .6094 __.8535
ES 4.5812 4.5812 4.5714 4.8329 |
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TABLE V. 2 ”

Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
1.6.1) under simple ordering prior.

* .
P = .900
k=2,8=(2,-1) I |

5 5, 55 5,
PS 1.0000 1.0000 1.0000 1.0000
PI .3420 .3252 .3001 1719
PC . 3420 .3252 . 3001 1719
EI .8673 .8841 .9389 1.0950

EJ 1.4952 1.5120 1.6559 2.1831

ES .8673 .8841 .9389 1.0950
k=3, 0=(-2,-1,0) o

(3-1 52 63 (54
PS .9535 - .9573 . 9696 .9632
PI . 3437 .3407 .3007 . 1233
PC .2972 . 2980 , .2703 L1175
EI .8585 .8615 .9350 1.2126
EJ 1.4651 1.4681 1.6421 2.4996
ES 1.8120 1.8188 1.9046 2.1758
k =4, 8= (—2,-1,0,])

81 & 83 Sy
PS . 9596 .9606 L9715 .9747
PI .3269 .3254 .2936 .0874
PC .2865 . 2860 .2651 .0851
El . 8802 .8817 . 9431 *1.3062
EJ_. 1.5015 1.5030 1.6532 — 2.7378
ES 2.8387 2.8412 2.9142 3.2808
kJ= 5, g: (—29']509132)

81 S5 83 Oy
PS .9562 .9564 .9690 9765
PI .3333 .3331 .2984 . 0746
pC .2895 . 2895 . 2674 .0725
El .8835 .8837 . 9480 1.3712
EJ 1.5339 1.5341 1.6872 2.9450
ES 3.8386 3.8390 3.9167 4.3477
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TABLE V. 3 -

Simutation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
1.6.1) under simple ordering prior.

*

P’ = .900 -
k=2, 8- (-3,-2)
G-I 52 53 64
PS 1.0000 1.0000 1.0000 1.0000
PI .7551 17380 7342 5912
PC 7551 . 7380 7342 5912
El . 2632 .2803 3035 | 4395
EJ 1.1443 1.2127 1.4025 | 2.1590
ES 2632 .2803 .3035 .4395
B k = 3, 6 = (‘3:'29_])
6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI .3362 3156 2837 .1090
PC .3362 .3156 .2837 .1090
El .8937 9166 1.0275 1.3290
EJ 1.6654 1.6952 2.1746 3.5318
ES .8937 .9166 1.0275 1.3290
k=4, 0= (-3,-2,-1,0)
6] 62 63 » 64
PS .9579 .9616 .9737 .9731
PI .3257 .3225 2801 | .0759
PC .2836 2841 .2538 . .0736
ET 9118 .9160 1.0419 1.4675
EJ 1.7093 1.7165 2.2324 ™ | 4.1380
ES 1.8697 1.8776 2.0156 2.4406
k=5, 0 =(-3,-2,-1,0,1)
6] 62 63 64
PS .9582 .9590 .9714 .9796
PI .3292 .3281 . 2877 .0602
PC . 2874 2871 .259] .0582
E1 .8962 .8976 1.0172 | _ 1.5283
EJ 1.6554 1.6577 2.1429 4.3912
ES 2.8536 2.8559 2.9884 3.5078
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TABLE V. 4 ”

Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
1.6.1) under simple ordering prior.

*
P = .900 N
k=2, 8= (-4,-3)

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI : .9613 .9560 .9585 .9130
PC .9613 .9560 .9585 .9130
EI .0392 .0445 .0448 0876
Ed .3563 .4040 .4263 .8493
ES .0392 0445 .0448 .0876
k=3, 6= (4,-3,-2) |

6-' 62 63 | 64
PS 1.0000 1.0000 1.0000 1.0000
PI .7587 .7359 .7300 .4997
PC .7587 7359 -7300 .4997
£l .2599 .2835 . .3201 5574
Ed 1.1340 1.2324 1.5547 2.9908
ES .2599 .2835 .3201 5574
k=4, o= (-4,-3,-2,-1)

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI .3348 3114 2814 0747
PC .3348 .3114 2814 . .0747
El .9003 .9282 1.0840 _| 1.4745
Ed- 1.7013 1.7437 2.2947 T 4.3666
ES .9003 .9282 1.0440 1.4745
k=5, 6= (-4,-3,-2,-1,-0.5)

5 5 83 )
PS 1.0000 1.0000 1.0000 1.0000
PI 1117 .1045 .0615 .0036
PC 7 .1045 0615 -0036
El 1.7460 1.7600 1.9734 -2.4985
EJ 1.8147 1.8275 2.4965 5.0978
ES 1.7460 1.7600 1.9734 2.4985
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TABLE V. 5 -

Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
1.6.1) under simple ordering prior.

*
P = .900
k=2, 8=(-1,-2) g

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI . 5405 .5349 .2937 1722
PC . 5405 .5349 .2937 1722
EI .8331 .8387 1.315] 1.0904
EJ 2.2116 2.2340 3.4232 2.1578
ES .8331 .8387 1.3151 1.0904
k=3, 8=(1,-2,1)

6] 62 63 64
PS .9932 .9943 .9957 .9976
PI .5365 .5349 .2987 .1190
PC .5297 .5292 .2944 .1189
EI .8347 .8363 1.3116 1.2154
EJ 2.2252 2.2316 3.4155 2.4919
ES 1.8279 1.8306 2.3073 2.2130
k=4, o= (-1,-2,1,0)

6] 62 63 54
PS .9921 .9923 .9973 .9746
PI .5271 .5269 .2894 .0873
PC .5192 .5192 .2867 .0849
EI .8498 .8500 1.3235 | 1.3077
EJ 2.2685 2.2693 3.4553™ 2.7474
ES 2.8390 2.8395 3.3207 3.2822
k =5, 6= ('],'2,]3032)

6] 62 63 64
PS .9906 .9906 .9958 .9795
PI .5317 .5316 .2937 L0711
PC .5223 .5222 .2895 .0693
EI .8461 . 8462 1.3217 | 1.3593
EJ 2.2510 2.2514 3.4406 2.8830
ES 3.8341 3.8342 4.3173 4.3388
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TABLE VI. 1 -

Simulation results for the comparative performance of various selection
- procedures for the gamma means problem (notation explained in Section
1.6.1) under simple ordering prior. ' :

*
P" = .900
k=4, 6= (.3,.6,.9,1.2) =

56 67 (58 69
PS .9840 .9845 .9865 .9890
PI 12020 1745 -1955 0685
PC .1860 .1590 .1820 _0670
El -7980 -8255 -8045 19315
EJ 0319 |- .0330 10322 .0373
ES 3.7820 3.8100 3.7910 3.9205
k=5, 0= (.3,.6,.9,1.2,1.5) |

66 67 68 . 69
PS | .9905 .9910 .9965 9885
PI -0990 -0950 0645 -0075
PC .0895 0860 |  .0610 -0075
£l 1.5040 1.5560 1.5890 1.7995
EJ .1868 1989 2008 2531
ES A.4945 4.5470° 4.5855 4.7880
k=14, 8= (.5,1,1.5,2)

Sg 87 89 89
PS 9685 .9700 .9795 9765
P - 2685 2560 12130 .0545
PC .2370 12260 11925 .0535
El 1.0790 1.1310 1.2110 "1.4690
EJ. .5304 15730 6207 —| 8341
ES 3.0475 3.1010 3.1905 3.4455
k=5, 8= (.5,1,1.5,2,2.5)

S 87 Sg 89
PS .9690 L9695 .9875 .9785
Pl ' -2320 12295 11355 -0230
PC -2010 -1990 11230 -0230
El 1.3605 1.4055 1.7555 2.0075
EJ 9707 1.0520 1.4602 1.9862
ES 3.3295 3.3750 3.7430 3.9860
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TABLE VI. 2

Simulation results for the comparative performance of various selection
procedures for the gamma means problem (notation explained in Section
1.6.1) under simple ordering prior.

*

P = .900
k=4, 0= (.1,.6,1.1,1.6) S

66 67 58 . 69
PS .9995 .9995 1.0000 .9995
PI .0690 .0645 .0545 .0110
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CHAPTER I1
BAYES - P* SELECTION RULES . N
FOR SELECTING A SUBSET CONTAINING
THE BEST POPULATION

2.1. Introduction
Suppose we have k(k > 2) independent populations Mse--sm and that
the random variable Xi associated with ms has a distribution with un-

~ known parameters 05 i=1,...,k. First, we give some definitions.

Definition 2.1.1. The populaiton "i‘is the best population if 0. Z-Oj
for all j # i. If there are more than one populations satisfying this
condition we arbitrarily tag one of them and call it the best one. A

population which is not the "best" is called a "non-best" population.

Assume that we have n. independent observations Xij’ J = 1,...,n1

for population L i=1,...,k. Let Xi = Ti(X1],... X )fbe a suitable

.
.
1

estimator of 0,5 i=1,...,k, so that Xi's are indepedent. Usually Xi
is a sufficient statistic for 8. Let X = (X],...,Xk) and assume that
for each 6;5 We have the (conditional) density f(xj;ei) for population
m; as the probability density function of Xi’ i = 1,...,k.4

The sample space is denoted by X where

2= xlx = (x2e00x) €RE e RE

The action space G consists of all 2k— 1 non-empty subsets of the set
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(1,2,...,k}. An action A€ G is the selection of some subset ofréhe k
populations. i €A means that ms is included in the selected subset. An
action A€ G is called a correct selection (CS) if the best population

is included in the selected subset A.

Definition 2.1.2. A measurable function § defined on Zx @ is called a

selection procedure provided that for each x €2 , we have
0 < &6(x,A)
and

§(x,A) =1
A€q

where §(x,A) dentoes the probability that the subset A is selected when

x is observed.

The individual selection probabﬁ]ity wi(g) for the population ™ is
then given by

vi(x) = ] 8(x,A)
ASi

where the summation is over all subsets A which contain i. If the se-

1}

lection probability wi(é) takes on only value 0 or 1, i = T,...,k then
the selecetion procedure §(x,A) is completely spétifiéd;<in this case it

is called a non-randomized procedure.

Definition 2.1.3. Two selection procedures § and §' are equivalent if

they have the same individual selection probabilities ¢i(§) and w%(é)

for all x, i = 1,...,k.

Hence we can use the following definition, repldcing 5 by v.
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Definition 2.1.4. A subset selection rule ¢ is a measurable mapping

from X to ]Rk,

with ‘ R

If ¢i's are 0 or 1, the rule is non-randomized. Note that by Defi-

k
nition 2.1.2, we have } ¢i(x) > 1.
i=1

Suppose our goal is to find a nontrivial subset which contains the
best population. A large body of literature exists in the area of sub-
set selection procedures (see Gupta and Panchapakesan (1979)). Gupta
(1956, 1965) gave maximum-type subset selection procedure. Gupta and
Hsu (1978) studied the performance of Gupta-type maximum procedure,
Seal-type average procdure (Seal (1955, 1957)) and the Bayes rules.
Berger (1979) and Berger and Gupta (1980) proved that Gupta-type maximum
proéedure is minimax under certain loss functions. In the decision-theo-
retic approach to.the subset selection problem, Goel aqd Rubin (1977),
Chernoff and Yahav (1977), Bickel and Yahav (1977)3-Gupta-and Hsu (1978)
and Kim (1979) gave different formulation under different loss function.

- The Toss functions proposed by these authors consist of two component
losses and the results are quite sensitive to the ratio of the coeffici-
ents of the two components. ~Hence, whenever the ratio is unknown, we
may wish to try some other method of attack. -

On the other hand, as pointed out by many authors (see, %or example,

Bahadur (1950)) the testing of homogeneity of population means or vari-

ances is not a satisfactory solution to a comparison among several
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populations. Gupta-type maximum procedure gives us a direct ané effici-
ent way to meet our goal. However, the LFC (least favorable and configu—'
ration), usually occurs when the distributions are identical, i.e., un-
der the hypothesis of homogeneity. As usual, in many cases, the hypoth-
esis of homogeneity is rejected at some small significantrfé&el a. Then
we may wish to relax (modify) the so-called Pt condition.

In this chapter we define the posterior—P* condition in Section 2.2.
Two Bayes-P* selection procedures wﬁR and wB are proposed in Section 2.2
and Section 2.3 separately, and their properties are discussed in Section
2.4. In Section 2.5 we discuss their applications to normal distribu-
tions. In Section 2.6 procedure wB is compared with Gupta-type maximum

H.-a

procedure. An application for the problem of selecting the max{ ;_ s
;

i=1,...,k} of the normal distributions N(ui,of), i=1,...,k is given
in Section 2.7. In Section 2.8 we'discuss their app]icationé to the
selection problems for Poisson distributions and Poissbn processes and
their relation to the selection of gamma distributions. Section 2.9
. deals with comparisons of the performance of selection procedures wB,

MED. Here wM and wMED

wﬁR, wM and y are the maximum type selection pro-
cedures based on sample means and sample medians?“reSpéctive]y (see

Gupta (1956, 1965) and Gupta and Singh (1980)). The comparisons are bas-
ed on Monte Carlo studies. Robustness of these four procedures is studi-
ed in terms of the expected selected size and the efficiency (which will
be defined in Section 2.9) where the robustness is in the sense of the
effect on the efficiency of the rule when the k true distributions are

not normal but, say, logistic, the double exponential distribution or

the contaminated distribution (grass error model (Tukey (1960)).
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- *
2.2. Definitions of the Posterior-P Condition and the Non-randomized

* B
Bayes-P Procedure wNR

- Let e[]j S e 200 be the ordered unknown ei's. Suppose we have
prior distribution t for 8 = (6,...,8,) then the posterior probability

of a correct selection under selection procedure vy, given X = x, is
k
P(CSlv.X = x) = _Z] b5 (x)p;(x)
'I:

where

p;(x) = P(m; is the best 1X = x).

It is clear

*
Definition 2.2.1. Given a number P'(%—< P*_< 1) and the prior t, we say

*
a selection procedure y satisfies the posterior-P condition if

P(CS|y,X = x) > P* for all X.

. . *
Remark 2.2.1. The posterior-P condition is based on the prior distri-

.k
bution t and is different from the usual so-called P -condition.

Definition 2.2.2. The Toss function L, is defined by L;(8,A) = [A]

where |A| is the size (number) of populations associated with the select-

ed set A. The loss function L, is defined by Ly(8,A) = (0)

I
i EA '[O_i<e[k]}

which is the number of the non-best populations selected by action A.
Note that the indicator function

Hogeoppt® =1 17 94 < 1]

0, otherwise.
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) * *
Definition 2.2.3. ‘Given a number P (%—< P < 1) and the prior T, we de-

. _
fine the class A)NR(T,P ) as follows.

Y NR(T,P*) = {y|y is any non-randomized rule which

*
satisfies the posterior-P condition} .

For the sake of convenience sometimes we will use'aS)NR instead of

] (T,P*). |

NR

" * * .
Definition 2.2.4. Given a number P (%—< P <1), a prior 7, and the
*
Toss function L, a selection procedure v€ ® NR(T,P ) is called a non-
*
randomized Bayes-P procedure (rule) if ¥ is a Bayes rule in the class

*
0 NR(T,P ).

Let p[]](l)‘j cee < p[k](g) be the ordered pi(g)'s and ﬂ(i) be the
population associated with p[i](é), i=1,...,k, then a subset selection
rule ¢ is completely specified by {w(]),...,w(k)} where ¢(1) is defined
by

w(i)(é) = P("(i) is selected |¥,X = x), i =1,...,k .

Next, we propose a non-randomized selection rule_which belongs to

R
8 -NR(JT’P ).

* *
Definition 2.2.5. Given a number P (%—< P <1), X=x, and a prior dis-
. . . B . .
tribytion 1, the selection rule IR defined by {¢(]),¢(2),...,¢(k)}
where

{1, i1

0, otherwise
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and j(x) is the maximum integer such that
k | *
Y Priq(x) > P
23 L1~
Lemma 2.2.1. 5. €9
~Emma_c-C- 2+ YNR S P NR T

Proof. Follows from the definition of wﬁR.

*
Theorem 2.2.1. Given a number P*(%-< P < 1), the prior t, and the loss

*
function L], the selection procedure wﬁR is a non-randomized Bayes-P

rule.

Proof. It is sufficient to show that the selection procedure wﬁR'has the
*
the smallest posterior risk in the class QNR (t,P ). Given the observa-

. : *
tion X = x. Let the posterior risk of y€& NR(-r,P ) be y(x,y) then

Y(X,IPER) =k - Jt 1
and
'f (x) < P"
priq(x) <
i2g0 L1

for some j, 1 < j < k.

Hence the inequality

Y(68) < v{x0p)

is not true for any V€S NR(T,P*), Y # wﬁR' Therefore, the result

follows. ‘ -

Theorem 2.2.2. Theorem 2.2.1 also holds when we replace the loss L] by

L2.



84

Proof. Under the loss function L2, the posterior risk of the séﬁection

*
procedure Yy €9 NR(r,P } is

il b~ X

v{x,9) =
1

By Theorem 2.2.1, we have

If

k ' k
121 ‘PER('i)(l)p[-i](E). > 'iz'l 111(1)(5)[)[ ](X)
On the other hand, if
k B k
1-21 LPNR(T‘)(X) < 121, w(i)(zg)
then
k B k
'iz'l ll)NR('i)'(gi) = TZ] ‘1’(1)(_)9 = ]
K .
= 121 by = prypx)

Therefore, we have

B ! , *
F(Xupr) < v(x,p) for all ye® \o(xsP) .

Corollary 2.2.1. For a given prior t and the toss function

: w(i)(ﬁ)[1 - p[i](é)], given X = x.

L= CL; + C,L, where C], C2 > 0 then ¢ER is a non-randomized Bayes—P*

171 272
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rule wrt the loss funttion L for all C], C2 > 0,

Proof. For the given prior t and the loss function L, the posterior

risk of any procedure y € is, given X = X, C], C2 > 0,

NR
- k k -
v(%y) = C _Z] vi(x) + G, ,Z] v (00 = p 5 (0]
1= 1=
kK g K g |
>4 1.Z]“’NR j(x)+ G, 121 r(i) (T = ppyp(0)]
= v(é,wﬁR)

wrt the loss function L.

*
Hence sz is a Bayes-P rule wrt the loss function L for all C], C2 > 0.

2.3. Proposed Bayes-P* Procedure wB in GeneraT

Suppose we are interested in thé randomized subset selection rule,
and we would like to find such a rule which also satisfies the posterior-
P* condition and has the minimum risk wrt the loss function L1 and L2

and the prior distribution t.

. ‘ *
Definition 2.3.1. Given a prior t, we define a class ® (13P ) of selec-

*
tion rules, in which all rules satisfy the posterior-P condition, for

any given observation X = x, that is,

*

8 (1,P%) = {y|P(CS|u.X = x) » P~ for all x} .

* .
Definition 2.3.2. Given a number P (%-< P* < 1), a prier 7 and a loss

* *
function L, a selection procedure y €8 (t,P ) is called a Bayes-P rule

*
if this procedure y is a Bayes rule in the class &(t,P ).
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For the sake of convenience, sometimes we will use ® instead of

\ (1‘,P*).

Definition 2.3.2. We define a subset selection procedure wB as follows:

Given a prior ¢ and observation

B

B
{¢(1):¢(2),

where

<
— 0
=
e
—
>
?
—

and

(we)
—
>
~—
1

if

k
)

1]
<

if <

=.0, otherwise.

k=341

k
. > P
igj P[1](£)

\ PL3]

X = x, y° is defined by

‘ B
---sw(k)} )

5 (x) <P¥, 57k
alx) <P, 3 :
iZj "L ’

p[j](ﬁ) < P*

*

k *

T =i+

Example. If k=3, P*=.90 and the posterior probabilities are:'p](§)=.05,

p2(§)=.80, p3(§)=.15, then we select
p[3](§)) with probability 1. And we
v is given by

v(.15) + .80

the population m, (corresponding to

select L) with probability v where

1
- ©
o (e]

l;

|
o1
wiro



By

P

Definition 2.3.2 we have

*

k %
(cs]4®,x = x) = iZ] w?i)(ypm(y =P ifprg(x) <P

Hence we have the following lemma.

3.1. yBes (¢,p).

Lemma 2.

Definiti

*
on 2.3.3. We define a subclass &'{t,P ) of class &(T,P*) by

*

8'(t,P ) = {p€S (T,P*)Ilb(.i)(i) = IP[-I](L) for all x }

where w[]](ﬁ) <ol < w[k](g) are the ordered ¢i(§)'s.

By

] *
the definition of 8' (¢,P ) we have the following lemmas.

B *
Lemma. 2.3.2. y €8'(t,P ).

Lemma 2.3.3.

Y()&slb')

Theorem

* ' *
3.3. For all y €8 (t,P ) there exists y' €8'(t,P ) such that

= y(x,yp) wrt the loss function L], for all x.

*
2.3.1. Selection procedure wB is a Bayes-P procedure in

8 (1,P))

Proof. -

1})639 (Ts
J# k.

* k .
If p[k](ﬁ) < P, then we have ¢%k) = 1 and .Z] w?i)(ﬁ)bfi](ﬁ) =P

We

wrt the loss function L1.

Given the observation X = x, and any selection procedure
*
P*), if p[k](é) > P, then ¢?k)(5) = 1 and ¢?j) = 0 for all

Hence we have
Y(é;¢B) =1 < y(x,y) for all p€5.

*

i

will now show that for any vy,

Y(ésw) < Y(L,IPB)

87
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implies
p(CS|,x) < P(cs|yB.x) = ¢
That is
k k B
Lo dodw
implies
k k
Ly v Wepagle) < L ey
_ k B » . .
For any C, 1T < C < 121 wi(é), we have C = a + n where a is a posi-

tive integer and 0 < n < 1.

It is easy to see that the maximum posterior proability of correct
k .
selection of procedure y with } ¢1(§) = C is
i=1

k

T'Zk—aﬂ pryg(x) * nppy_ga7(x) -

. | S . k
And it is less than § w%i)(gjp[ij(g), since C < w%i)(é). There-
5 o, Y i=1
fore y~ is Bayes-P procedure in & (t,P ). .

_ -, _

" Lemma 2.3.4. Given the loss function LZ’ for all v€ &8 (t,P ), there
*

exists ¢' € 8'(1,P ) such that, given X = X, v(x,v') < v(x,y) where

y(ﬁ}w) is the posterier risk wrt the prior 1 and the loss function L2.

Proof. Given X = x, let wti)(ﬁ) = w[i](ﬁ) then

Kk ‘
121 Wti)(l)P[ij(ﬁ) = 121 ¢{1](§)p[ﬁ](§)
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k
Z.jz] w(i)(é)p[i](ﬁ)
i.P*
‘hence ' €8 '(T,P*). : | ‘ ’?{_
Now, )
k
k o
= iZ] ‘P[-lj(é)(] - p[‘l](l(—))
k
< L v @0 - ppptx)

= Y()_(_9‘~P) -

Hence the proof is complete.

Theorem 2.3.2. Given the prior t and the observation X = x, the‘proce—
B

* *
dure y  1is a Bayes-P procedure in the class ® (t,P ) when the loss func-

“tion js L2.
Proof. By Lemma 2.2.4, it is sufficient to show that
B
)

y(xs9 ) = min  y(x,v')

where

e

Let
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. . B
o7 T e o
Ap = G ey () = vy (x) > 03
Ay = Lifeggy () - w?g)(é) <0}, .
then A] n A2 = ¢ .

And we have

ay = max Ay =ig- 1, if ¢(10)(§) 3—¢210)(5)
=T - TF l“[(;1'0)(5-) < i)
ay = min Ay =iy, if w%io)(zj > ¥{5,) W)
=g+ 1, if w%io)(z) < w(io)(x)
hence a; < a, -
~ Therefore, we have
y(zﬁw') - v(x9P) = 151 (050 - w?i)(X))(1 - prip®))
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e o
- [iZE_A] (w("MM(")(5)+1-26A2(¢(1)(5)“”('1)(5)”

(1 - P[az](i))
X B ‘ S
= 121 [lph)(_)_(_) - “’(1)(5)](1 - p[az](i))_'-

0 by Theorem 2.3.1.

|v

* *
- Corollary 2.3.1. Procedure wB is a Bayes-P rule in & (t,P ) wrt the

loss function L = c]L] + c2L2, Cys Co > 0.

Proof. Similar to Corollary 2.2.1. hence it is omitted.

2.4, Properties of wB'and wﬁR

In this section we discuss some properties of selection procedure
wB and ¢ﬁR. The following definition of the ordering of distributions
was introduced by Lehmann (1952) and further discussed by Lehmann (1955)

and Alam (1973).

Definition 2.4.1. A subset A < RK is monotone 1f-x €A and y satisfies

Y

i <Xy for all i = 1,...,k, implies y €A.

Definition 2.4.2. A family of probabi]ity‘distributions on IRk,

{Fe: €0 C IRk} has the stochastic increasing property (SIP) if 0 €@,

9'€®@ , and 0. 5_6% for all i = 1,...,k, implies

[ dF, > [ dF, s
A el A 8

for all monotone sets A.
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>Let f(-,ei) be the p.d.f. of population TS Let t(8) be tgé given
prior where ei's are mutually independent. Suppose for X = x, we have
absolutely continuous posterior c.d.f. G(8|x). Hence we can write the
p.d.f. as
X) = 1g;(00x;) i

Let Gi(' Xi) be the posterior c.d.f. assocjated with gi(- [%.),

i

i=1,...,k.

Definition 2.4.3. The absolutely continuous posterior c.d.f. Gi('lxi)’
i=1,...,k, have the generalized (strictly) stochastic increasing prop-

erty (G(S)SIP) if for any i, j, 1 < i, J <k, Xi(<) 5-Xj then

X.) .

G. (- ;

i

X)) > G;(-

) = Gj(' .) for all i, j, 1 < i, j <k,

then the GSIP is the usual SIP.

Note that if Gi('

u) = G(o

Definition 2.4.4. A selection procedure p s monotone (ordered) if and

only if for every §;€IRk, X < X implies v, (x) 5_¢j(§). v is monotone

a.e. if y is monotone with the exception of a subset of observations hav-

ing probability zero.

Theorem 2.4.1. If the prior t(g) s such that we have absolutely contin-

uous independent posterior distributions Gi(r

GSSIP, then for every‘§_€HQk, X; < Xj implies

Y, 1= 1,2,...,k, with

pi(i)' < pj(i) .

Hence both selection procedures ¢B and wﬁR are monotone (ordered) a'e.
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Proof.
pi(ﬁ) = P(ei = e[kjlf) = [ Qgi Gﬁ(t]xz)dGi(t|xi)

= f Qgi,j Gl(t]xl)Gj(tl%j)dGi(tlgi)

< Zgi,j 6, (t]x, )G, (t]x;)d6; (] x;) =

178 ) 6, (t]x,)76, (t]x;)dt

d

<1-f af‘[zgj Gﬁ(tlxl)]Gj(tlxj)dt

= fzgj Gl(t[xg)de(tlxj) = pj(z) if x, < xj.
Since

W30 < uf00 I pi(x) < py(0)

and
B () < v (1) IFF py(x) < ps(x)
UNR 12 S IR G2 i\ < Pylad -
Therefore, the procedures wB and sz are ordered a.e.

Under.GSIP assumptions, we can relabel the populations such that
_ - B“h - B"’: _ B .

Xy < .. < X hence we have pi(é)f p[i](é) and wi(é)- w[i](é)-w(i)(é).
Nagel €¢1970) defined the "just" property of a selection rule as follows:

Definition 2.4.5. A selection rule y is called "just", if and only if,

for all i=1,...,k, wi(ﬁ) 5_¢1(5f) whenever x. < x; and X; Z_Xj

R P | -

for

We call y "just" a.e. (almost everywhere) if y is “just" with the

exception of a subset of observations having probability zero.
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Definition 2.4.6. A selection rule y is called translation-invariant if

for all éemk, and for all c€R

wi(x] T ChiiaXy f,c) = wi(x],...,xk) i=1,...,k.

Definition 2.4.7. A selection rule y is called scale-invariant if for
all X_EIRk,'and for all ¢ > 0

¢i(x,-c,...,xk-c) = wi(x],...,xk) i=1,...,k.

Theorem 2.4.2. If the posterior distributions Gi(-[-), i=1,2,...,k,

have the GSSIP property then both selection procedures wB and wﬁR are

"just" a.e. .

Proof. It is sufficient to show that

pi(x) < p;(x') whenever x! > x;

and x' < x. i £ .
an xJ <X Vi#

For any fixed i,

p;(x) = [ j;i 6 (t]x;)d6; (t]x;)
< | jgi Gj(tlxj)dgi(tlxi)

1 —_fGi(t[xi)d jgi Gj(tlxé)

<1 -_fGi(tlx%)d n Gj(tlxj)

J#i
= [ jgi Gj(tlxj)dGi(th%)
= pi(ll) ’ o

which holds: for all i = 1,...,k. Hence the proof follows.
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' * *
Definition 2.4.8. Given a number P (r < P~ < 1), X = x and a prior t;

*
for any selection procedure y € &(t,P ) the ratio of the posterior prob-
ability P(CS|y,x) and the posterior expected selected size E(S|y,x) is
called the posterior-efficiency of y and is denoted by EFF(w[Zj;

P(CS|w,X)

CEFF(0IX) = SRRty

If EFF(¢|5) > EFF(y' |x) for all y' €9 and all x, then the selection
procedure ¢ is called "posterior most efficient" (PME) selection proce-

*
dure in 8 (t,P ).

*
Theorem 2.4.3. The non-randomized posterior-P selection procedure wﬁR

*

*
is the PME selection procedure in 8 NR(T,P ) = 8 R given 1, P

Proof. By Lemma 2.2.1, for all y E&)NR

By’ € Syp 3 EFF(v'[x) > EFF(v|x) vx ,

hence it is sufficient to show that:
. * ’
Given (0), P", x, EFF(yBo|x) > EFF(y' [x) for all y' € £yl ,P ).

. Xk . % B .
‘We know that, in SNR(T,P ) hence in QNR(T,P ), UNR always has mini-

_ k k
mum selected size, 1.6. . ¥x,} wﬁRi(ﬁ) +c= 3 w;(;) for. some integer
_ i=1 i=1 :
¢, 0<c<k-1.
k
DERTENCILIIEY
EFF(y' [x) =
Yowpsy(x)
27 () -

k
Z'l wElR(i)('X—)p['i](é)-'-p[k—s—cﬂ](é)"'- ) °+p[k—s](£)

1

|A

He~3]

e

i=1
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EFF(y' [x)

| A

| A

EFF (vpe]x)

The Tast inequality is obtained by

k

k |
B B
Z] UNr(i)XIPpy7(%) = jzk._sﬂ UNr(i) XIPpi7(%)

1

k B
(1 wNR(i)(é)) p[k-s](é)'

i=k-s+1

| v

Theorem 2.4.4. The randomized selection procedure wB is the PME proce-

* *
dure in § (t,P ) = 8 for given 7, P . .

Proof. It suffices to show that, given T, P, X=X,
EFF(uB[x) > EFF(u'[x), 7o' €n' .

Suppose wB(é) = (0,...5v,1,...,1) 0<v<1,1<s<k-1,
Nt —a—

s terms - -

By theorem 2.3.1 there exists ¢ > 0 such that

w%i)(ﬁ) te

e~ x
1]
o~ x

i=1
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If 0<c< 1, then

EFF(y' |x)

| A

|A

= EFF(y®|x) .
If T<c=v' +t+ (l-v), t >0 integer, 0 <v' <1 then

K
‘P?-i)(_&)p[i](}_) + le[k—s—tﬂ]()—(«)

<
—
-
~—
—~
=
~—
=
[ |
-
bt
~~~
x
—
1

i=k-s+1

* Pt ) * oo ¥ (-9)ppo3(x)

k
3'121 IpE(;i)(i)p|:1':|(5-) + CP[R:S](Z)TT

hence by the same afbgument as above we have

EFF(y' [x) < EFF(4B]x) .
Since x is arbitrary, the result holds for all x.

2.5. Applications to Normal Mode1

Suppose we have k populations Tyseesstys population s has distribu-

2
), where o.'s are known and “ils are unknown. Assume that we

tion N(ui,o1 ;
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have independent observations X11,...,X. , 1 =1,...,k. Let

1n1.
n

_1 _
Xi = o _E Xij and let X = (X],...,Xk).

i j=1

Suppose we are interested in selecting a subset containing the best

: T %
(the population having the largest mean) under the posterior=P condition,
N _

wrt some prior t = t(u). Then to find a Bayes-P selection procedure is
equivalent, in some sense, to finding pi(é), which is the posterior prob-

ability of the event {ni is the best} , given gpservations X = x, wrt a

given prior =, for all i = 1,...,k.

Case I. Assume that we have a common sample sjze n and a common known
. 2
variance o .
Ia. Suppose we have no prior information about the unknown parameters,
and use the “"non-informative" (Box and Tiao (1973)) or "locally uniform"
prior p(ui)mc for each population.
The posterior density function 9; of Wis given x is the normal den-

. . . 2 .
sity with mean X; and variance o /n, i.e.,

2
n(u;-x:)
By M)
Vow o 20

Hence‘

-c{ Jg] q’(t + %—ﬁ_ (X['i] - X[J])d@(t)

Here u,., is the quantity corresponding to the iEh-largest observation
(i) _

X[_i].
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Ib. If “i's are independent and have the identical prior distribution
N(eo,og) and Xi'“i ~ N(ui,cfln), then it is well known that the posterior

density funciton g, of u;, given X = x is

gi(uilﬁ) ~ N(éX ,EZ) with SIP property T
i - :

where
8. = 52(06260 + no{zxi)

X3

2 = (o2 + na7d) .

Hence

p[j](é) = _i jgi o(t + gnc;z(x[ij - x[j])dé(t).

The last expression for p[i](i) is the same as that for the non-informa-
tive prior whenever ag > ©-

Since p[i](é) = p[i](§_+ b) and since the normal distribution has

B

the strictly SIP, it follows that ¢y and wRR are "just" a.e. and trans-

lation-invariant in both case Ia and Ib.

Case II. Variance u{'s are known but 01'5 and ni'snare not all equal.

IIa. Using the non-informative prior p(“i) « c, i=1,...,k, we have
© V. Xrea=Xr -

[ 1 et v(1) + [;] (4] )da(t)

- J# (3) (3)

P(-)(Z)

1

Q

(i)
"(4)

X[i] and we have the following theorem. :

where V(i) = i=1,...,k. p(i), °() and "(1) are corresponding to
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Theorem 2.5.1. p(i)(i) is non-decreasing in i, i.e., p(i)(ﬁ) = 5&1](5).

Remark 2.5.1. From the above formula of p(i)(§), it is easy to see, in-
creasing the sample size of the non-best populations will increase the
probability that the best population to be selected, howevék;-before do-
ing this, we don't know which one is the best one, -

In this case wB and wﬁR are "just" a.e. and translation-invariant.

Case III. Assume that priors are independent byt not identical normal

distributions, namely, wy o~ N(ei’ogi)’ where ei's are not all equal; if
, ' 2
the conditional distribution of Xi’ given Mys is N(”i’ —ll-), then the

n.
1

posterior density of uy, given X; = x, is gi(uilxi)’ which is the prob-

~ability density function of normal distritubion N(éx ,g?) where
i

- 2, -2 -2
exi = £5(0p585 * nyoq5%;)
2, -2 -2 -1
g5 = logy * oqjny)

Hence we have

(oo}

g.
i 1 /=
p.{x) = [ @m e[t— +— (8, -

1 A 2 B R T B

If 9 = 99° %11 T 9 and n; = n, i=1,...,k, then
;= &= (062 + c{zn)-] i=1,...,k

and
o 6:-0.  n(X:-X.) -
p.(x) = [ 1 e[t + el + —135 )lda(t)
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Case IV. The General Normal Model
Here we consider a more general prior. Suppose we have k popu-

lations, common sample size n for each population, and common known

variance o° > 0. The observation can reduce to X = (X1,..thk) where
n S
Xi = .Z Xij/"’ by sufficiency.

i=1

The "Normal Model" 1is defined as follows:

2

g
n

Hl

{a) Xl ~ N(u, qI), q

where I is the k x k identity matrix.
So the X's are (conditionally)independent when u is given.

(b) w - N(eg 1, vI + tU)

where eoelR, y>0,t >-{',

Here vy > 0 and t > - % are necessary and sufficient for yI + tU
to be positive definite. This model was chosen by Chernoff and Yahav
(1977) (¢ > 0), Gupta and Hsu (1978) and Miescke {1979):

By (a) and (b) we get the posterior distribution of u, given
X = x, and the distribution of X as follows:

ulx ~ N(s, al + bu)
where

1

6 = v(g+) Tx + qt({gr) (arv+kt)) T x U + alasy+kt) 'm 1

a=yalq+r)
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2., .- -
b = q t(g+y) ](q+Y+kt) 1
X ~ N{ml,(q + y)I + tU)

Lemma 2.5.1. Let Y ~ N(u + pl,al + bU) with H_EIRk, p€R, a >0 and

b > - a/k. Then there exists a random vector Z ~ N{u,al) sﬁéhlthat

h(Y) = h(Z) everywhere for every translation-inyariant h: H%k > B?k.

Proof. (See Miescke (1979)).

With this lemma, it is easy to get

pj(é) P(U.i = U[k]lé)

fI = ds (n)
S (G L)

where ¢( V) is the normal distribution with mean u and variance-covari-

Hs

ance matrix V.

We can rewrite pi(§) as
_ ® 1
pi(x) = | ns o(t + (Grgyy) (% - xj))d¢(t) .

Let v = OS, q = oz/n, we have

2
Copi) = [ et + (el )E(x, - x.))de(t).
1 - j#1 GT(%—+US) 1 J

The above expression is exactly the same as that of the independent prior

Case I, Ib.

Case V. Under normal assumption as before, but suppose ci's;are unknown

and that neither oi'S nor ni's are all equal.
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Suppose we have no prior information about (u,o), for each individu-

1

al population . assign prior p(u.,o.)mGT then we have (See Box and

Tiao (1973)) that the posterior density of u,, given X.=x. =(x XipoeeoaXy )

1ni_
is
5. /) n (%)% -2 (vitl)
- 1 i 1 1 1 i
p(u-ilii) = [1 + 5
B(%\)-I %)V\).I \)‘is'i

where s? is the sample variance, B(-,+) is a Beta function and vi = ni—l.

Hence

2

=X t. —%(\).‘H)
plt, = L x) = ——T1——(1+ 1) T,

S//h_i B(%\).,%)V\). i

1 1

which is the density of the student's t distribution with “i(z n; - 1)
degrees of freedom.

~Using this result we can write the formula of pi(é) by

p-i(i) = P(U.I > Uj, 'VJ#-I |_)_(_)
s./Vn. X. -

fH Tv.(t LA i J )dT\) (t)

i 9 sj//ﬁ; s5/ /03

I

ij is the c.d.f. of t distribution with vy degrees of freedom.
When vi's are large, t distribution approaches normal d%stﬁibutipn, hence,

for large Ny i=1,...,k, we can replace T by ¢.
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Case VI. Suppose we are interested in finding a subset which contains the

population with the smallest variance; i.e., we define the best population

as the one with the smallest variance, and suppose that we have no prior

information about 0. In this case, it is reasonable to assumie that

let

p(uso)es , if u is unknown

p(a)mo—], if u is known.

=n 52 - E (X0 )2 if u is known
e R R b B L H
2 k 2
.= n, - ST o= ;- X:)" if » is unknawn, n.>1 §=1,2,...,k
Vi Ty b ovgSy rzﬂ(xar )7 1w s un g7 o=l
2 .2 2 iy
§ - (S],..-,Sk); L_ (X]]"°"X]n.|"”’xknk)

and YV be the random variable with c.d.f. xf which 1s the x2 distribution

with v degrees of freedom.

Then for either case (u known or unknown), we have

- 2 2 _
p.i()_S) - P(O.l = O'['I]l_x_ - é)
2 ity o
—P(o_i<o,VJ#1lX—é)
2 2 2 4‘
v.S. v:S. v.S
, - p(hd < 1 (A g )82 = $9)
2 - 2 52 =
Gj G.i \).i i
2
V.S,
=Py, <Y (), vrilst = s9)
Vi T Vi 68 = =
i>i -
o v.s2 i
=11 8 el ()
0 31 Vi v.st Vi
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) 2
T 2, S3,.2 .
= é jgi xv(u ;?JdAv(u) if n]=...=nk=v+],
i

*
With these p](é),...,pk(é) we can apply Bayes-P rules wB and WER easily.

* - ST
Lemma 2.5.2. In Case VI, wB and wﬁR are just a.e. and (scale) transla-

tion invariant.

* Here the definition of the "just" property for a selection rule is

b3(s%) < ui(s?) if sf 2 sl S 5_s§ REEER

2.6. Comparison of Selection Rules wB and ¢M in the Normal Location

Parameter Case

We have k normal populations with a common known variance 02 and
common sample size n. For this case Gupta (1956) proposed and studied the

procedure wM.

M select wy 1 X > Xpg - = i = 1,0k where d= d(k.P*)> 0

/n
is to be determined by

e My % —
- inf P(CS|y ) = P E
8 €Q

and @ is the parameter space.
*
We will show that wMGESNR (t,P ) where 1 is the locally uniform

*
prior distribution. For fixed P and k, let d be determined by

[T+ dyaee) = P . (2.6.1)

-0 *

Let



106

2 = {all possible observed values} = sz
z = {X€Z |Xxppq - d = < Xpqq}

1 [k] o [1]

- -4 9 i<

% {(xex |x[1._]] < Xpyy - d ,/,Ti Xpiphs 22 < k_
Z(” = {X€X |x = Xrs < X -d < < xpiqle 2.

i = (11~ *[i-11 ~ “[k] o= il i

(2) _ - o409 - (1)

then we have the following theorem.

* *
Theorem 2.6.1. Given a number P (%—< P < 1) and locally uniform prior

for each population i X=x€x i then

*

Pieshy, X =x) > q7(4)

where

Hence

Proof. It is sufficient to show that

k * P 1 * *
inf [ ppyy0)=a (=g (- P + P

X€x, 2=1 ‘ ‘

Since X€Zs
peslu™x) > inf pleshx)
XEX. =
1
k



107

Without loss of generality we can assume =1,

31 fa

Since

k
Y priq(x) =1 vxe€x, and Vo> i
='] [1] - :

p[l](g) is nonincreasing for all X[57° j <1i-1, we have

k
inf ) p[l](é) = inf‘(]) zzi p[QJ(l)
=S4
i-1
=1- sup 221 Pra(®)

i-1
=1 - sup 221 !m j;g o(t + X[g] - x[j])d¢(t)

i-1

.l— [ee]
=1- sup )} [ {1 oft+ X[y] " x[j])

xex (1) 451 == 32
- 1
. j];Q, ‘I)(t + X[SL] - X[J])}d¢(t)

i-1 o .
=1 - sup 121 !m {jgi oTt + xpyy - X[y

o(t - d)a¥"2(t)de(t) (2.6.2)
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=1 - (i-1) [ o(t-d)e 2 (t)do(t)
- (k- 1) [ o 2(t)alt - d)da(t)
o gk
[t + d)de(t) (2.6.3)

The superimum of (2.6.3) occurs when x €% ( The Tast equality

i

follows from the identity
k-2
(k - 1) [ e (t)e(t - d)de(t)

| =1 - [ o* N+ d)da(t),
which can be shown by the integration by parts. By (2.6.1), the second
term of (2.6.3) equals P*; then use the integration by parts to the

first term of (2.6.2), we get

) K k-1
f Pr. = == [1 - P*] + p* 2.6.4
X12z1 Qgi [1](5) kf-l ] ( )

= q*(i) .

Remark 2.6.1. If the procedure wM selects w(k)'Bﬁ1y, ie. X = 5_621,
then, by Theorem 2.6.1 we have p[k](x) > P* so that wB.or wﬁR selects

(k) only. But the converse is not necessarily true.

“Remark 2.6.2. For the case k = 2, wﬁR = wM a.e. For any given X = Xx;

if §_€Xé, then p[2](§) > P*, hence wM and wﬁR se]ecthfhe population

. o} _ M
(2) associated X271 If X€xy5 and X[2] d < X[13 then ¢ and

/n
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wﬁR select both populations ™ and To- Since
P(Xroq - d X = Xrqq) = 0,
[21° ¢ =70

B _ M | =
we have wNR = ¢ a.e. . - e
Remark 2.6.3. The above Theorem and Remark 2.6.1 gives us a lower

k
bound on the value of ) P[Q](é)’ over all x€z;. The exact value
p=i

of the difference of the selected sizes between wM and wB depends on

the observations.

H.=3
2.7. Applications to Select max 6, , 6,= 1 for Normal
i<k %

Distribution N(ui’ c?); i=1,...,k

Let Mysee sy be k independent normal populations with mean My and

variance c?, both My and o; are unknown. For the goal of finding a
. ui-a
random subset which contains the population with maximum 0 = 5
j

for some given constant a, we assume that apriori (“i’ oi), i=1,....k
are independent. Suppose we have n, independent observations

X s from 7., and let X, be their sample mean, i = 1,....k.

i1°7°°°%n
i

Let Yp,...,Y be i.i.d. ~ N(u, o2). If no prior information is

1°°
available to (u, o), we could assign a Tocally uniform prior

p(u, 6) « o = to (u, o), (see Box and Tiao (1973)). And the-posterior

joint distribution of u' = p - a and o, given observations

Y=y-= (y],...,yn) is given by
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u', oly - (n+1) exp {- 1 [v52 +n(y' - u')2]}
20
where
n -
y'Ey-a, y= )y ) =
vl = Ty, - 9% vEn- B (2.7.1)

v
k = / [__ % -1 \)5)2 )

Let £ = v/n (u-a)/o, with (2.7.1) the posterior distribution of &, given

where

‘—'-
HY
3
~—~
<
]
o))
p—
™~
wn
w
<
Hl
=1
|
—

“Now, let p(“i’ 01) « 0;1 be the assigned locally uniform prior

to (”i’ Gi)' Then let x = (x]],J..,x Xien ), we have

o e,
P; x) = P(G_i = e,[k] |x)
Y B B _



{
o
—
=
.
oy

>, Vi#1]t)

n; i A
n
= 16 (/Flzltde (z]1)  (2.7.2)
AR 2 s
= mG,. (z]t)d G, (z|t) ifn, =...=n, =n,
i#i & 5 L k

where GE is the posterior c.d.f. of £, given x or t.
By (2.7.2), the Bayes-P* procedure is completely specified.
If the prior distribution for (u, o) is the conjugate distribution

(see Raiffa and Schlaifer (1960)), then

p(u, o) = exp {- —17 n'(u-m')z} %-- exp {- —l?-(v'v'nofvl *+ 2
20 20
= p(u]o) p(o)
that is
p(uls) - N(m', o%/n') , n' > 0
(0)9—'—2" 2.,v,v > 0.
o
Let
1.1
x' = ﬂ—%;%}gl- , X is the sample mean. ... )
2_' 1v.2 1y, § ¥ .2
uc = {(n -~ 1)s" +v'v' + [(n')/(n + n")](x -m )3 /v*
vE=(n-1)+v'+1
g* = (n + n')]/z(u - a)/o
%= (n+n')2(x - a)/u, N

the posterior distribution of £*, given x is p(g*|x) = p(g*|t*) which

has the same form as p(z|t), but replace £, t, v by &%, t*, v*,
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Thus for the conjugate prior case, we get

P

1(5) = P(eize[k] |x)

16y (fatid ety (2.7.3)

j#i 7J 1 1 .

[ 1 Gy (2[t*¥)d Gy(z]t*) if n, = n

J#i 7 i
where GE* is the posterior c.d.f. of g* given x or t.
Note that (2.7.3) has the same form as (2.7.2), but repalce

£, t by g%, t*.

2.8. Applications to Poisson Distributions and Poisson Processes

2.8.1. Poisson Distributions Case

Suppose that Tyseessm are k independent Poisson populations, where

the independent observations Xﬂ,'...,X].n from T have the Poisson
.i

density with parameter Ass denoted by P(-[Ai), i=1,...,k.

Let Y],...,Yn be i.i.d. with p(-|A). If we use non-informative

prior p(3) « A_]/Z(Box and Tiao (1973)), then given ¥ = y = (y],...,yn)

we have the posterior density as follows: R

p(aly) = aa™V- z exp (-nA)

where



We see that 2nily the chi-square distribution with

2
T X2ny+1?
2ny+1 degrees of freedom. Hence by using non-informative prior

p(xi)'m 1;1/2 for each population =., we have N
p.l(_)_(_) = p(k'i = >‘[k] li)
oo Ns
=1 1 ¢ (204 ()
- JF1 7] J 1
where
"
Es = 2"1 Xs + 1, Xs = .Z Xij/n1
Jj=1
If Ny =e..= Nys then
P00 =/ 1 ¢ () (2).
0 j#i ~J i

With pi(g), i=1,...,k, we can apply Bayes-P* selection rules

B

with the largest parameter A. On the other hand, if we are interested

in selecting the population with the smallest parameter A, then

) = f 1 0 -2 (2 h1d 2 (2)
T o g# 50MT N

(o]

2 2 .
= n [1 - (z)1d (z) if ny =...=n, .
fO Jj#i XEJ Xgi ] :

In this case, the simulation results for se]ectioﬂ brocedures wB

and wSR are tabulated on Table VII.

v~ and wﬁR easily to select a subset which contains the population

113
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2.8.2. Poisson Processes Case

Suppose we have k independent Poisson processes

{x(])(t)},...,{x(k)(t)} with expected arrival times equal to

SWERERE iL“ respectively. Hence for the processes‘{X(1)(tjj, the
1 k ‘

probability that there are m; arrivals until time t, is

o
—
>
—
-
g
_—~
(—F
-
~
1
I
-
S
—e
-
(-f-
e
g
1]

If there exists no prior information, then we use the non-informative
gy -172 o | i
prior p(Ai) © Aj for all processes. Therefore; we get the posterior

density function of Ags given (mi,'ti) as follows:

pO X () = s ) = 00y Img, )

1 i 1 1
)m + %—-1
(tsn; -t s
- 11 : t-i e 1 'l.
rm; +7)

Thus 2t.; has x2 distribution with 2m,+1 degrees of freedom, given
the number m; of arrivals before time t..

Let m = (m1,...;mk) and t = (tl""’tk)’ then it can be shown that

the Poisson process {X(1)(§)} has the maximum paramgter.(or minimum

mean. waiting time), given (m, t) is .
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t.
2 J 2 .
pim, t) = [ 1 x (y =)d x (y) i=1,....k. (2.8.1)
. j#i 2mj+1 ti 2mi+1

Here we 1ist two special cases which are of interest.
(a)  Observations of all processes are obtained in a common'time
interval [Si’ t+ Si]' Since Poisson process is stationary, we

can assume that S; = 0, and t] =...= tk = t. In this case
p;(m, t) = }D I xgm +1(¥)d xgm W)
0 j#i J i
which is independent of t.

(b) AN mi's are equal, i.e. we fix m first, then get observations t.

Hence
p;(m, t) = fw i le (y t—j)d Xe . (y)
There is an alternative way to approach the cases (a) and (b).
Let Ti be the waiting time of the nth arrival in the ith process,
then Ti has a gamma distribution with density given by
A ( mi—l -ast o -
p(t) = At) e t > 0.
I’(mii 1
1/2

If we have only dbn-informative prior p(r) « A~ '/“; then, given m; and

‘ . . . . . 2
ti" 2t1Ai has posterior distribution X2mi+1, therefore the formula

of pi(@, t) we get here is exactly the same as before.
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Remark 2.8.1. Under non-informative prior, in comparing the subset
selection problem in k Poisson distributions with the problem in k
Poisson processes, it is easily seen that Poisson distributions model

is a special case of Poisson processes model, namely, t.

1:n.Mmm

i
n. denotes the sample size of the ith Poisson population. :

2.8.3. Relation Between Selection from Poisson Processes and

Selection from Populations with Gamma or Exponential
Distribution |
Suppose we have k independent populations, fthe ith population
having the gamma distribution with parameters o = m, (known),
g = 1/A1 (unknown). Since the random variable Ti’ the waiting time
until m. arrivals in a Poisson process with parameter Ai’ has a
gamma distribution with parameters o = m., B = 1/xi. If the mi's are
given and if the goals for both sé]ection problems are the same,
“namely, to select a subset containing the population (process) with
the Targest parameter A, then it is easily seen that these are
identical problems. Note that in the selection problem of Poisson
pfoce§ses, mi's might not be the preassigned values Sut,gre given
rand9m observations whenever ti's are preassigned values. In this
case, the selection problem of Poisson processes is different from
that of the gamma distributions.
If the process associated with the minimum parameter A (or the

maximum waiting time) is the best, then the posterior'prbbability

of process {X(1)(t)}to be the best is analogous to the one obtained



before with the modifications that the integrand function

t

2 _dy
I x (y 29
i#i 2mj+1 ti
of (2.8.1) is replaced by T
t.
2 J
0= o £5)7.
j#i ij 1 ti

2.9. Comparison of the Performance of wB, wﬁR, wM and wMED-

Let Tes i=1,...,k be k independent populations, where s has the
associated c.d.f. F(x, ei) = F(x - ei) with unknown location parameter
0;. Let f(x, ei) = f(x - ei) be the p.d.f. The goal is to find a
small (nontrival) subset which contains the best.

The following subset selection procedure wMED based on sample

medians is due to Gupta and Singh (1980).
MED

vt Select m if and only if Xi Z.X[k] -d
where ii is the median of the 2m+1 random observations from population
T and i[k] = max ii' The value d js determined by. the following
. S '

equation so that the P*-condition is met.

fw G(u + d)k_]g(u)du = px

=-Q0

where

4lu) = (—f"%;zﬂ [F)I™TT - Fu) T (u) -
m!

17
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G(u) = Ieggy(m+ 1, m+ 1)
Iy(p, q) is the incomplete beta function.

In this section we use Monte Carlo simulation techniques to compare

M MED

the performance of selection procedures wB, wER’ P and ¢y ---.dn the

MED

normal means problem. Because both rules wM and ¥ are not based

- on any prior information about the unknown parameters, we assume that

B . .
NR 1S locally uniformly

distributed. Since the selection pfocedure wM satisfies both the

the prior distribution « for both wB and y

P*-condition and the posterior-P* condition wrt the 1oca11ybuniform

priors, it makes sense to compare the Bayes-P* procedures wB and
wﬁR with wM'and compare ¢M with wMED in terms of efficiency which

is the ratio of the probability of -a correct selection to the expected
selected size. For studying the'robustness of these four rules, wB,
wﬁR, wM and wMED, we change the true distribution to non-normal dis-
tributions, namely, the Togistic, Laplace (the double exponential)

and the gross error model (the contaminated distribution), but keep
the selection procedure unchanged (i.e. still based 5n*tpe normal
assumﬁtion). The Monte Carlo simulation results for both equal dis-
tancés of the parameters and slippage cases are tabulated. In the
simulation study all generated random variables are adjusted to have
variance 1. Each time We generate five random variables with the
given distribution of each population, then apply thE'seﬁectiQn pro~
cedures. The simulation process is repeated 100 times for each random

variable. The relative frequency of selecting the population s is
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used as an approximafion to the probability of selecting the popu-
lation s The sum of relative frequency of selecting each popu-’

lation T i=1,...,k is treated as an approximation of the expected
selected size. The efficiency EFF of each selection proceduggﬂis
approximated by the ratio of relative frequency of se]eéting.%He

best one to the expected size. The simulation results indicate

that in all cases we have the performance

W& > e > o

It should be noted that in the above comparison of the performance,
we restrict attention to these rules which satisfy the posterior-P*
condition. For small samb]e size, the efficiency of rule wM tends

to be Targer than wMED under P*-condition.

Remark 2.9.1. The Laplace distribution has the density function

1 g lx-ol

f(x - 0) = 5

- oo < X < o«

for which the variance is 2.
The logistic distribution has the density function
) o (x-8) ~
, f(x - @) z;:;:(;:gj;g
2

for which the variance Var (X) = %;z

The gross error model we used has the density function

Flx-8) = (1-c)glx - o) + Sq(%50)  e= .15

for which ¢ is the p.d.f. of N(0,1) and the variance
Var (X) = (1-¢) +e - 4% = 3.25.
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The efficiency of a selection procedure y is defined by

Po(CS|w)
EFFe(w) = Eg(gTay—

where Ee(Slw) is the expected selected size. -

Discussion and Conclusion-

For Table VIII.1 and Table VIII.2 (equal distances case) the P*
is .99 and .90 respectively, the common sample gize n = 5, k = 5.
If the k populations have normal distributions with the unknown
parameter configuration (6,...,6 +(k-1)A). common variance 1. From
both tables the performance based on either the efficiency or the
expected selected size is

B B M
1 >\DNR>Q’

if the posterior-P* condition is considered, and

under the P*-condition.

When the true distributions are not normal, -but Ehe_]ogistic,
the Laplace or the gross error model, the results are very close to
the normal case, hence the four rules are robust. From Table VIII.2
all efficiencies are larger than the corresponding ones in Table VIII.T.
This is to be expected because the value of P* is smaller in the second

table. - -

For Table X.1 and X.2 (slippage case) the P* is .99 and .90 re-'

spectively, the common sample size n = 5, k = 5. If the k populations
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have normal distributions with unknown parameter configurations
(6,...,0+A), common variance 1. From both tables the pérformance
based on either the efficiency or the expected selected size is

M .
W& > pg > v | o

if the posterior-P* condition is considered, and if Avn > 1

under the P*-condition.

Note that in both equal distances and slippage cases when avn > 1,

that is the population means are not very close, the procedures wB and

B
UNR®
posterior-P* condition but also Pe(CS[lpB or wﬁR) Z.P*’ and the expect-

wrt the locally uniform priors, always satisfy not only the

ed selected size of the selection procedure wB or wﬁR is much less

than the selection procedures wM and ¢MED. For example, in the nor-
mal equal distances case, P* = .99, k = 5, A/ﬁ = 4,
.M
E(s["E0) - E(S|upg) = 03823

*

in the normal slippage case, P = .99, k = 5, a/n = 4,

M
ED)

E(s|9"ED) - E(S]upg) = 1.560.
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