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1. Introduction. In testing the fit of a sequence of observations

to a distribution or to a parametric family of distributions, it is com-
monly assumed that the observations are independent and identically dis-
tributed (IID). In practice, however, the observations may have sub-
stantial dependence, as when the data were collected as a time series.

Suppose, then, that X "’Xn are observations on a stationary stochastic

1°°
process (SSP). A test of fit for the common distribution of the X_ is

t
applied that is designed for the IID case. What is the effect of de-
pendence on such a test when the null hypothesis concerning the univariate
marginal distribution is correct?

Despite the statistical interest of this question, there is little
Titerature on it. Gasser (1975) conducted a small simulation study of
the effect of dependence on the validity and power of a chi-square test
for normality. For the SSP's he studied, which were primarily Gaussian
autoregressive processes, the Pearson test using (asymptotic) IID critical
points rejected normality too often. Moreover, the test had low power
against non-Gaussian autoregressive processes relative to its power
against IID alternatives. Both effects of dependence were more marked
for SSP's with positive autocorrelations. The purpose of the present paper
is to initiate the theoretical study of the effects of dependence on the
Pearson chi-square test.

Section 2 outlines the basic large-sample theory, following the
pattern laid down in the IID case by Moore and Spruill ?1975), hereafter
referred to as MS. Since this development follows MS closely, details
are largely omitted. It is shown that the vector of standardized cell

counts is generally asymptotically multivariate normally distributed,



and the form of the asymptotic covariance matrix is obtained for several
methods of estimating unknown parameters. The distribution of the Pearson
statistic, and of other quadratic forms in the cell counts, can then be
expressed in terms of the characteristic roots of this covariance matrix.
Because interest centers on the effect of dependence on the validity of
chi-square tests of fit, only large sampie behavior under the hypothesized
univariate distribution of the Xt is discussed. Behavior under continguous

alternatives can be obtained by combining the results of Section 2 and the

contiguity results of Roussas (1979).

Section 3 examines in more detail the case of testing fit to a
specified normal distribution. It is shown that for a general class of
Gaussian SSP's with positive autocorrelations the asymptotic distribution
of the Pearson statistic is stochastically larger than the IID-case chi-

square asymptotic distribution. That is, positive correlation is con-

founded with lack of normality. Moreover, the correct asymptotic critical
points can be arbitrarily large for sufficiently strong autocorrelation.
The arguments of Section 3 make essential use of only one property of the
normal laws, and the results therefore extend to other null hypotheses.
This section also points out how knowledge of the SSP struc-
ture can sometimes be used to construét tests of fit that, un-
1Tike the Pearson test, have chi-square Timiting null distrf—
butions. Gasser's simulations suggest that the results of Section 3
may extend to cases in whicH unknown parameters are estimated, such as
testing fit to the normal family. This is among the open questions

remaining within the framework of the general theory of Section 2.



2. General large sample theory. Identically distributed observations

X]""’Xn are to be tested for fit to a parametric family of distribution
functions {F(x,8): 6 inQ}, where o is an open set in Euclidean m-space R™,
Choose M cells Ai = (ai_1, a1], i=1,...,Mwith boundaries

- =25 <A <...<ay g <ay= e Let ai(x) be the indicator function

of Ai’ so that the ith cell frequency is N, = 22=1 61(Xt). The corre-
sponding cell probability is pi(e) = F(ai, 8) - F(ai_], 6). A basic con-
dition for applicability of chi-square tests of fit is that under F(x, 60),
Ni/n > pi(eo) in probability as n - ». The mean-square ergodic theorem

(Karlin and Taylor (1975), p. 476) asserts that this is true for a SSP
'{Xt} if and only if

n-1
(2.1) ! Lo AP0 i A Xy i AT - P2} > 0.

Mixing conditions on'{Xt} give sufficient conditions for (2.1). For ex-

ample, 1f'{Xt} is a strongly mixing SSP with mixing coefficient o(k), then

(2.1) holds if 2E=1 a(k) < =, All processes considered will be assumed

to satisfy (2.1). The examples appearing below do satisfy this condition.
Let Vn(e) be the M-vector of standardized cell frequencies, having

1
ith component [Ni - npi(e)]/[npi(e)]2. Except in the simple null hypoth-

esis case Q ='{eo}, the unknown parameter 6 is estimated by 6, =

en(X ,Xn). General chi-square statistics are then non-negative

-l,oo-
definite quadratic forms in the components of Vn(en). In particular,
the Pearson chi-square statistic is the sum of squares Vn(en)'Vn(en).

In general, Vn(en) is asymptotically normally distributed,
(2.2) dZ{Vn(en)} -~ NM(O, C(eo)) under F(X, eo),

so that the Pearson statistic has as its limiting null distribution that of



Z¥ Ai Z?, where xi are the characteristic roots of C and Z]""’ZM

are IID N(0,1) random variables. We now develop these results in more
detail.

We are concerned with the behavior of Vn(en) under F(x, 60) where
eo is an arbitrary point in @. For convenience we often omit the argument
e when ¢ = 8ys for example, p, = pi(eo), and derivatives and expected
values not otherwise specified are evaluated at o = 8- The following
assumptions are required

Al. Under F(x, 6 ) = Op(n'%).

0)’ n " %

A2. For all i, P;
M _
eo, and z] p; = 1.

> 0, pi(e) is continuously differentiable at

A3. F(x, eo) is continuous at each cell boundary a;-

Note that Al requires that O which may be an estimator of 6 predicated
on IID observations, remain consistent when'{Xt} is in fact a SSP. We
shall see that this often holds (e.g. when en is the IID case maximum
Tikelihood estimator of 6). The results below can be generalized to
include the case in which 6, converges to some 6 other than eo. In this

case the Timiting normal law of Vn(en) does not have zero mean.

Assume now that (A1) - (A3) are met, and let B be the M x m

matrix with (i,j)th component

P .
1 96,
J

[

As in MS, the following result is immediate.

LEMMA 2.1. If A1, A2 and A3 hold, then under F(x, eo)

1
2

(2.3) V (6.) =V_ - Bn®(e

n'n n n - eO) * 0p(])'



Most estimators of interest, computed under the IID assumption,
have the following asymptotic form.

A4. Under F(x,eo)

Nl

n® (e -60) =n 2§  h(X_8) + 0,(1)

t=1

where h has zero mean and finite covariance under F(x,eo).

a1
If A(x) is the M-vector with components [Gi(x)-pi]/pf and we abbreviate

A(Xt) = 4y and h(Xt,eO) = hy, then from (2.3) and (A4)
;N
= F -Rh
(2.4) V(e) = zt=] (ay-Bhy} + 0 (1)

and asymptotic normality of Vn(en) will follow from an appropriate
central T1imit theorem for dependent variables. When 6 is computed
using the SSP structure of the data, a central Timit theorem for triangu-
lar arrays will usually be required. Because of the great variety of
app]icab]e central 1imit theorems, we give only a single paradigm
result for Gaussian processes, chosen for its usefulness in Section
3. We stress that the conclusion of Theorem 2.1 below, including the
form of the Timiting covariance matrix, holds whenever a central Timit
theorem applies to (2.4).

The central limit theorem leading to our paradigm result is given
by Gastwirth and Rubin (1975). Combining the theorem of Sun (1963) with
an argument on L2 approximation of functions f with finite variance by

polynomials, they show (p. 816) that jj_{Xt} is any Gaussian SSP with

L|py| <« , then for any function f such that f(X;) has finite variance,




(2.5) 2 BT DO -EF(X) T > N(0,67)

2

o = Tim n”]

n
Var{} f(Xt)} < w
t=1

Here o, 1is the correlation between X, and X., . The condition Z|pk] <

t
implies Gastwirth and Rubin's "aA-mixing", and hence strong mixing, if
{Xt} is a Gaussian Markov process, but in general implies no mixing
condition.

Statement of Theorem 2.1 requires some additional notation. Denote
by I the M x M identity matrix, and by Qts the M x M matrix with (i,j)th

component

(2.6) {P[X; in A;s Xg in AsT-p;ps3/(pyp;)

0l

and let

n
Q = lim n| Z Qi
#

1 1
and q = (pf ,...,pﬁ })'. Clearly Q = 0 in the IID case. The following

result is now immediate.

THEOREM 2.1; Suppose that {Xt} is a Gaussian SSP with Z|pkl < = and
that (A4) holds. Then (2.2) holds with

v o |
C=1-gqq' +Q+ lim n'1 ) {BE(hth;)B'+BE(htA;)+E(Ath;)B'} .
t,s=1

REMARK. It 1is often desirable in practice to utilize data-dependent
cells in a chi-square test of fit. If cells Ain = (a1-1,n’a1n] are employ-

ed, where a.

in = ain(X],...,X ) and PR

n ;(P) under F(x,6,), then the

argument in MS shows that the limting law of Vn(en) is the same as if

the Timiting fixed cells were used whenever the empiric c.d.f.



process n%{Fh(x)- F(x, eo)} converges weakly to a process with a.s. con-
tinuous paths. Such weak convergence results appear in, e.g. Gastwirth

and Rubin (1975) and Withers (1975). 1In particular Gastwirth and Rubin
obtain the required convergence for any Gaussian SSP with lek| < e,

Thus Theorem 2.1 continues to hold when converging random cells are

employed.

We now record the form of the Timiting covariance matrix C in several
cases of general interest. The matrices appear intractible, but the
example of the first order Gaussian autoregressive process that con-
cludes this section shows that considerable simpliification can occur.

A1l of these results presuppose that a suitable expansion of o, and
central 1imit theorem have been applied in (2.3). The expansions are

discussed in each case.

Case 1. No estimation. When testing fit to a specified distribution

F(x, © then

o)
C=1-qq" +0Q.

In this case results of form (2.4) for uniform]y.bounded f are adequate

to conclude (2.2). For example, (2.2) holds with C as above for a wide

class of mixing processes by Theorem 2.1 of Gastwirth and Rubin (1975)

and Corollary 1 of Withers (1975).

Case 2. Minimum chi-square estimation. Suppose that a statistician,

be]ieving’{Xt} to be IID, employs the minimum chi-square estimator én and
the classical Pearson-Fisher statistic Vn(én)'vn(én). The condition
Ni/n - pi(eo) in probability, assured by (2.1), is sufficient for con-

sistency of én and for the usual expansion



1.
2(p_ -6

(2.7) n=(e, O)

= (8'8)7'8"Y, + 0 (1).

See Lemma 1 and Theorem 3 of Moore (1978) for an exact statement and
proof in the IID case, which remain unchanged for SSP's satisfying (2.1).
Though the form of (2.7) and hence of (2.3) is the same as in the 11D

case, the distributions differ due to dependence among the'{Xt}. The

result is now
C=1-aqq -B(B'B)'B" + {Q - B(B'B)”'B'Q
1 '] ] 1 -1 1 1 -1 1
- QB(B'B)”'B' + B(B'B) B'QB(B'B) 'B'}
where the bracketed terms are zero in the IID case. This expression

rarely simplifies. For example, the last two terms cancel if and only

if QRB S where RB is the range of B.

Case 3. 1IID maximum likelihood estimation. Suppose that a statis-

tician, be11ev1ng'{Xt} to be IID, employs the MLE én of 6 in F(x, o)

from 1ID X;,...,X . Then vn(én)'v (én) is the Chernoff-Lehmann (1954)

1 n
statistic. It is again true that 5n remains consistent and has its

usual expansion

n

1 ‘
- 2] 3 Tog f(X.|e)

t=1 96

+ op(1)

for quite general SSP's. Here J is the Fisher information matrix of
F(x, eo) and 5 log /36 is the m-vector of partial derivatives evaluated
at & = 64 Such results are given in detail in work of B. Ranneby, de-

scribed by Basawa and Prakasa Rao (1980). 1In this case,



- 1 '] ] : "-l n' "] '] ]
C=1-qq"'+Q-BJ 'B'"+ limn } {BJ 3,0 B
t,s=1
t#s
- By lgx - gxg By
ts ts
where
3 Tlog f(the) 3 log f(XS|e)'
Jig = B 36 30 (m x m)
and
3 Tog f(X,|e)
* = I
Jts E{ =5 A(Xs) }oo(mox M).
In the IID case, Q = Jts = J%s = 0. The example below demonstrates that in

Case 3, unlike Case 2, the matrix C can simplify considerably.

Case 4. SSP maximum likelihood estimation. If the dependence structure

of'{Xt} is known, the statistician may employ the correct MLE én for o 1in
F(x, o) based on Xis+++>X . In regular cases (see Roussas (1979) and

references given there) én has the following properties. Let ft be the

conditional density function of Xt given X1,...,Xt_], evaluated at

X ,X., and set

10000k

3 log ft
a6 EL

3 Tog ft

r.=n ) E{ }.

Then r,>T = P(eo) under F(x, eo), where T is positive definite, and

1
2

n 5 log f£

p! )

1.
(2.8) n?(6_ - 8,) = n
n 0 t=1

Note that (2.8) does not have the form stated in (A4), so that a central
1imit theorem for triangular arrays must now be applied to (2.4), where

the summands ht now have the form ht(X1,...,Xt) with the function ht



10

varying with t. Potentially applicable theorems are given in Section 4
of Philipp (1969) and Section 2 of Withers (1975). In cases where such
a result implies (2.2), considerable calculation shows that

1

C=1-qq'+Q-Br B'.

~

Since 8

n is an asymptotically efficient estimator of 6 from the Xt’ this

form of C also follows from the result of Pierce (1982). In the IID

case, Q = 0 and T = J, producing the classical Chernoff-Lehmann result.

EXAMPLE. Let'{Xt} be a first-order Gaussian autoregressive process, so
that each Xt is N(u, 02) and o = pk for some p satisfying - 1 < p < 1.
For Cases 1-3, (2.2) follows from Theorem 2.1. For Case 4, (2.8) holds
by Example 7.1 of Roussas (1979), and then (2.2) follows by Theorem 5
of Philipp (1969). Calculation shows that the covariance matrix in
Case 3 ((u, o) estimated by the IID MLE (X, s)) simplifies to

I4p 0
2 [ 1-°
C=1-q9gq"' +Q-0"B 5 B".
0 %1t

Wk

1—02

In Case 4 (MLE for the first order autoregressive model),

—

L)
2 -p
C=1-qg9'+Q-0¢BY}" B!

0 3

°

——

Note the effect on the Tlast term of the fact that the MLE's of u but not
of o are (asymptotically) the same in the two cases. Both results should
be compared with that for {Xt} IID with (u, o) estimated by the MLE

(X, s), the Chernoff-Lehmann case:

o (1 0
C=1-aqq' -8B B'.
0

Wi
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Most of the simplification in this example occurs for general
Gaussian SSP's. For example, if {Xt} is any SSP satisfying the con-
ditions of Theorem 2.1, and (u, o) are estimated by (X, s),

2 '|+ZZ-|p’k 0

C=1-qq'+Q-0¢8B o B'.
0 %'I'Z'lpi

3. The Gaussian no-estimation case. Let now‘{Xt} be a Gaussian
SSP, so that the X, are each - N(n, 02) but are not independent. If
0y = (u, 02), the vector of standardized cell frequencies Vn(eo) em-
ployed in the Pearson test for fit to the specific distribution N(u, 02)
has Timiting null distribution NM(O, C) with C =1 - qq' + Q whenever
zlpkl < w, by Theorem 2.1. The matrix Q represents the effect of de-
pendence. Note that gg' is an orthogonal projection of rank 1, orthogonal

to Q (q9'C = q'Q = 0). Concentrate first on a single "incidence matrix"

Pts with components P[Xt in Ai’ XS in Aj] for i, j =1,...,M

LEMMA 3.1. l__(Xt, XS) has a symmetric bivariate normal distribution

with correlation p(Xt, Xs) =p > 0, then P__ is positive definite.

ts

PROOF. Represent (X_, X =Y+1Z,

t) t t
where Y, Zs’ Zt are independent, Y is N(u, p02) and Zt’ Z, are identically

s in the form XS =Y + Zs’ X

distributed as N(O, (1-p)02). Then conditional on Y = y, X and X, are
independent N(y, (1-p)02). Therefore if p(y) is the M-vector of prob-
%)

9

abilities pi(y) of A; under N(y, (1-p)o

Pes = [ pUy)P' (¥)dF, (y).
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For any M-vector x,
1 : 1 2
x'Prox = [ {x'p(y)}°dF,(y)
and it follows that PtS is positive definite.

For Qts as in (2.6), let now

(3.1) 0, =n" T O

so that Q = 1im Qn' Denote by D the diagonal matrix with the cell prob-

abilities ps as diagonal entries. Then (if all Pig = p(Xt, Xs) > 0)

-

(3.2) Q = n'0E(IP,IDF - (n-1)qq’

where ZPts is over the same range of summation as in (3.1). Finally, set

Cn =1-qq' + Qn so that Cn - C.

THEOREM 3.1. Suppose that {Xt} is any Gaussian SSP with
oy = p(Xt, Xt+k) > 0 for all k and Zp, < =. Then (2.2) holds, and

C has rank M-1 with all nonzero roots satisfying: a > 1.

PROOF. Since I + Q, = C, +aa' and q'Cn = 0, C has rank r(Cn) = M-1
if and only if I + Qn is nonsingular. Suppose then that x is an M-vector
such that (I + Qn)x = 0. Since q'Q, = 0, q'x = 0 also, and from (3.2)

X satisfies

{I+n D (ZPtS)D }x=20

-t
F

-1
and -n is therefore a characteristic root of D #*(zP, )D % if x # 0. This

ts
contradicts Lemma 3.1, and therefore I + Qn is nonsingular.
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The characteristic roots of Cn are one zero and M-1 ki_= 1+ 61 where
61 are the nonzero roots of Qn’ corresponding to characteristic vectors

1 1
in RQ = R-_,. Thus 8; > 0 since they are roots of P, = n']D'z(ths)D =,

qq
(Because q'Pn = (n-1)q', Pn has root n-1 in the qq' direction. The F
are the remaining roots of Pn.) The theorem now follows from Theorem 2.1
(which ensures the existence of C = 1lim Cn) and continuity of character-
istic roots as C, converges to C.

The Pearson statistic Vr']Vn has as its limiting null distribution
the Taw of zﬂ;}szf where 1. are the nonzero roots of C and Z, are
IID N(O, 1). If {Xt} were IID, this distribution would be XZ(M—l),

with all Ai = 1. Note that Q # 0 if any P > 0.

COROLLARY 3.1. Suppose that {Xt} satisfies the conditions of

Theorem 3.1 and that some Py > 0. Then the limiting null distribution

of the Pearson chi-square statistic for testing fit to a single normal

law is stochastically larger than in the IID (gll_pk = 0) case.

Aside from guaranteeing (A2), (A3) and(2.2), normality has been

employed only in the proof that P,_ is positive definite. Corollary
S

t
3.1 therefore holds for suitably regular non-Gaussian processes for which
Pts is positive definite, and in particular whenever (Xt’xs) are condi-
tionally IID. It is not true that every pair of random variables having
a symmetric distribution with p > 0 are conditionally IID. (See Dykstra,
Hewett and Thompson (1973), p. 676 for a counterexample.) DeFinetti's
theorem (see Kingman (1978)) asserts that the conditional IID property
holds if (Xt’xs) can be extended to a countable exéhangeab]e sequence.
Though p > 0 is a necessary condition for such an extension, I know of no

sufficient condition.
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It remains to investigate the extent to which the asymptotic critical
points of the Pearson statistic in the case of positively correlated obser-
vafions can exceed the chi-square critical points. This depends on the ex-
tent of the dependence among the observations, but we shall see that the
characteristic roots of C, and hence the critical points, can be arbitrarily
large. However, for Cn and hence for m-debendent processes, upper bounds

are obtainable.

LEMMA 3.2. Suppose {X,} is any Gaussian SSP with o, > 0 for all k.

Then the nonzero characteristic roots of C satisfy » <n. If p = 0

for k > m, then A < 2m + 1 for all n > m.

PROOF. Returning to the proof of.Theorem 3.1, we need only show that

the roots 85 of Pn satisfy §; <M - 1. This follows if

ik

_ _ 13 -
Gn = (n-1)I - Pn =n D ‘{Z(D-Pts)}D
is non-negative definite of rank M - 1. Represent (Xt,XS) as in the
proof of Lemma 3.1 and condition on Y =y to obtain
D - P = [ Aly)dFy(y)
where by conditional independence A(y) has entries

A3 (V) = (V) (1-p; () i

J

S

- p;(¥)p;{y) 73

with pi(y) as in the proof of Lemma 3.1. If €= (1, 1,...,1)', then
A(y)e = 0 and if x # 0, x + €, then x'A(y)x > 0 for all y. Hence
x'(D-PtS)x > 0 for all t, s and x‘{Z(D-Pts)}x > 0 for such x. Thus
Gn is nnd of rank M-1 as claimed. If P = 0 for k >m, the n - 1 in
the last term of (3.2) is replaced by 2m, and the argument above can

be repeated to yield the better bound.
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Lemma 3.2 implies that the nonzero roots of C satisfy 1 < X < 2m + 1
in the m-dependent case. It is easy to see by arguments given in the
proof of Theorem 3.2 below that all A » 2m + 1 as all Py > 1, and in this
sense the upper bound of Lemma 3.2 cannot be improved. However, the correla-
tions Py of an m-dependent process are constrained by the requirement that
the correlation matrix be positive definite, and cannot approach 1
arbitrarily closely. For example, the upper‘bounds on the largest correla-
tion are 1/2 form = 1, v2/2 = 0.707 for m = 2 and (5+3v/5)/(10+2/5) = 0.809
for m = 3. Thus the upper bound in the m-dependent case is conservative,
espécia]]y for small m. One can nonetheless assert that, e.g., for a
Gaussian 1-dependent process with positive correlation the critical points
of the Pearson statistic fall between those of xz(M-l) and 3x2(M—1).

Let Qk = Qts for |t-s| = k. Collecting terms in the definition of Q
shows that

® .0k
2L ez bow

whenever the expressions on the right converge. In particular, if {Xt}

is m-dependent, then Q = 22E=] Qk' These expressions are useful in the

theorem and example that follow.

THEOREM 3.2. .ngg{xt} be a first-order Gaussian autoregressive pro-

cess with one-step correlation o. Then as p -~ 1 all nonzero characteristic

roots of C increase without bound.

PROOF. The bound given by Gastwirth and Rubin (1975), p.811 shows
that the entries of Qk are O(pk). It follows easily that Q = 22? Qk. For
any integer m> 1, write C = A + B, where A =1 - qq' + ZZ¥]Qk and

B = 2Xm+1 Qk' Let pij = P[X] in Ai’X1+k in Aj]' Using the representation
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of P] 1+k from the proof of Lemma 3.1 and the dominated convergence

theorem, one sees that as pk = p(X],X]+k) +1, p;. >0 for i # j and

1J

Pij > Py = P[Xt € Ai]' Therefore

lim A = (2m#1)(I-qq"').
o1

Now B has rank M - 1 and range Rg = RQ , the space onto which I - qq' is

the orthogonal projection. Further, x'Bx > 0 for any x # 0 in R, since

Q

for such x

Vi

x'Bx = 2x'D" #{ J P, 3D
m+l

and P, = P, for |[t-s| = k is positive definite by Lemma 3.1. It follows
easily that for any € > 0, the M - 1 nonzero roots of C all exceed
2m+ 1 - ¢ for o sufficiently near.1. But m-was arbitrary, which estab-

1ishes the theorem.

EXAMPLE. Computation of the roots of C is difficult in general be-
cause of the complexity of Q. Direct computation is possible using the
bivariate normal quadrant probability in the case where u = 0 and M = 2
with cells (- »,0] and (0, =).

Suppose first that {Xt} is a Gaussian m-step moving average or other

m-dependent process. The nonzero root of C is
m

L

. =1
sin ‘p,.
k k

1
As all p) cover 0 < oy < 1, » covers the range 1 < A < 2m + 1 of Lemma 3.2.
In fact, the o} cannot approach 1, and in the m = 1 case as p; covers

0 < Py < 1/2, the nonzero root covers the range T < X < 5/3.

If {Xt} is a first order Gaussian autoregressive process, on the

other hand, the nonzero root of Cn ranges over all of 1 < A <nasp



17

ranges over 0 < p < 1, and the nonzero root of C is

S'in_]pk
1

ERES
e~ 8

k
which is finite but increases without bound as o +~ 1, as announced in

Theorem 3.2.

Table 1 contains values of the nonzero root A and 6f the true
asymptotic probability that the Pearson statistic exceeds chi-square
critical points in this example for 1-dependent and first order autore-
gressive processes with various p. The choices of p are those of Gasser
(1975) except for p = 0.5, which is the largest possible correlation in
the 1-dependent case. The effect of dependence in this two cell example
is somewhat stronger than for Gasser's simulated ten cell case, especial-

ly for small o.

A final remark: In some cases, knowledge of the SSP structure of
the data and the theoryvgiven here allow construction of usable tests of
fit for the univariate marginals. If I + Q is nonsingular (which is usual-
ly the case), then a generalized inverse of C is ¢ = (I+Q)']. Consequent-
1y Vr'](I+Q)']Vn has the xz(M—l) limiting null distribution, and the same
will be true of Vr'](I+(A2n)']Vn for suitable estimators Qn = an(X],...,Xn)
of Q. Suppose, for example,that {Xt} is known to be a 1-dependent SSP,
and that it is desired to test whether individual Xt are N(u,oz). In
this case Q has components 2(P1j-pipj)/(p1pj) %, where P = P[Xt in Ai]
and Pij = P[Xt in AisXppq in Aj]. The proof of Theorem 3.1

shows that I + Q is nonsingular. Take an to be the obvious

count estimator of Q from X],...,X . Then an is a consistent estimator

n
of Q and

£V (140 ) TV 1 > BT
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under the null hypothesis.' Similar statistics for m-dependent processes
are immediate, but estimation of Q by counting cell frequencies rapidly

becomes impractical as m increases.

Acknowledgement. I am grateful to Professors S. Geller and H. Rubin

for helpful diécussions.



TABLE 1

True significance levels of the Pearson
statistic, two-cell example

Nominal Nominal Nominal

Process A a=0.10 a=0.05 a=0.01
1-dependent, p = 0.3 1.388 0.163 0.096 0.029
1-dependent, p = 0.5 1.667 0.203 0.129 0.046
autoregressive, p = 0.3 1.550 (0.186 0.115 0.039
autoregressive, p = 0.5 2.275 0.276 0.194 0.088
autoregressive, p = 0.6 2.864 0.331 0.247 0.128
autoregressive, p = 0.75 4.356 0.431 0.348 0.217
autoregressive, p = 0.9 7.993 0.561 0.488 0.362
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Symbol1 Sheet
for
The Effect of Dependence on Chi-Square Tests of Fit
by David S. Moore

Greek Greek Script Mathematical
Lower Case Capital Capital Symbols
o 2L -+ converges
8 R ® infinity
€ Y summation
9 ) derivative
A f integral
U c set inclusion
P L orthogonal
o X multiplication
) = equal
X # unequal
> greater
< less

greater or equal
less or equal
vertical bar

\—-l/\ IV

fraction bar



