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ABSTRACT

The problem of selecting good populations out of k normal
papulations is considered in a Bayesian framework under exchange-
able normal priors and additive loss functions. Some basic
approximations to the Bayes rules are discussed. These approxima-
ttens suggest that some well-known classical rules are "approxi-
mate" Bayes rules. Especially, it is shown that Gupta-type rules
are extended Bayes with respect to a family of thé exchangeable
narmal priors for any bounded and additive loss function.
Furthermore, for a simple loss function, the results of a Monte
Carlo comparison of Gupta-type rules and Seal-type rules are
presented. They indicate that, in general, Gupta-type rules per-
farm better than Seal-type rules.



1. INTRODUCTION

In many practical situations, the experimenter often faces
the problem of comparing several competing populations,treatments
or processes. The statistical methodology of ranking and selec-
tion procedures provides useful techniques for solving such prob-
lems. One of the basic formulations of the selection problem is
the subset selection formulation of Gupta (1956), under which we
select a random sized non-empty (small) subset of the populations
while controlling the probability of including the 'best' popula-
tion in the selected subset. One modification of the basic goal
is concerned with the selection of "good" populations which are
defined below. Contributions in this direction have been made by
Fabian (1962), Desu (1970), Carroll, Gupta and Huang (1975), and
Panchapakesan and Santner (1977), among others. Moreover, Berger
(1979) and Bjgrnstad (1980) have studied the minimaxity of some
well-known classical rules under various control conditions.

Let TyoeeesTy be k independent normal populations with
unknown means e],...,ek, respectively, and a common known variance.
Let the ordered 85 be denoted by e[]] 5,..§_e[k]. A population s
is said to be _

a good population if 8; 3_6[k]-A,

a bad»population if o, < Ory]8-

where A is a given positive constant. This definition implies
that the experimenter is willing to accept all the populations
which are sufficiently close to the 'best' population (i.e. the
popuTations associated with e[k])whi]e screening out the bad pop-
ulations. Thus it seems reasonable that any suitable loss func-
tion shonld contain two components: one depending on the bad pop-
ulations in the selected subset and another depending only on the
good populations excluded. Then the,less function of the follow-
ing type seems to be appropriate for our purpose: for -

8 = (87,-..,8,) and ac {1,2,...,k} (a # ¢), let



(1.1) L(g,a) = igaLB(ei'e[k]M) + 1'gaLG(ei-e[k]+A),

where LB is non-increasing, Lg s non-decreasing, LB(y) = 0 for

y > 0 and LG(y) =0 for y < 0. Here the action a € G means that
we select the set {ni, i€a} as the set of good populations where G
is the action space consisting of all non-empty subsets of
{1,2,...,k}. Any loss function of the type given in (1.1) will be
called additive.

Miescke (1979) has shown that the selection rule proposed by
Gupta (1956) is asymptotically Bayes as the sample size increases
for an additive loss function when the unknown means are assumed
to have an exchangeable normal prior. Also, he has studied the
approximations to the Bayes rules for an additive and 1inear loss
function i.e. the one corresponding to LB(y) =y and LG(y) = y+,

with y+ (y™) denoting the usual positive (negative) part of y.

In this paper, we assume that the unknown means e],...,ek
have an exchangeable normal prior. Under this assumption some
basic approximations to the Bayes rules for any additive loss
function are discussed. Gupta-type rules are shown to be extended
Bayes with respect the family of exchangeable normal priors for a
class of additive loss functions. Also, a Monte Carlo comparison
of two well-known c]assfcal rules with the Bayes rule is carried
out for a simple loss function. This empirical study as well as.
our theoretical results support the earlier results of the Monte
Carlo studies by Chernoff and Yahav (1977), and.Gupta and Hsu
(1978), which indicate that Gupta-type rules would perform as well
as the Bayes rule for a wide class of loss functions.

2. BAYES RULE AND APPROXIMATIONS TO BAYES RULE

Suppose that we have k independent samples of size n from
each population. By sufficiency we can reduce the problem to that
based on the sample means X],...,Xk, whose common vafiance may be
assumed to be 1 without loss of generality. N

It is assumed that the loss function is given by (1.1), and




we further assume that the unknown means 8 = (e],...,ek) have an
exchangeable normal distribution such that, for —(k-])'] <p <1,

(2.1) E(ey) = m, Var(ey) = o5 (i = 1,...,k), and

Cov(ei,ej) = pog (1 <1i<j<k).

Gupta and Hsu (1978) and Miescke (1979) have used a representation
of ei's similar to one given in (2.2) to reduce the prior to an
iid normal prior;

(2-2) I(e.i'm)/o'o = '/E- Z.i - ('/p—- + '};’T)Zos

where ZO’ZI""’Zk are standard normal random variables with
Zy5---»Z, being independent and Cov(Zy,Z;) = oo/ T (i=1,...,k).
Note that we can restrict ourselves to the translation invariant
rules & i.e. 8(x) = 8(x+tw) for any w = (w,....w) € R in this
framework. Such a reduction is well presented in the next result.

Lemma 1. Let & be a translation invariant rule. Then the overall
risk wrt the prior in (2.1) can be written as follows; for ot =

(1-p)ogs

(2.3)  r(c%8) = [ [ L(8,6(x))dN(a|bx,bD)eN(x]0,(1-)"D),

-0 =00

where b = 02/(1+02), I is the kxk identity matrix and N(-|u,I)

denotes the distribution function of a multivariate -normal distri-
bution with mean p and covariance matrix Z. —

JLet X[1] <0+ -2 X[k denote the ordered observations of
X],.;.,Xk and () and 9(1) denote the 7 and 6 associated with
x[i] for i = 1,...,k. Then it follows from Lemma 1 that e(i), a

posteriori, has normal distribution with mean bx[i] and variance

b = 02/(1+02). Now the Bayes rule given in the next result can be
easily derived by using the methods similar to those -in Goel and
Rubin (1977). -

Theorem 1. Assume that the loss function is given by (1.1). Then
the Bayes rule &* wrt the prior in (2.1) always selects (k) and



moreover it selects ; if and only if E[l(e(i)-e[k]+A)|§] <0,
for i = 1,...,k-1 with ¢(-) = LB(-) - LG(-).

Remark 1. Properties of the Bayes rule such as the monotonicity
and orderedness can be derived from Theorem 1 (see, for example,
Miescke (1979) and Kim (1979)).

'Eventhough Theorem 1 gives a general description of the Bayes
rule for any additive loss function, a complete specification of
the Bayes rule requires the explicit form of 2(-). Also, it
usually involves difficult computations to implement the Bayes
rule. So it is of practical significance to examine some basic
approximations to the Bayes rule, which are applicable to every
additive loss function provided they are easily computable. For
this purpose, we introduce the following notations: for i =
1,...5k-1,

(2.4) §$=(x[]]-x[i],...,x[i_]]—x[i],x[i+]]-x[i],...,x[k]-x[i]),

a_ : ]
ST Ly My e T L
k .
u_
51—(090” .0, j:;-}-] (X[J]_x[i]))’

A RIS et
D(x$)=ELa(o5)-0; 7#8) |¥]

“Eala-/B (nax (2;-2;+/6 x41-7B xpi s

where Zl""’zk are iid normal random variables. It follows from
a result in Marshall and Olkin (1974) that D(§?) is Schur-convex
in 5?. Also, note that D(x*) is non-decreasing in each argument
of x¥. Furthermore, it can be easily shown that we have the fol-
lowing inequalities:

(2:5) 2 2T (xgypxgg )00 3 Oy

j<i j>i

where o E’g means that o is majorized by g. Hence, it follows



fram the Schqr conVexity'of D(g?), (2.5) and the monotonicity of
D(5$) that, for i = 1,2,...,k-1,

(2.6) D(x3) < D(x3) < D(xY),

E[z(A—(e(k)-e(i))+)|§] = D(x3) < D(Z?)-

These bounds on D(g?) and Theorem 1 suggest the "approximate"
Bayes rules as follows; for b = 02/(1+02), |
(2.7) e Select (k) and, for i = 1,...,k-1, select T(4) iff

Xr§] 2 X[k - d;(b)/ b,
62: Select u(k) and, for i = ]""fk"]’ se]ect-n(i) iff

X(i1 = *[k1 - dy(b)/7b,
53: Select n(k) and, for i = 1,...,k-1, select n(i) iff

k
xpi12 (1 xpy77d3(b)/vB)/ (k-1),

j=1+1 |
64: Se]ect‘n(k) and, for i = 1,...,k-1, select n(i) iff

1

where dj(b)(j = 1,2,3) are determined so that

(2.8) H,(b,d)=Ex[a-/b ( max ZJ.-Z]+d)+] <0 iff d<di(b),

2<Jzk
Hy(b,d)=Ee[a-/b (Z,-7,+d)"] < 0 iff d < d,(b),
Eefa-vBmax( max Z.-7,,Z,-Z,+d)}'] <0 1Ff d < dy(b);
2<j<k-1 7

with Z],...,Zk being iid standard normal random variabies. The
next result follows from (2.6) and Theorem 1.

Carollary 1. For any additive loss function given ¥nm (1.1), the
Bayes rule &* wrt an exchangeable normal prior satisfies the fol-
lowing relations with probability one; for a = 1,3 and 8 = 2,4,
(2.9) 8,(x) < 6*(x) < 6,(x).



It should be pointed out that more approximations to the
Bayes rule can be obtained for a particular additive loss function
(see, for instance, Miescke (1979) and Kim (1979)). Also note
that, for k = 2, the "approximate" Bayes rules coincide so that
the Bayes rule can be exp]icft]y specified.

It seems interesting to note that the "approximate" Bayes
rules except 84 are members of the class of the following well

known classical selection rules;

(2.10) 63: Select m; iff x; = xp 1 and/or X, > o 1 xed,

m

84- Select s iff X; 3_x[k]-d.

Rules &" were proposed by Gupta (1956) for the goal of selecting
a subset containing the best population, and later studied by
Desu (1970) for selecting a subset consisting of only good popula-
tions. Rules §% are modified versions of the selection rules pro-
posed by Seal (1955). |

| Note that one Gupta-type rule 81 always selects a smaller
subset than the Bayes rule while another rule 62 of the same
type selects a larger subset. Thus, one might expect that the
Gupta-type rules 5" would be close to the Bayes rule in some
sense. This is proved in Theorem 2 given below. First, we recall
the next definition (see, for example, Ferguson (1967)).

Definition 1. A decision rule 50 is called an extended Bayes rule
wrt a family & of prior distributions if, for every € > 0, there

exists a prior 1 € & such that r(r,ao) < inf r(t,8) + €.
é

Also, we need the following conditions.

Conditions A.
(A-1) The Tloss function is additive with 2(-) = LB(-j-LG(-)
being bounded.




| (A-2) Let dg-denoté the number dj(b) determined by (2.8)
for b = 1, and assume that they are finite (j=1,2).
Theorem 2. Suppose that Conditions A hold. Then, for df < d<d%,

the selection rules 62 are extended Bayes wrt the family of
exchangeable normal priors; in fact,

(2.11) Tim [r(o,ag‘) - r(o,6%)] = 0,

g0
where r(o,8) denotes the overall risk of a rule given by (2.3).
Proof. It follows from Theorem 1, Corollary 1 and (2.6) that, for
2

g

b = ——

1+02’

(1) tn(gy € 8%(x)s m(5y € 85(x)} = {0 < D(x3) < Hy(b,/B d)},

(1) {m5) € 6*(x), (5 ¢ 83(x)}  {Hy(b,/b d) < D(x¥) < 0},
where Hj (j = 1,2) are defined in (2.8). Let A; and B, denote the
-
events {m (., ¢ s*(x), T(5) € 84(x)} and {my) € 6*(5),
(1) ¢ 62(5)}, respectively. Then, (i) and (ii) imply that

k-1 .
REICONINS

(2.12)  r(o,5g)-r(c,6%)

k=1
<E[Y {H,(b,vb d)I, -H,(b,/b d)I; }].
i=1 i i

Since the condition (A-1) implies the continuity of Hj(b,d)

(j =1,2), it can be easily shown that the monotonicity of Hj(b,d)
in b and d, the definition of dj(b) in (2.8) and the condition
(A-2) imply the following facts;

(iii) dj(b) is non-increasing in b (j = 1,2),

(iv) Tim d.(b) = d* (j = 1,2), -
b<1 )

(v) For d € (df,d3]1, dy(b)//b < d < d,(b)/¥b for b suffi--
ciently close to 1 and b < 1.



It follows from (v), (2.9) and (2.12) that, for sufficiently large
o, 1.e., for b sufficiently close to 1,

F(U,Gg)-r(c,é*)

k-1

= {H;(b,vbd)-H,(b,vbd)} z P[/ d (b)<Zpyq-Zr4q <
/1-b
5 do(b)],

where'Z[]] 53"5-Z[k] are the ordered iid standard normal random
variables. Hence, it follows from Conditions A that

lim [r(o,63)-r(o,6*)] =

g

which completes the proof.

3. MONTE CARLO RESULTS FOR A SIMPLE LOSS FUNCTION

The well-known selection rules s" and §% in Section 2 are,
in some sense, natural approximations to the Bayes rule, and it is
shown that the Gupta-type rules s" would perform as well as the
Bayes rule when the prior variance is large. In this respect, the
comparative performance of the Gupta-type rules s™ and the Seal-
type rules s was studied using Monte Carlo technique for a simple
loss function given as follows: ’

) ,a) = | +A)+ =0p, ),
(3.1) L(Q a) Cy igaI(-m’O)( [k] A) ¢, g [o, )(91 e[k] A)
where ¢, > 0, c, > 0 and Cyte, = 1.

For this simple loss function, it follows from (2.3) that for
any translation invariant rule, the posterior risk is given by

(3.2) ¢y 1.GE(X)P[e(i)<e[k:|-A|>_(] * e, i¢§( )P[e(1)>e[k]-alx],

where X], . Xk are iid normal random variables w1th mean 0 and

variance 1+02. A1so, by Theorem 1, the Bayes rule is determined
by
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= c]-[m J_gi<1>(z+»/5(x[1.]-x[j])+A/»/E)d<1>(z),

where b = 02/(1+02).
| We carried out the Monte Carlo comparisons for k = 3 and
k = 9. The relevant parameters in this comparison study are 02, A
and ¢; (=1-c,), while ¢ = c,/c; was used instead of ¢, since c,
being the ratio of two different sources of losses, seems more
appealing than Cy- The range of the parameter values in this
report is as follows:

A=0.5, 1.0,
o= (1.5)V (i =-2(1)6),
c=1,2, 4,8

For each of parameter sets (A,o,c), 400 simulations for k = 3 and
100 simulations for k = 9 were carried out. In each simulation,
the generation of k iid normal rahdom variables X],...,Xk with
mean 0 and variance 1+02 was involved. The Bayes rule and its
posterior risk are obtained from (3.2) and (3.3) by numerically
computing D(g?)'s, where some of the computations can be omitted
by using (2.9). Then, the estimated Bayes risk can be obtained by
taking the average of the posterior risks. Two sufficiently fine
grids of the constants d are used to obtain optimé] values of d
for s and 62 which minimize the average regrets, where the range
of these trial values is determined by (2.9).

The estimated Bayes risk, the estimated regrets incurred by
the optimal s" and the optimal §2 are given in Table I along with
the sample standard deviations of these estimates. The cells Teft
blank in the table correspond to cases in which the Bayes rule
selects only one population or all the popu]ations."lt can be
observed from Table I that the performance of the Gupta-type rule
s" is almost as good as that of the Bayes rules, and that it per-
forms remarkably better when the prior variance becomes larger.
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This agrees with Theorem 2. Also, we observe that, for k = 3, the
Seal-type rule &2 performs reasonably well though its performance
is not as good as the Gupta-type rule M. However, for k = 9, the
rule 2 performs very badly and it was observed that, for most
values of o, the optimal 62 tends to select much larger subsets
than -the Bayes rule as ¢ becomes larger. In Figures la-1f, the
estimated risks of the Bayes, the optimal §" and the optimal aa
are shown graphically for o = 1.0 and some selected values of c.
Table II gives the average number of the bad populations selected
and the average number of the good populations excluded by each
rule. Also, the proportions of times that the optimal §" and the
optimal 82 coincide with the Bayes rule are presented graphically
in Figures 2a-2h.

Chernoff and Yahav (1977), and Gupta and Hsu (1978) have
obsefved the performance of the rule &" similar to the one in this
study under certain loss functions for the goal of selecting a
subset containing the 'best' population. However, the performance
of 62 in the present study is worse than that observed by Gupta
and Hsu (1978), and it seems that the Seal-type rule has little to
recommend for the goal of selecting good populations. The results
of the present study and the previous ones mentioned above indi-
cate that the Gupta-type rule performs fairly well in various
formulations at least in the Bayesian framework considered in this
paper. However, it should be pointed out that the  proper constant
d should be chosen according to the operating'Eﬁaracteristics of
the particular problem considered before one chooses the constant
d based on any intuitive control condition. For this reason the
estimated optimal d-values of the rules s" are provided in Table
III, which can be used if one accepts the framework in this sec-

tion.
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" TABLE 1

14

The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal s" and by the optimal Ga, respectively. The esti-

mated standard deviations of the estimates are given in the

parentheses.
=3, A =0.5
< ] 4
.4609 (.0016) | .3297 (.0012) |.1995 (.0008)
.44 | .0024 (.0005) |.0006 . (.0002) {.0000 (.0000)
.0334 (.0029) |.0033 (.0008) |.0001 (.0001)
.4686 (.0053) |.3897 (.0026) |.2558 (.0011)}.1456 (.0001)
.67 | .0038 (.0006) |.0029 (.0005) |.0010 (.0003)}.0001 (.0001)
' .0487 (.0028) |.0185 (.0017) [.0024 (.0006){.0000 (.0000)
.3872 (.0076) |.3424 (.0056) |.2511 (.0028)|.1532 (.0014)
1.00 | .0036 (.0006) |.0027 (.0005) |.0022 (.0004)|.0011 (.0003)
.0175 (.0018) | .0160 (.0016) |.0053 (.0008)|.0016 (.0004)
.2813 (.0088)‘ .2710 (.0068) |.2005 (.0045)(.1361 (.0024)
1.50 | .0027 (.0006) |.0023 (.0005) |.0020 (.0004)|.0009 (.0002)
.0115 (.0015) |.0180 (.0024) |.0078 (.0013)}|.0033 (.0006)
.2033 (.0083) |.1833 (.0072) |.1561 (.0049)].0987 (.0030)
2.25 | .0010 (.0005) |.0010 (.0004) |.0011 (.0003)|.0009 (.0003)
.0103 (.0014) [.0318 (.0034) |.0148 (.0020)(.0082 (.0011)
.1470 (.0083) |.1274 (.0065) |.1081 (.0050)|.0662 (.0028)
- 3.38 |.0006 (.0002) {.0004 (.0002) |.0007 (.0003)|.0005 (.0002)
' .0084 (.0013) |.0343 (.0038) |.0318 (.0030) .0159 (.0016)
- 1.0984 (.0072) {.1207 (.0060) .0726 (.0044)|.0457 (.0025)
5.06 |.0000 (.0000) |.0008 (.0004) |.0000 (.0000)|.0002 (.0001)
” 1.0045 (.0009) |.0241 (.0032) |.0379 (.0039)|.0203 (.0020)
.0663 (.0061) |.0564 (.0050) |.0462 (}0038) .0298 (.0021)
7.59 | .0003 (.0001) {.0002 (.0001) |.0002 (.0001)|.0000 (.0000)
.0045 (.0010) |.0184 (.0030) |.0299 (.0041)|.0277 (.0032)
.0335 (.0043) |.0392 (.0043) [.0287 (.0030) .0200 (.0019)
11.39 |.0000 (.0000) |.0000 (.0000) |.0000 (.0000)].0001 (.0001)
.0026 (.0013) |.0109 (.0022) |.0248 (.0041)|.0300.(.0038)
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TABLE I

The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal s™ and by the optimal éa, respectively. The esti-
mated standard deviations of the estimates are given in the
parentheses.

k=9, A=0.5

o~< ] 2 4 8
1.5947 (.0148){1.5322 (.0118){1.0429 (.0037)|.5953 (.0016)
.44| .0198 (.0033)| .0296 (.0046)| .0070 (.0018)(.0011 (.0001)
.0603 (.0052)| .2614 (.0170)| .0306 (.0049)|.0017 (.0006)
1.1473 (.0193)[1.2235 (.0173)] .9849 (.0118)|.6407 (.0051)
.67 .0083 (.0021)| .0223 (.0041)| .0222 (.0031){.0112 (.0023)
0083 (.0021)| .2021 (.0099)| .3029 (.0146)|.0735 (.0085)
.7783 (.0234)| .8272 (.0240)| .7342 (.0179)}.5097 (.0106)
1.00{ .0072 (.0028)| .0238 (.0039)| .0191 (.0035)|.0138 (.0026)
0108 (.0029){ .1071 (.0092){ .3424 (.0164)]|.2757 (.0126)
.5637 (.0237)| .6126 (.0261)| .5207 (.0194)|.3625 (.0118)
1.50| .0064 (.0021){ .0186 (.0041)| .0107 (.0024)|.0101 (.0023)
: .0096 (.0028)| .0654 (.0078)| .2469 (.0148)|.4252 (.0230)
.4021 (.0249)| .3444 (.0202)| .3389 (.0181)].2324 (.0124)
2.25| .0043 (.0018)| .0051 (.0024)| .0062 (.0019)|.0067 (.0016)
.0054 (.0016)| .0443 (.0068)| .1228 (.0141)|.1368 (.0172)
.2820 (.0209)| .2662 (.0211)| .1925 (.0154)|.1559 (.0120)
3.38 .0015 (.0010)| .0032 (.0010)| .0032 (.0013)|.0019 (.0007)
.0053 (.0018)| .0424 (.0081)| .0815 (=6130)|.1092 (.0136)
.1868 (.0191)| .1284 (.0150)| .1590 (.0152)|.0924 (.0093)
5.06| .0004 (.0003)| .0005 (.0004)| .0032 (.0012){.0017 (.0008)
0128 (.0029)| .0304 (.0071)| .0683 (.0109){.0880 (.0134)
1114 (.0153)| .0972 (.0134)] .1101 (.0123)|.0583 (.0071)
7.59| .0001 (.0001)| .0012 (.0009)| .0009 (.0005)|.0003 (.0003)
.0041 (.0021)| .0357 (.0078)| .0852 (.0143)|.0783 (.0121)
.0622 (.0121)| .0754 (.0115)| .0698 (.0113)|.0421 (.0064)
11.39| .0001 (.0001)| .0000 (.0000)| .0014 (.0007)|.0000 (.0000)
.0059 (.0026)| .0236 (.0069)| .0441 (.0099)|.0629 (.0107)
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" TABLE I

The entry on top of each cell is the estimated Bayes risk and the
numbers im the second and the third row are the regrets incurred

by the optimal & and by the optimal Ga, respectively. The esti-
mated standard deviations of the estimates are given in the
parentheses.

k=3,4=1.0
g & 1 2 4 8
1462 (.0018)
.44 | 0000 (.0000)
.ao01 (.0001)
L3213 (.0027) |.2276 (.0023) |.1435 (.0017)
.67 }.0016 (.0003) |.0011 (.0003) |.0000 (.0000)
.0315 (.0034) |.0035 (.0009) |.0001 (.0001)
3515 (.0046) |.2969 (.0032) |.1989 (.0019)|.1158 (.0012)
1.00 |.0018 (.0004) |.0023 (.0005) |.0011 (.0003){.0002 (.0001)
0774 (.0044) |.0293 (.0028) |.0087 (.0012)|.0013 (.0005)
2948 (.0066) |.2613 (.0052) |.1922 (.0032)|.1227 (.0018)
1.50 {.0022 (.0005) |.0030 -(.0006) |.0022 (.0005)|.0008 (.0002)
.0385 (.0034) |.0228 (.0024) |.0135 (.0016)|.0056 (.0008)
2117 (.0075) |.1922 (.0061) |.1488 (.0042)|.1015 (.0025)
" 2.25 §.0009 (.0003) {.0009 (.0003) |.0011 (.0003){.0009 (.0002)
0389 (.0041) {.0272 (.0032) |.0150 (.0019)|.0067 (.0010)
1-1438 (.0069) |.1344 (.0060) |.1049 (.0040)|.0661 (.0026)
3.38 |.0005 {.0002) |.0008 (.0003) |.0009 (.0003)|.0004 (.0002)
0296 (.0033) |.0435 (.0046) |.0198 (.0024){.0141 (.0015)
. +.0997 (.0067) |.0888 (.0055) |.0682 (.0039)|.0482 (.0025)
5.06 |.0005 (.0003) {.0005 (.0003) |.0004 (.0002)|.0003 (.0001)
0231 (.0030) |.0478 (.0052) |.0385 (.0036)|.0222 (.0020)
.0625 (.0052) |.0608 (.0046) [.0476 (.0033)|.0335 (.0022)
7.59 }.0001 (.0001) |.0002 (.0001) |.0000 (.0000)|.0001 (.0001)
.0T82 (.0028) |.0384 (.0047) {.0366 (.0043)|.0251 (.0022)
| .0376 (.0041) |.0416 (.0042) |.0323 (.0029)|.0207 (.0019)
11.39 f.0060 (.0000) {.00017 (.0001) |.0001 (.0001)|.000T (.0001)
.0086 (.0019) |.0329 (.0048) |.0438 (.0059)|.0358 (.0025)
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TABLE I

The entry on top of each cell is the estimated Bayes risk'and the
numbers in the second and the third row are the regrets incurred

by the optimal §M and by the optimal aa, respettive]y. The esti-
mated standard deviations of the estimates are given in the
parentheses.

k=9,4=1.0
a ] 2 4 8
1.0626 (.0097)] .7235 (.0076)
.44} .0073 (.0022)| .0000 (.0000)
.0175 (.0048) .0005 (.0005)
1.4650 (.0147)]1.2372 (.0097) |.8253 (.0065){.4712 (.0045)
.67 .0256 (.0052)| .0284 (.0062) |.0053 (.0013)|.0020 (.0009)
6476 (.0328)| .1879 (.0180) |.0242 (.0050)|.0041 (.0015)
1.0771 (.0300)1.0578 (.0200) |.8267 (.0119)].5314 (.0063)
1.00{ .0212 (.0038)| .0283 (.0050) |.0245 (.0045).0122 (.0025)
-1833 (.0116)| .5966 (.0264) |.3253 (.0190)|.0991 (.0085)
.7150 (.0280)| .7205 (.0264) |.6264 (.0203)[.3998 (.0117)
1.50| .0178 (.0042)] .0154 (.0035) |.0119 (.0025)|.0103 (.0020)
‘ .1088 (.0095)| .3235 (.0219) |.6319 (.0311)|.3399 (.0165)
.4724 (.0264)| .4437 (.0269) |.4031 (.0199)|.2852 (.0132)
2.25] .0071 (.0019)| .0061 (.0019) |.0055 (.0014)|.0082 (.0022)
.0685 (.0088)] .1925 (.0177) |.4051 (.0293)|.5105 (.0170)
.2580 (.0227)| .2926 (.0237) |.2417 (.0154)|.1732 (.0112)
3.38] .0021 (.0013){ .0050 (.0018) |.0043 (.0013)|.0022 (.0009)
0299 (.0062)| .1266 (.0172) |.2275 (.0239)|.3120 (.0349)
| .1680 (.0167)| .1920 (.0165) |.1211 (.0124)|.1027 (.0078)
5.06| .0006 {.0005)| .0006 (.0003) |.0024 (.0014)|.0010 (.0006)
.0257 (.0061){ .1062 (.0159) |.1277 (.0193)|.1334 (.0158)
1149 (.0158)| .1331 (.0158) |.1126 (.0115)|.0566 (.0070)
7.59 .0011 (.0006)| .0015 (.0007) |.0019 (.0009)| .0005 (.0003)
.0279 (.0066)| .0642 (.0120) |.1009 (.0170)|.1124 (.0198)
0617 (.0113)| .0668 (.0122) |.0694 (.0088)| .0364 (.0049)
11.39] .0000 (.0000)| .0001 (.0001) |.0000 (.0000)|.0000 (.0000)
“0111 (.0041)| .0262 (.0073) |.0931 (.0185)|.0501 (.0118)
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The rows in each cell correspond to the Bayes, the optimal s™ and

and the optimal 82 from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded, respec-

tively.
=3, A=0.5
o< 2 8
.7662 .1556] .9525 .0184 .9940 .0009
.44 .7661 _.1604| .9631 .0140 .9940 .0009
.9684 .0202| .9974 .0008 .9950 .0000
5349 .4023] .9472 .1109 .2105 L0172 11.2916 .0024
.67 L5113 .4337( .9617 .1080 .2335 L0126 11.3029 .0011
.5249 .5098/1.1306 .0469 .2409 .0125 |1.2961 .0018
.3694 .4051| .6767 .1752 .9962 .0649 |1.2349 .0179
1.00 L3417 .4399] .6810 .1770 .0264 .0601 [1.2605 .0160
.3007 .5089] .7794 .1479 .0775 .0512 [1.2254 .0209
.2529 .3098 .4931 .1599 .7029 .0749 .9663 .0323
1.50 .2518 .3162] .4971 .1614 .7208 .0728 {1.0072 .0282
L1932 .3926f .5378 .1646 .7927» .0622 |1.0207 .0292
1848 .2219] .3204 .1147 .5417 .0597 .7023 .0233
2.25 .1908 .2178] .3331 .1099 .5727 .0533 L7143 .0227
.¥238 .3034] .3289 .1582 .6485 .0516 .7927 .0211
.7498 .1443]| .2131 .0845 .3733 .0418 ;4674 .0168
3.38 | .1542 .1412] .2186 .0824 .3740 .0425 | .4708 .0162
1019 .2089] .1675 .1588 .5551 .0361 .6128 .0158
.J983 .0984| .1693 .0527 .2370 .0315 .2846 .0159
5.06 L0971 .0996| .1684 0543 .235]1 .0321 .2671 .0183
.0603 .1454{ .0834 .1318 .3569 .0489 | .5049 .01
.0639 .0686{ .0948 .0372 .1453 .0212 .1862 .0102
7.89 | .g617 .07147 .0950 .0374 . 1460 .0214 .1862 .0102
L3409 .1006] .0393 .0923 .0997 .0701 .3873 .0163
.3306 .0364| .0724 .0226 .0919 .0129 r_'.1302 .0062
11.39 L0306 .0364| .0724 .0226 .0919 .0129 .1259, .0069
Q196 .0504; .0266 .0618 .0387 .0527 .2758 .0218
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The rows in each cell correspond to the Bayes, the optimal &M
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and the optimal §2 from top to bottom. The entries in the first
column and the second column are the average number of bad popu-

lations selected and that of good populations excluded,
respectively.

k=9, A=0.5

< ] 2 4 ,
.9132 2.2761| 3.0660 .7653| 4.8169 .0994 | 5.2816 .0095
.44|7.0130 2.2159 3.0756 .8049 | 4.8959 .0883 | 5.3538 .0016
.3486 2.9614 | 5.3807 .0000 | 5.3676 .0000 | 5.3721 .0000
L4778 1.8168| 1.6250 1.0223 | 3.3360 .3971 | 4.9058 .1076
67| .3761 1.9351{ 1.7540 .99181| 3.5822 .3633 | 4.7214 .1432
.3761 1.9351| .3805 1.9482|6.4389 .0000 | 6.4282 .0000
4314 1.1253| .9308 .1755|2.0683 .4006 | 3.2729 .1643
1.00| .4686 1.1025| .9346 .8092 | 2.0634 .4257 | 3.1622 .1936
.3322 1.2461| .3246 1.2393| .3307 1.2630 | 7.0685 .0000
.3508 .7766| .7108 .5636 | 1.3636 .3100 | 2.2131 .1312
1.50| .3322 .8080( .6561 .6188 | 1.4223 .3087 | 2.2498 .1379
.2804 .8662| .2761 .8789 | .2985 .8849 | .5227 .8208
.2795  .5248| .4351 .2990| .9762 .1795 | 1.3742 .0896
2.25{ .2937 .5191| .4602 .2941| .9984 .1817.| 1.3010 .1063
. .2149  .6003 | .1661 .4992 | .7470 .3903 | 1.4132 .2386
.1924  .2916| .3815 .2086| .6387 .0810 | .8702 .0666
3.38] .1990 .2881| .3913 .2085| .6179 .0902 | .8632 .0696
.T477  .3469 | .2572 .3343 | .5281 .2105 | 1.1838 .1503
_ .2040 .1697| .1862 .0995 | .4834 .0779 | .5406 .0364
5.06| .2043 .1701| .1867 .1000| .5266 .0711 .5690 .0348
.1218  .2775| .0833 .1966 | .3837 .1881 .5487 .1345
.0900 .1328| .1805 .0556 | .3384 .0530 | .3745 .0188
7.591 .0951 .1279| .1950 .0501| .3313 .0559 | .3659 .0202
‘| .0641  .1668| .0695 .1646 | .2955 .1702 | .7284 .0827
.0639 .0605| .1262 .0501| .2148 .0335_; .2707 .0135
11.39| .0589 .0655| .1262 .0501| .1842 .0429 | .2618 .0147
| .0398 .0964 | .0497 .1236| .0590 .1277 | .4669 .0597
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TABLE 11

The rows in each cell correspond to the Bayes, the optimal &" and

the optimal §2 from top to bottom. The entries in the first
column and the second column are the average number of bad popula-
tions selected and that of good populations excluded, respectively.

k=13,4=1.0

o~< ] 2 4 8
.2912  .0012
.44 .2912  .0002
.2925  .0000

5272  .1155 | .6525 .0152 | .7129 .0011
.67 .5475 .0984 | .6636 .0113 | .7129 .001%
.6861  .0195 | .6861 .0037 | .7169 .0002

.4200  .2830 | .7025 .0941 | .8704 .0311 | 1.0064 .0045
1.00| .4355 .2710 | .7314 .0831 | .8795 .0302 .0111  .0041
: .6386  .2191 | .8651 .0568 | .9811 .0143 |1.0188 .0044

w—

.3104  .2793 | .5297 .1270 |.7252 .0590 .9434 ,0202
1.50 1 .3064 .2877 | .5494 .1218 | .7453 .0566 .9642 .0184
.3776  .2890 | .6358 .1082 | .8686 .0399 |1.0624 .0099

.2184  ,2049 | .3531 .1118 | .5182 .0564 .7213  .0240
2.25).2093 .2158 |.3389 .1201 |.5113 .0595 .7200 .0252
L1772 .3238 | .4469 .1056 | .6153 .0510 .8235 .0187

.1356  .1519 | .2606 .0713 | .3476 .0442 .4153 .0225
3.381.1324 .1562 | .2480 .0787 | .3564 .043] .4268 .0215
.0640 .2828 |.3974 .0681 |.4713 .0380 .| .5916 .0163

.0964  .1030 .1598 .0533 |.2341 .0268 3199 .0142
5.06 | .0970 .1034 |.1669 .0504 | .2305 .0282 .3180 .0148
.0358 .2098 |.0543 .1778 |.3926 .0353 .5687 .0080

.0674  .0577 |.1089 .0368 |.1583 .0200 .2426 .0073
7.59 | .0638 .0615 |.1141 .0345 |.1603 .0195 .2449 0071
.0281  .1333 |.0306 .1335 |.2729 .0371 .4766 .0064

.0403 .0349 |.0837 .0206 |.1065 .0138 .1402 .0058
11.39 | .0403 .0349 |.0855 .0198 |.1107 .0129 -|- .1425 .0056
.0140  .0785 |.0199 .1018 |.0363 .0861 -4804 .0035
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TABLE II

The rows in each cell correspond to the Bayes, the optimal M

and the optimal 52 from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded,
respectively.

k=9,2=1.0
o 1 2 4 8
| 1.9926 .1325 |2.1648 .0029
.44 | 2.0050 .0849 |2.1648 .0029

2.1601 .0000 |2.1719 .0000 |
1.6325 1.2974 |2.8473 .4321/3.8555 .0678| 4.1572 .0104
.67 | 1.6381 1.3430 |2.8424 .4772/3.9488 .0511| 4.1682 .0113
4.2251 .0000 |4.2752 .0000| 4.2477 .0000| 4.2768 .0000
.8150 1.3392 |1.7229 .7252/2.9470 .2967| 4.0555 .0909
1.00 | .8561 1.3404 |1.8779 .69023.0915 .2912| 3.9255 .1209
.1683 2.3525 | .1729 2.3952| 5.7603 .0000| 5.6146 .0000
| .5275 .9024 |1.0839 .53882.0030 .2823| 2.6489 .1187
1.50 | .4802 .9852 [1.1259 .5409|1.9110 .3202| 2.8192 .1090
1563 1.4912 | .1540 1.4890 .1469 1.5362 | 6.6510 .0008
.3851 .5507 | .6039 .3637/1.1882 .2068| 1.8056 .0951
2.25| .3572 .6019 | .5833 .3831(1.2177 .2063| 1.8583 .0978
.T286 .9532 | .1097 .8995| .1212 .9799|. 7.1606 .0000
1921 .3239 | .4279 .2250 .7161 .1232| 1.1018 .0571
3.38| .1992 .3210 | .4329 .2300| .7603 .1174 1.0418 .0671
.0720 .5038 | .1345 .5616| .3436 .5007 | 1.1293 .4047
| .1376 .1984 | .3050 .1355| .3050 .0752| .6648 .0324
5.06 | .1483 .1891 | .2722 .1527| .3234 .0735| .6924 .030]
.G583 .3291 | .0912 .4017| .2887 .2388| 1.5093 .0769
1225 .1073 | .2137 .0928 .3130 .0625| .3697 .0174
7.89 | .1086 .1234 | .2286 .0876| .3149 .0644| .3791 .0169
.G455 .2403 | .0713 .2604{ .3099 .1894| .7931 .0909
.0569 .0665 | .1308 .0349| .2497 .0243-|- .2103 .0147
11.39 | .0569 .0665 | .1376 .0316| .2497 .0243| .2192 .0136
.0230 .1225 | .0236 .1227| .0788 .1834| .2337 .0682




TABLE III

Estimated d values for the optimal sm
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- N

< 1 2 4 8 ] 2 8
k=3,4=0.5 k=9, a=0.5
.44 |2.1572 3.7576 4.6502 .7906 2.0710 3.4991 5.0995
.67 |1.0391 2.1839 3.3917 4.2796] .0000 1.2464 2.2379 2.8148
1.00 | .6040 1.4808 2.3435 3.1461| .2222 .8727 1.6505 2.2304
1.50 | .4939 1.2570 1.9361 2.6181| .1333 .6862 1.4193 2.0923
2.25 5304 1.1760 1.8682 2.2840| .2595 .9927 1.4305 1.9776
3.38 | .4552 1.1332 1.6755 2.3222| .4240 .9194 1.5243 1.8893
5.06 4940 1.0801 1.6866 2.1657| .4329 .8559 1.3859 1.9873 |
7.59 3775 1.0029 1.6789 2.2435| .4683 1.0987 1.3360 1.9157
11.39 | .4938 1.1011 1.6307 2.0799| .2981 1.1815 1.3571 2.0548
k=3,a4=1.0 k=9,4=1.0
.44 15,3177 .2282 5.2869
.67 [2.9075 3.9441 5.0438 .8799 2.9796 4.1874 5.1159
1.00 [1.7525 2.6293 3.3965 4.1991/1.0949 2.0000 2.7778 3.1879
1.50 [1.2341 2.0514 2.6403 3.3854| .7834 1.5887 2.2136 2.8867
2.25 |[1.0389 1.6517 2.3356 2.9320{ .7598 1.3617 2.0292 2.6420
3.38 | .9678 1.5832 2.2664 2.8035| .7958 1.3381 2.0995 2.4958
5.06 9447 1.6608 2.1144 2.6623|1.0135 1.4671° 2.0125 2.7515
7.59 | .9013 1.5872 2.1949 2.7446| .7652 1.4258 1.9957 2.6211
.39 | .9977 1.5598 2.2023 2.7268(1.0730 1.6401 2.2073 2

.7092
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FIG. la. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.: :
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FIG. 1b. Estimated risk's of Bayes, optimal Gupta-type and optimal -
Seal-type rules.
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FIG. 1c. Estimated riské of Bayes, optimal Gupta-type and optimal
Seal-type rules. '
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FIG. 1d. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules. ' '.

k=9,4=1.0,c=1.0
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FIG. le. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules. :
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FIG. 1f. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. 2a. Propartion of times the optimal Gupta-type rule coin-
cides with the Bayes rule.
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FIG.

2b. Proportion of times the optimal Seal-type rule coin-

cides with the Bayes ru]e.
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FIG. 2c. Proportion of times the optimal Gupta-type rule coincides
with the Bayes rule.
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-FIG. 2d. Proportion of f:imes the optimal Seal-type rule coincides
with the Bayes rule.
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FIG. 2e. Proportion of times the optimal Gupta-type rule coin-
cides with the Bayes rule.
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FIG. 2f. Proportion of ‘;times the optimal Seal-type rule coincides
with the Bayes rule. - :
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FIG. 29. Proportion of t1mes the optimal Gupta type rule coin-
cides with the Bayes rule.
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FIG. 2h. Propartion of fimes the optimal Seal-type rule coin- :
cides with Bayes rule. :

I.O[

0.9

]
1
\
0.8
v 4
0.7
0.6
0.5}--

0.a:

03
0.2

0.1




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterad)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Mimeograph Series #80-20 .

4. TITLE (and Subtitle) . 5. TYPE OF REPORT & PERIOD COVERED
On the problem of selecting good " | Technical .
populations

PERFORMING,ORG. PORT NUMBER
_ h1meo. eries £§0-§0

7. AUJTHOR(O) 8. CONTRACT OR GRANT NUMBER(s)
Shanti S. Gupta and Woo-Chul Kim ONR N0O014-75-C-0455

9. PERFORMING ORGANIZATION NAME AND ADDRESS t0. PROGRAMV ELEMENT, PROJECT, TASK

' AREA & WORK UNIT NUMBERS

Purdue University
Department of Statistics
West Lafayette, IN 47907

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

- Office of Naval Research August 1980
Washington, DC T3, NUMBER OF PAGES

14, MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abastract entered in Block 20, if different trom Report)

18. SUPPLEMENTARY NOTES e

19. KEY WORDS (Continus on reverse aside if necessary and identify by block number)

Subset selection of good populations; additive loss; Bayes rules;
extended Bayes rules; Gupta-type rules; Seal-type rules; Monte Carlo
comparison.

20. ABSTRACT (Continue on reverse side if nacessary and identify by block number) .

The problem of selecting good populations out of k normal populations is con-
sidered in a Bayesian framework under exchangeable normal priors and additive
loss functions. Some basic approximations to the Bayes rules are discussed.
These approximations suggest that some well-known classical rules are "approxi-
mate" Bayes rules. Especially, it is shown that Gupta-type rules are extended
Bayes with respect to a family of the exchangeable normal priors for any bounded
and additive loss function. Furthermore, for a simple loss function, the

DD, 5%; 1473 EDITION OF 1 NOV 63 15 OBSOLETE UNCLASSIFIED

S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (Pheon Dote Entored)



UNCLASSIFIED

~LLURITY CLASSIFICATION OF THIS PAGE(When Data Enterod)

results of a Monte Carlo comparison of Gupta-type rules and Seal-type rules
are presented. They indicate that, in general, Gupta-type rules perform

better than Seal-type rules.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




31

FIG. 2c. Proportion of -times the optimal Gupta-type rule coin-
cides with the Bayes rule.
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