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SUMMARY
A CLASS OF SCHUR-PROCEDURES AND MINIMAX
THEORY FOR SUBSET SELECTION
Abbreviated Title: MINIMAX SUBSET SELECTION
by
Jan F. Bjgrnstad

University of California, Berkeley and Purdue University

The problem of selecting a random subset of good populations out of k
populations is considered. The populations H]""’nk are characterized by
the location parameters e],...,ek and I is said to be a good population if

8. > max 6.-A, and a bad population if 6, < max 6.-A. Here, A is a
i . J - .
1<j<k 1<j=k

specified positive constant.

A theory for a special class of procedures, called Schur-procedures, is
developed, and applied to certain minimax problems. Subject to controlling
the minimum expected number of good populations selected or the probability
that the best population is in the selected subset, procedures are derived
which minimize the expected number of bad populations selected or some
similar criterion.

For normal populations it is known that the classical "maximum-type"

. procedure has certain minimax properties. In this paper, two other procedures
are shown to have several minimax properties. One is the "average-type"

procedure. The other procedure has not before been considered as a serious

contender.



A CLASS OF SCHUR-PROCEDURES AND MINIMAX
THEORY FOR SUBSET SELECTION]
Abbreviated Title: MINIMAX SUBSET SELECTION
by
Jan F. Bjérnstad

University of California, Berkeley and Purdue University

1. Introduction, Basic Concepts and Notation

An important class of multiple decision problems is concerned with
the selection of good populations out of k possible populations. We shall
study the "subset selection approach,"” first considered by Paulson (1949),
Seal (1955) and Gupta (1956), where the size of the selected subset is a
random variable.

The k populations H]""’Hk are characterized by 61""’ek respectively.
Let 0 = (0],...,ek) and let @ be the parameter space. Let Xi be the statistic
that is used to represent Hi . X = (X1""’Xk)‘ X1""’Xk are assumed to be
independent and Xi has density f(x—ei) with respect to Lebesgue measure. We
will assume that f(x-8) has monotone likelihood ratio (MLR) in x. Let
p(x-0) = ﬂf(xi"ei)' Normal populations with Xi being the sample mean from T,
is of course such a MLR-1ncation model. Another example is the case of
double exponential populations, letting Xi be the sample medians of say ém+1
observations. Gupta and Leong (1979) have shown that the location-density of
Xi has MLR in x.

The ordered 0, are denoted by 6[1] 5,..§_e[k], and H(i)’ X(i) correspond
to 0[1]. s is called a best population if 6, = e[k]. Following an idea
similar to Lehmann (1961), T is said to be a good population if 6; > e[k]~A

and a bad population if 0. g}e[k]—A. Here A is a given positive constant.



For the risk criteria we shall consider, two subset selection procedures
are equivalent if their indjvidual selection probabilities are the same.
Therefore we can define a subset selection procedure by y(x) = [w](g),...,wk(g)],
where wi(g) = P(selecting nilg = x), for i =1,....k.

We will usually require that at least one population is selected which

implies that

I ~1 =

(1.1)

i=1
A correct selection (CS) is defined to be a selection that includes the best
population H(k)' The usual basic condition has been to require that

inf = g
(1.2) ;25 Pg(cs|¢) ;2; RUMIER TR 1.

Here w(i) corresponds to 6[1]. The control condition we will mostly consider
is to require that ¢ satisfies
(1.3) inf R(8.v) > v,
6 €
where R(6,y) is the expected number of good populations selected. Let the

class of procedures satisfying (1.3) be denoted by (y,A). The condition

(1.4) inf Pe(CSlw) >y
g€a(s) -

is also of interest. (Also used by Ryan and Antle (1976).) Here
o(a) = {e: etk]—e[k_]] > A}. Let 8'(y,a) be the class of procedures satisfying
(1.4), so that 8'(y) = &' (y, 0) is the class of procedures satisfying (1.2).
We see that O(y,a) < 8'(y,a).
It can be argued that it is unnecessary to require that we select ﬂ(k)

if o] is close to the other 6.. Therefore (1.4) seems more appropriate



than (1.2). However (1.4) does not control what happens on o%(n), leading
then to control (1.3).

A fourth control condition, different in nature from the three mentioned
above, 1is
(1.5) sup S(8,¥) < 8.

Y

Here, S(0,p) =) Ee(wi)’ i.e. S is the expected size of the selected subset.
The class of proceaures satisfying (1.5) is denoted by @](B)-

Subject to a chosen control condition a procedure should exclude the
bad or non-best populations. One criterion for excluding non-best populations
is

k-1
(1.6) S'(6,y) = Z

1 EQ{IP(”}.

1
S'(0,p) is the expected number of non-best populations selected when
O[k-l] < O[k]' Let IA = IA(Q) = {i: 0. §>e[k]—A}. The related criterion for

excluding only the bad populations is
(1.7) Be,v) = J  E (uy).

B(0,p) is the expected number of bad populations selected. A widely used
criterion in the literature has been S(g,y). The author feels that B(g,y)
and S'(0,y) are more appropriate risk functions than S(6,y), since S(8,¥)
includes the probability of selecting the best population.

The first papers on the subset selection problem dealt with normal
means. Two rules were proposed, wa and y" (see Seal (1955, 1957) and Gupta

(1956)). The procedures are given by

(1.8) y3 = 1 AFF X o L7 X.-c



(1.9) WU = 1 9FF X, > max  X.-d.
1 1 — .
1<j<k

Here c,d are determined such that the classical condition (1.2) holds with
equality.

Our main concern is minimax theory. The lack of monotonicity results
for the risk criteria considered has been the main drawback for deriving
minimax results. Sections 2,3,4 deal with this problem. In Section 2 a
special class, the class of Schur;procedures, is defined. Section 3 presents
a convexity result that is used in Section 4 to show that the class of Schur-
procedures has nice monotonicity-properties for the risk-criteria S'(Q,w)
and B(8,y).

Section 5 deals with minimax theorems in the general Tocation-model
for the risk functions B{e,y), S'(0,¥) and S(g,y), in the class 8'(y,A).
Gupta and Studden (1966) and Berger (1979) showed by using a monotonicity
result for y" given by Gupta (1965), that o™ s minimax with respect to
the criteria S'(s,y) and S(9,p) in the class 8'(y) provided f(x-0) has MLR
in x. We show that wa has the same minimax properties if y is sufficiently
large.

In Section 6 we consider normal populations. It is shown that a new
procedure we, which was studied in a different context by Studden (1967),
has certain minimax properties in the class 8(y,s) for the criteria B(0,y) "
and S'(e,y). If f(x) is the standard normal density, then we is defined by

| AX, AX,
(1.10) v =1iffce > ] oe )
J#i
Here C is determined such that (1.4) is satisfied with equality. In Section
6 we also present some new minimax results for wa. In Section 7 the minimax

properties of we are proved. Section 8 proves the minimax results for wa.~



2. The Class of Schur-Procedures

Let s, t € R¥ with ordered components Spyq <---< Spyqs t[]] i:-~iAt[k]-

[R%]

is majorized by t, s <t if 251 = Zti and

: 4 f = 0,T,...,k-2.
JEO “k-] ijgo T3] n P

Let g be a real-valued function fromimk. Then g is Schur-concave if

5 S t = g(s) > g(t). A subset A ofﬂik is a Schur-concave set if the indicator

function I

(u), is Schur-concave, i.e., if u’ < U, u €EA=u'€eA=u" €A

=

If g (or log g) is concave and permutation-symmetric then g is Schur-
concave. Also, a Schur-concave function achieves maximum at a point where
the coordinates are equal.

Applying results from Marshall and Olkin (1974), Mudholkar (1969) and
Lehmann (1959), p. 330 we see that the MLR-assumption is equivalent with the
assumption that p(x) is Schur-concave.

A procedure y is said to be just if wi(f) is non-decreasing in Xs and
non-increasing in Xj’ j #14; fori=1,...,k. Let 77 be the class of just,
permutation-invariant and translation-invariant procedures. Nagel (1970)
showed that if y is just and permutation-invariant then Ee{w(i)} is

nondecreasing in i. For u € sz and i € {1,...,k} Tet

* = .
. = -U.," U. -U. u.
u (u] Usst®s Uy y7Uss

Y 41705 Ul )

i

It is readily shown (see Berger and Gupta (1980)) that v €7 if and only if

k-1

there exists a permutation-symmetric function u': R +~ R which is non-

increasing in each component, such that for every i

i (x) = v (x¥).



We are now in a position to define the class of Schur-procedures.

Definition 2.1. A subset selection procedure ¢ = (w],...,wk) is said

to be a Schur-procedure if y € % and ' is a Schur-concave function.

Consider now the case where y is a non-randomized procedure, i.e.

po(x) = 1, (x), A cRrX,

Then y is a Schur-procedure if wﬁ(g) = IB(§$) for some Schur-concave set

k]

B c Rk and B is a monotone decreasing set, i.e. if u € B and Vi Uy
j=1,...,k-1, then v € B.

X? has a location-density with parameter g?. If ¢y is translation-
invariant, Vs is a function only of 5?. From we]]—known‘properties of a

location-family of distributions (See Lehmann (1955) and Alam (1973)) we

have the following result.

Lemma 2.1. Let v be a fust and translation-invariant procedure. I
fon some i € {1,...,k}, ej—ei < 6578, for all j # i, then EQ.(wi) 3_E9(w1).
In particular, inf P, (CS|y) occurs when 6, =...= 6,.

8 1 k
peQ =
Remark. If we want v to satisfy the basic condition (1.2) with equality

we must have

(2.1) Eq(w.) = v, for i =1,...,k; 0=(0,...,0).

0"

As the following observation indicates, many reasonable procedures are
Schur-procedures. Consider the class C discussed by Seal (1955), which can
be described as follows. Let X[]] 53"5-X[k-1] be the ordered {Xj: j# ol
Let ¢ = (CT""’Ck—l) EHQk'], Cs > 0 and Zci = 1. The procedure wg is defined

by



k-1
(,1.9 =1 iff 321 L R d(c).
Here d(c) is determined such that (1.2) holds with equality, using Lemma
2.1 and (2.1). A1l such procedures belong to 7. Note that condition (1.1)
implies that d(c) > 0 which in turn implies that y > 1/k. Seal's class is
given by
c k
C= {y=: ‘Z c; = 1 and v > 1/k}.

i=1

The following result is proved in Bjgrnstad (1978).

Lemma 2.2. Let C, = {wg

0 € C Cy <o Gy

1}

Assume. wg € C.

Then wg € CO © wg A5 a Schun-procedure.

Remark. The two procedures ¢?, y™ defined by (1.8) and (1.9) are both in

C

0’ and are therefore Schur-procedures.

To show that the procedure we, defined by (1.10), is a Schur-procedure,
we can use the following result from Ostrowski (1952). A permutation-symmetric
and differentiable function, h:IRm + IR, is Schur-concave if and only if
(ah(g)/axi - ah(f)/axj)(xi—xj) <0 Vvi#Jand V(x],...,xm). Using this

result it is readily seen that we is a Schur-procedure.

3. A Fundamental Convexity Lemma

Definition 3.1. For u, v €eRr", v < u iff for some a > 0

(v1 ta,...,v t a) 5 (u1,...,un).

The following result is then easily proved.



Lemma 3.1. g: R" + R {5 nonincreasing with nespect to "<" iff
({) g 48 Schur-concave
and  (44) g(x) 3Ag(x]+a,...,xn+a) Wx, Va> 0.
ioe. g A8 non-increasing fon simultanecus sShifts in all components.
The monotonicity-results for the different risk criteria are based on the

following lemma that deals with the convexity-property for a certain sum of

functions.

Lemma 3.2. Let g be a neal-valued, Schur-concave function ﬁ&om]ka],
non-increasing fon sdimultaneous shifts in all components. Define G:IRk-+IR
by:

k-1
G(u) = 1‘21 g(g’fﬂ)
where forn i = 1,...,k and ury 7 SoeeS Upgye

(3 wpiy = gy = g U] 7 T Y] T T T

Let v < u and USEEN for i = 1,...,k=-1. Then G(u) < G(v).

3 - * > * _,k___ . -
Proof. Let v < u. For every 1 € {1,...,k-1}, 9[1] > Y[i] * (V[i] u[j])]

where 1 = (1,...,1). Hence Yfi] < 9?1]’ and from Lemma 3.7, g(gfi]) fvg(yfj]).

Since this is true for every i, G(u) < G(v). Q.E.D.

Remark. A natural question is whether G(g) is in fact Schur-concave. This 1is
not in general true, as can be seen by letting k = 3 and g(x],xz) = @(—x]—xz)
where & is the distribution function of the %(0,1)-distribution. It can be
shown that if g, in addition to satisfying the conditions in Lemma 3.2, is
also concave then G is Schur-concave. A proof for the case where g admits

partial derivatives can be found in Bjgrnstad (1978).



4. Some Properties of Schur-Procedures

Applying Proposition 5.1 and Theorem 2.1 from Marshall and Olkin

(1974) we obtain the first interesting result about Schur-procedures.

Theorem 4.1. Let ¢ be a Schur-procedure. Then Ee(wi) 45 Schur-concave
An Q?.
Consider now the risk function S'(e,y) defined by (1.6). One of the

main results for Schur-procedures is a monotonicity-result for S'(g,w).

Theorem 4.2. Let ¢ be a Schur-procedure and Let 6' <0 and eti] > 0147
fon 1= 1,...,k-1. Then S'(8,9) < S'(0',¥).

. N _ ' . .
Proof. Let g be defined by 9(9[1]) Eg{w(1)}’ where 9[1] is defined

in (3.1). (Since y is a Schur-procedure g does not depend on i.) Then

k-1
S'(e,y) = ¥.4).
(8.v) 1_; 9837
From Theorem 4.1 and Lemma 2.1 we see that the assumptions in Lemma 3.2 are

satisfied and result follows. Q.E.D.

As mentioned in Section 2 a nice property of Schur-concave functions is
that they achieve their maximum at a point where all components are equal.
S'(0,w) is not quite Schur-concave, but by applying Theorem 4.2 we can show

a similar result for S'(¢,y) over certain subsets of Q.

Theorem 4.3. Let ¢ be a Schur-procedure. Let & > 0 and degine the

slippage-set
k-2
Qk(é) = {Q € q: e[k]~o[k“]] > 8+ 'I-Z] (e[k"]]—e[1])}

Then
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whene

(4.1) G%k] - G’G?i} =0 fon i =1,....k-1.

Proof. Let & € Qk(d). We can assume e[k_]]-e[]] > 0; otherwise the
theorem is trivial. Also, S'(6,y) is permutation-symmetric so we can let

87 <...< 8. From Lemma 2.1 it follows that S'(8,) is non-increasing in
k-2
- Therefore we may take &, =6, | + &+ 121 (6,
0 0 .
(ek~1""’ek—1’6k—1+6)‘ Then 87 < 8 and 6r5q > Oryy for i < k-1. From

6 ]—91). Let now QO =

Theorem 4.2 it follows that S'(e,y) g_S'(QO,w) = S‘(Qs,w). Q.E.D.

Remark. Gupta (1965) showed that sup S'(Q,wm) = S'(Q6,wm5, where
o(s) = {o: 8[Kk1®k-1] > 8}, Thingg)not true in general for Schur-procedures,
as can be seen by considering »2, and the case 6 = 0, v < (k-2)/(k-1).

We shall next consider the corresponding problem for the risk B(6,p) given

by (1.7).

Theorem 4.4. Let ¢y be a Schur-procedure. Let 91(1\) = {9 € Q: 0[k]“0[1] < A,

and Let forn p = 2,...,k-1

p-2
%p(8) = (o € opyopyy < M0p oy 2 4t L Oy Priy)
Let
(4.3) | S 6 ()
4.3 Q. = U (a).
] p:]p
Then
_ A
sup B(e,p) = B(8",v)
aER
85
where 8" is defined by (4.1) for & = A.
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Proof. We can assume 6, <...< 6,. let 8 €0a,. Theno € Qp(A) for some

p &€ {1,...,k}. Let o' be defined by

Op = 0,5 65 = 845 for i < p-1 and 6. = 9p—1 for i = p,...,k-1
Clearly, from Lemma 2.1
p-1 k-1
Blosw) < T Egulvs) < ) Egu(wy) = Be",v).
i=1 = i=1 -
Since o' ¢ Qk(A), the result now follows from Theorem 4.3. Q.E.D.

Remark. 2 consists of the cases where the good populations have "slipped"
from the bad populations. Also 2 contains the "classical" slippage-set
{o € q: BL17 7 0T O[k-1] & k] O [k-1] > A},

In the next section Theorems 4.3 and 4.4 are applied to derive a certain
optimal procedure which will be minimax with respect to slippage sets of the

type and Qk(A).

5. Some General Minimax Theorems in the Location-Model

Let 8 be the vector inIRk where the ith coordinate is equal to 1 and the

rest are equal to zero. Let Q? = 085, and let pi(g) = p(x—eé). Define the

statistic

), for i =1,...,k.

__{
-
—~
<
~
1]
e
>
o~1
el
()
—_
1<

wo is the subset selection procedure given by:

1 if T, <C
i

(5.1) yi(x) =
0 if T, >C

where C is determined by
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(5.2) E (pl) = v,for i =1,...,k.

Theorem 5.1. Assume that wo, defined by (5.1), 48 a Schur-procedure.

Let 2 be given by (4.3). Then wO minimizes fon all y € 8'{y,n)

sup B(e,p) and sup S'(o,v).

052, € (a)
Proof. We prove the theorem only for B(g,p). The proof for S'(o,y)
0

is exactly the same. From (5.2), v~ € &'(y,a). From Theorem 4.4

sup B(Q,wo) = B(Q%,wo) for i = 1,...,k. For any v € 8'(y,a)

80,
1k 1 &
sup B(g.w) > ¢ I Blejsw) = I fus( ] pyldv
6€0, i=1 =1 4]
1 Yoo 1 K a0 0
> L JusCL pyddv = ¢ ] Blogoy) = sup Ble,v).
=i i=1 269,

The second inequality follows from the Neyman-Pearson Lemma since w?

minimizes [yp.( J p.)dv subject to fy.p.dv > vy. Q.E.D.
J'i#j 1 33 -

Next we consider the problem of finding solutions to the dual goals

(5.3) maximizing inf P (CS|y) for ¢ € £ (8)
pea(a) -

and

(5.4) minimizing sup S{8,y) for y € 8'(y,a).
8 EQ

It is shown by the Hunt-Stein theorem that we can restrict attention to
translation-invariant subset selection procedures, i.e. we can assume that
P is a function of 5?, and X? has location-density g(x—@?), y €]Rk'], where

g is the density of (Ul"Uk""’Uk~1'Uk)’ and U]""’Uk are i.i.d. with density

flu).
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Theorem 5.2. Assume 9 {8 transfation-invarniant. Define * by

1 4f g(x¥ +a) > cg(x¥)

(5.5) e

0 4f glx¥ + ) < cg(x¥).

Here b = (A, ...,0). Assume y* is a just procedure and that

(5.6) sup S{8,p*) occurns at 6y =.-.= 0)-
6 €0

14 ¢ 45 determined by
(5.7) fw?(z)g(x)dv(y) = g/k for i =T1,...,k
then p* maximizes inf P (CS|y) for all ¢ € 8, (8).

o€a(a) -

14 ¢ 45 detemmined by

(5.8) fur(y)a(y + addv(y) = v for i = 1,....k
then ¥ mindmizes sup S(8,9) for all v € 8'(y,a).
pED

Proof. From the Hunt-Stein Theorem and Example 7, p.337 in Lehmann (1959)

it can be shown that for any procedure y there exists a translation-invariant

o1 such that for j = 1,....k, Ee(w§) = Tim [ E

ise G

(wj)dvn.(g), where G is the

ge ;

group of translations and {vn } is a subsequence of the uniform probability
-i .

distributions v, on the interval I(-n,n) = {g: -n < g < n}. This implies

that inf P(cS|y]) > inf P(CS|y). Also, since S(8,9") = Tim [ S(ge.v)dv_ (q)
a(a) a(a) joo G - i

< sup S(8,y), sup S(g,wI) < sup S(6,p). Let ¢,€£ﬁ(8). It follows that we
2 Q Q

may assume that v is translation-invariant. The first result now follows

easily from a result of Gupta and Huang (1977), and the proof of the second

result goes in a similar way. Q.E.D.
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Remark. Assume

(5.9) inf R(Q,w*) = inf PG(CS]w*).
€0 e€a(a) =
Then if (5.7) is satisfied, y* maximizes, for all ¢ € &1(8), inf R(0,yp).
B ED
If (5.8) is satisfied then y* minimizes for all y € 8(y,Ar), sup S{0,p).
pER

At last in this section we consider the classical problem of minimizing
sup S(g,y) and s%p S'(e,p) in the class 8'(y). From Berger (1979) we have

Q
that inf  sup S(8,y)(S'(68,y)) = ky((k-1)y).
8(y) @

As mentioned in Section 1, wm is minimax in ©'(y) for S and S' if f(x-0)
has MLR in x. We shall next show that wa has the same minimax property if vy is

large enough. For the remainder of this section it is assumed that f(x) = f(-x)

for all «x.
Theorem 5. 3.
\ ay e ay _ . . k-2
sup S'(8,3°) = S'(0,y%) = (k-1)y <4 and only if v > p 7
8En

sup S(0,6%) = $(0,0%) = ky if and only if v > 51
00

We then have the following corollary.

Corollary 5.1. 2 s minimax in ' (y) for S if and only if v > (k=-1)/k,

and forn S' if and only if v > (k-2)/(k-1).

We prove Theorem 5.3 only for S. The proof for S' is completely analogous.
The proof goes by a series of lemmas.

A location-density has MLR in x if and only if it is strongly unimodal.
Using the result from Ibragimov (1956), that the convolution of two strongly

unimodal densities is again strongly unimodal, we readily get the following

result.
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Lemma 5.1. Lot for 1ysky Vo = (k-1)71 T (X5=ky) and wy =

_ j#i

(k-1) 1 ) (Bj'gi)' Then V., has density g(v—ui), where g 46 symmetnic around
j#i

zeno, 4i.e. g(v) = g(-v) and g(v-u) has MLR in v.

Let G(V-ui) be the distribution function of Vi’ and Tet c(y) be the
y-quantile in G, i.e. G(c(y)) = v. Then the critical constant ¢ in wa is
equal to c(y). S(Q,wa) is permutation-symmetric in (e],...,ek), SO we can
assume 0y <...< 8. Let t, = (ei+1—ei)/(k-1). Then

(5.10) S(e,p?) = H(t) =

i-1 k-1
Glcly) + 1} ity ) (k-j)tj}
i FEV RN =

H I~ )

1
where t = (tl""’tk—l) and t. > 0 for all i. The next lemma considers the

"if" part for "large" t.

Lemma 5.2. Let vy > (k-1)/k and k > 3. Then

k-1
(k-2)t, + } (k-3j)t. > 2c(y) = H(g) < k.
1 j=2 J

Proof. It is enough to show that Ee(w? + w;) < 1. Letc=cly). Now,

Eg(w?) < G(-c-t;) = 1-6(c+t;), and Eg(wg) < G(ctty). Q.E.D.

It remains to consider H(t) for t € A(y), where

k-1
Aly) = (t: (k-2)t, + ]

j=2

Lemma 5.3. Let k > 3 and Lot t0 = (t

0 0 , . , . 0
],...,tm_],tm,o,...,o) £5 nonincreasding An to for T <t for 1 <m< k-T.

(k-j)tj < 2c(y)}.

0
senenly

? 1) € Aly). Then

H(t

0 0
1

Proof. Let m> 1, and Tet v = (v],...,vm,O,...,O) = {t ""’tm-l’

0,...,0), t_ <t0. Thenv € A(y). Let h(v,) = H(y). We shall show

m’ m

that the derivative h'(v ) < 0 for v <1t,.

It is easily seen that
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m
(5.11) h'(v ) <0em=< J r.(v),
m i=1 '
where
. Vet T 3v:)
r.(v) = g(c+ jv.- ¥ (k=3)v.)/glct ) jv.).
1= j:] J j:‘i J j:] J
m m m
let a = c+ § jv. and y, = J jv. + ) (k-j)v.. Then r.(v) = g{a-y.)/g(a),
=1 o ) g ’ . “

and Y; < 2a, for all i. From Lemma 5.1 it follows that r, > 1 for i=1,...,m,

and (5.11) follows. Q.LE.D.

Proof of Theorem 5.3. As shown by Berger (1977), the "only if" part

follows by letting ty > e in (5.10). Now assume y > (k-1)/k. Consider
first the case k = 2. It is readily seen that H'(t]) < 0 since c(y) > 0.
Let now k > 3. From Lemma 5.3 we get that t €A(y) = H(t) < H(0) = ky.
Together with Lemma 5.2 this completes the proof.

For later use we will also consider the case where wa € 8 (v,A). It is
seen from Lemma 2.1 that for any just and translation-invariant procedure y,

inf P_(CS = .= - A, a o -
;EQ(A) Q( |vw) occurs at 8[1] e[k—]] e[k] A. Hence ¢y satisfies (j 4)

with equality if in (1.8) ¢ = c(y)-a. In the same way as we proved Theorem 5.3,

the following result can be proved.

a

Theorem 5.4. let ¢ = c(y)-A such that v~ € 8'(y,A). Then

$(0.4%) 4§ and onty &f o < cly)-c(¥:h).

sup S(8,3%)
8 €0

6. Optimal Subset Selection Procedures for Normal Populations

Let Xij (i =1,...,k; 3 =1,...,n) be independent and normally distributed.

Xij is 7 (91,02) where o2 is known. A sufficient statistic is X = (X1""’Xk)
where X, = (n']) ) Xij' Let Ay = /nA/o, so that P is a good population if
Jo
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s AO > 0. In this general case we is given by

AnYDX /o ANX /o
=1 affce > Tel
j#i
C is determined such that (1.4) holds with equality. Hence

2

ApY, +A - .

(6.1) v = P(Ce 0k ™0 > ] e 3)
where Y1""’Yk are independent, 7 (0,1) random variables. The critical

constant C is tabulated in Table 1, for k < 10. For we we are really only

interested in satisfying (1.4) or (1.3). However, we see from (6.1) that v

A2

satisfies (1.2) if we instead of C use e OC as the critical constant.
Since ¢ is known, we may just as well assume s/Vn = 1, and denote AO

by A. Hence we assume that X]""’Xk are independent, and X1 is 7 (61,1).

Let 04 = (0,0,4,...,A) and Tet

0
v/9 i k=4
(6.2) b (v) =\ /7 Af k=5
(11/75)y if k > 6.

Note that we always select at least one population with we, if and only
if C > k-1.

The main minimax properties of we are given in the following theorem
(proved in Section 7).

Theorem 6.1. Assume C > k-1. 1§ k > 4 and & 48 such that Ega (w?) z_bk(y)
=0

on k < 3 then W€ € 8(y,n) and minimizes for all y € O(y,n),

sup B(8,y) and sup S'(6,v).
9691 QEQK(A)
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Remarks. 1) Let AY be defined by

(6.3) E, (4]) = b, (v).
8oy

Calculations have shown that E A(w?) seems to be decreasing in A. If so,

6

=0
A 5'AY implies y& € 8(y,Ar). Table 2 gives approximate values of AY for k = 4,
10 and the limiting value (k + «) (see (6.6) below). AY does not seem to vary

much for different values of k. For general o/vn we require by < AY.

2) Studden (1967) considered the identification problem, i.e. the case

where e[]],...,e[k] are known. It was shown that we is the best permutation-
invariant procedure in &'(y,A) for the risk S(6,y), when 6[]] =...= O[k—1] =
e[k]—A.

3) By applying the geometric-arithmetic mean inequality, we find

(6.4) b< S aly) = Cs kel

4) It can be shown that we has similar minimax properties also for normal

models Tike the two-way layout without interaction.

We shall next consider the procedure v& = v3(c), defined by (1.8). Let

0, (v) = /e mintlh z(v) + 5 205D [z(n)-2(5hn,

and let A](B) = E%T-{z(%) + Z(Eil)}. Here z(v) is defined by ¢{z(v)} = v,

where ¢ is the 7 {0,1)-distribution function. ¥ has the following minimax

properties. - (Proof is given in Section 8.)

Theorem 6.2. a) letc = ,/E§T-z(v). Then ¥® € 8'(Y) and minimizes

sup S'(8,¥)(sup S(8,9¥)) for all ¥ € 8'(¥) 4§ and only if v > (k-2)/(k-1)
969 QEQ

((k=1)7k).
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b) Let B > k-1 and ¢ = /E%T-Z(B/k). Then v € ﬁ](ﬁ).

Assume furthen that k > 4 and A i_A](B) on k < 3. Then »? maximizes
inf R(6,p) for all v € O (B).
0EL ! c a
c) Assume A 5_Aa(y), and Let ¢ = /E:T-z(y)—A. Then v® € 8(y,a), and

minimizes sup S(8,9) for all v € S(y,n).
6 €0
Remark. & (v) = /5 tz(y)-2(521)y i and only if z(y) < 3z(X:1)
nemark. Aty k-7 L2\ K ~ V= k'
Let now k » », and let Ck = ¢ be determined by (6.1). Then from the strong

law of large numbers it is easily seen that CO = 1im(Ck/k—1) exists and is given
k——>oo

by

_ 1.2
(6.5) log Cy = 8z(y) - 5 4%

This can be used to find approximate values of Ck for large and moderate k.
From Table 1 we see that the asymptotic value CO is a good approximation to
Ck/k—1 already for k = 10 in case of smaller A values. Also, from (6.5), we

have as a supplement to (6.4) that Tim (Ck/k~1) > 1 iff o < 2z(y).

k~>oo

Consider next the upper bound Ay(k) = Ay, given by (6.3), that insures

we € 8(y,s). For given A > 0 we have

E A(wﬁ) s o(z(y)-28) as k » .
5]
20
Hence, from (6.2) and (6.3)
(6.6) Tim & (k) = & (z(v) + z(1 - L)
: 2 Y 75 Y/

k->e0

7. Proof of Theorem 6.1

The proof consists of two theorems. The first proves the result for

the class 98'(y,a), and thesecond shows that we € 8(y,Aa).
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Theorem 7.1. o€ ménimizes, fon akl v € 8'(y,a),

sup B(e,y) and  sup S'(8.9).
8€a, 0, (2)

Proof. From Theorem 5.1, the optimal procedure wo is given by (5.1).

We find that

A(X-Xs)
T.= ) e 3o
i L.
J#i
Hence the minimax procedure is we. Q.E.D.

The following result completes the proof of Theorem 6.1.

Theorem 7.2. (4} Let k = 2,3 and C > k-1. Then

(7.1) inf P (CS[3°) = v = inf R(a.v%) = v.
pen(n) - 8€Q

(ii) Let k> 4 and C > k-1. Then (7.1) holds if

EGA(w%‘) > by (y)
0

where Qé = (0,0,A,...,4) and bk(y) is given Ain (6.2).

To prove Theorem 7.2 we need the following two lemmas.

Lemma 7.1. Let i < j. Assume C > k-1 and 6r57764] < 4 Then

Eg(w?i)) + Eg(w?j)) 48 nondecreasing An 6[1]'

Proof. We can without loss of generality assume 8, <...< 6, and consider

- e e
r(e) = Eg(wi + wj>. Now,

)k

aly,*e T oaly,+e,,.) k-1
: e F TN ety avy).

i g =1 h

_1
A

Yy

Ho~11

O]~

i~1
ey _ . 141
Eg(wi) = f@(ei‘ TOQ{C QZ] e .

We get:
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k-1 Ay
or 1 10arl J ]
w0, [tolo; - 7 Toglg 221 e "1oly; ej)
AY:
k-1 Ay i
1 1 ) e
- gb(eJ - X ]Oq[f Z € ])‘b(.y.l'e.[)(k_" Ay )}
9=1 Ze 2
¢=1
i-1 j-1 k-1
moely -6,) m ¢ly -6, ) T ¢ly,-6, ,1)dvly).
=T R A T L Loatl

From this expression we find that ar/aei > 0 if

A(yQ-y.) 1 k-1 ay

(7.2) D+ fe " lexpl(e,-0.)(y; -1 loolg T e "Dz
} s J i i A C ¢
L#1 =1
Let y ., = max(y],...,yk_]). Then, since & > 0564,
Ay -ys)  (8.-8:)y. (6.-6.)y
[+ 7 e AP > e i Y max
L#i
and (7.2) follows. Q.E.D.

Remark. If C < k-1, then Lemma 7.1 is not necessarily true as seen by the
following example. Let k = 2. Then C < 1 iff A > /2z(y). If Lemma 7.1 holds

(w?’rwg) > y. Now, R((0,8),0°) = 20(1995) . et

then R((68,0),p°) > E
A2

8-A,8

A V2 (z(y)-z(y/2)}. Then C < 1 and R((0,8).4%) < .

Lemma 7.2. Let C > k-1 and Let p be such that 1 < p < k-1. Assume

0[p+1] > e[k]—A 3_e[p]. 14 inf P (CS]we) = v then

sea(n) 2
e k-p _ (I k=T-p e
(7.3) R(Qa&l) ) > Zk_]_p y + (k-p){1 (2) }E (p+'|)(w1)'
Hene Q(p+1) 45 gdven by

6r a-n for 1 < p+l
o (ptT) = [k 7

i e[k] forn i > pte.

; A\

k
Proof. Let y = vS. We may assume 8, <...< 6, . Then R{g,p) = B (es).
£root 1 k 8 ibowy oV
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(7.3) is true for p = k-1 since the right hand side is y and R(o,y) =
Pe(CS[w) > y. We now prove (7.3) for general p, 1 < p < k-2 by assuming

(7.3) is true for p+1 and proving it for p. Each E (wi)’ i > ptl, is non-

0
increasing in each e],...,ep, so we can Tet 6y =...= ep = 0, -A. Define Qq by:
6,~8 for i < q
0d = .
i 6 for i > qtl.

Eé@i)is nondecreasing in i, hence for i > p+2:

| k- k-p-2
o (1) 2 21poTy B i) * 2lkepTy Eg Wpr1)-

This implies that

k
(7.4) Rlgw) = T E () 1%1=g+259(wpﬂ+w1>

the second inequality being a result of Lemma 7.1. Now E8p+](¢p+]) =
k

. . . _p+] - N
Eep+](w1) > E (p+])(w]). By the induction hypothesis, R(6" ',u) __Z E er](q)i)
6 6 i=p+2 0

can be bounded by the right side of (7.3) (substituting p+1 for p). Making these

two substitutions and E (p+2)(w]) > E (p+])(w]) in (7.4) yields

‘ 0
k-p kep 1 _(Lyk=p-2
. kep ) 1,k-T-p .
KT 7 + (k-p){1-(5) }Ee(p+])(w1) Q.E.D.

Proof of Theorem 7.2. The result for k = 2 follows directly since for

o € a%(n), R(Q,we) = Ee(w$+wg) > 1. For k > 3, we have from Lemma 7.2 that

(7.1) holds if
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E, () >y max g(m)
99 2<m<k-1
where
m-1
g(m) = ]~m(1/2)m~] 2 <m< k-1
m-m(1/2)
It is readily seen that
0 if k=3
TR
2<m<k-1 bk(y) if k > 4. Q.E.D.

Remark. Let k = 2. From remark after Lemma 7.1 we see that (7.1) is not

necessarily true if A gets too large.

8. Proof of Theorem 6.2

Part (a) follows directly from Corollary 5.1. We next show that wa is

the solution to the problems (5.3) and (5.4) for the normal case.

Theorem 8.1. () Let 8 > k-1 and ¢ = VK/(k=1) z(8/k). Then v € 8;(8),

and y* maximizes 1?f P(CS[w), fon all v € & (8).
(a) =

(if) Let ¢ = Vk/({k-1) z(y)-a such that wa € 8 (y,a). Assume A < Vk/(k-T) -

{z(y)-z((k-1)/k)}. Then v? minimizes sup S(6, ¢) for all y € 8'(y,A).
Q

Proof. We shall apply Theorem 5.2. The density g in (5.5) is the

Wk_](O,X)-density, where £ = (0..) and o.. = 25 o,. =1 for i # j. This implies

1J 11 1]
that
y K5 k-1 2
gly*+a)/gly) = expl- ¢ .21 yi - 5l a?y
']‘_'

It follows from Theorem 5.2 that the optimal procedure y* is given by

vi= VAFF oy T (XX <

i.e. g = wa. From Theorem 5.3 and Theorem 5.4 we see that the conditions
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in (i), (ii) insure that (5.6) holds. The results now follow from Theorem

5.2. .E.D.

Let ¢y = /EgT-Z(B/k). Part (b) of Theorem 6.2 now follows from the
fact that y%(c,) satisfies (5.9) if k> 4 and 4 < 4(8) or k < 3. This can

be seen as follows. If e[p] > e[k]'A’ e[p_1] 5-6[k]'A for some 2 < p < k-1,

then R(@,wa(c1)) > (k-p)a{z(B/k)-(k-p)a/Vk(k=-T)} + o{z(8/k)*+(p-1)a//k(k-1)}.
If 2 i_A](B), then this Tower bound on R is greater than or equal to one.

For k = 3 this bound is at least inf P, (CS[4%(c;)) = olz(8/3) + 24//6). Let
o(a) =

now ¢' = vk/(k-1) z(y)-a. If a 5_Aa(y), then v > (k-1)/k and wa(c') satisfies
(1.3) with equality, and hence v3(c') € 8(y,n). This is seen by observing that

if there are (p-1) bad populations, then

R(Q,q)a(cl)) > (k-p)e{z(y)- _Z_k_’R:LA} + o{z(y)- (k-E)A}.
Yk (k-1) Vk{k-T)

A 5_Aa(y) implies that the first term on the right side of the inequality is
at least (k-p)/k and the second term is bounded below by (k-1)/k. Hence
R(Q,wa(c')) > 1df 4 g_Aa(y). This, together with Theorem 8.1 (ii), proves

part (c) of Theorem 6.2.
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The critical constant C

TABLE 1

for procedure we, given by (6.1).

o
k .10 .25 .50 1.0 1.5 2.0 3.0
vy = .95
3 2.44 3.20 4.69 7.37 7.51 4.87 .46
4 3.63 4.72 6.83 10.83 12.11 8.45 1.05
5 4.80 6.17 8.82 14.13 15.83 11.39 1.50
6 5.98 7.66 11.00 17.67 20.57 15.26 2.22
7 7.14 9.07 12.83 20.76 23.18 17.83 2.67
8 8.33 10.59 14.94 23.56 26.75 20.81 3.31
9 9.50 12.03 16.80 27.07 30.56 23.12 3.76
10 10.67 13.50 18.83 30.12 34.02 25.88 4.29
Yy = .99
3 2.64 3.90 6.93 16.55 25.19 24.66 5.96
4 3.93 5.74  10.10 25.76 43.62 46.78 13.71
5 5.19 7.51 12.98 33.29 59.04 69.01 21.93
6 6.46 9.25 15.98 38.65 71.15 87.79 31.11
7 7.71 11.02  19.06 45.29 81.13 95.94 34.82
8 8.99 12.77 21.63 50.93 87.22 109.38 40.11
9 10.26 14.60 24.54 55.25 96.25 115.48 45.54
10 11.48 16.22 27.13 59.52 101.30 126.29 52.35
For k = 2, C is given by
C = explVZn az(y)/o - nal/e} .



TABLE 2

Values of Ay, given by (6.3) and (6.6).

) k

Y 4 10 I
.95 2.0 1.5 1.37
.99 2.4 1.9 1.69
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