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Two equivalent methods for split plot regression analysis are pre-
“sented. The first method requires only one regression model and can
be easily applied to small data sets. The second method uses one re-
gression modellfor each plot in the design. The calculations for Meth-
od 2 are moré straight forward if a computer regression program is
avai]ab]e.' For large data sets Method 2 will generally use less mem-
ory and less computer time than Method 1. Therefore, it is often more

~efficient to use Method 2.
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1. INTRODUCTION

The regression theory presented in many text books is based on
the completely randomized design (CRD) with one random component. A
few references are Draper and Smith (1966), Neter and Wasserman (1979)
and Chatterjee and Price (1977). Split plot design regressions include
more than one random component and therefore the CRD theory is not di-
rectly applicable, Daniel and Wood (1971, p. 59) and Anderson and
McLean (1974, p. 206). Two split plot regression methods are -present-
ed in this paper. The first method is fdr designs with small samples
and few splits. The second method is recommended for designs with
large samples or many splits. An.attual experimental example will be

used to explain the two methods.

2. THE DESIGN

It was of interest to predict the space mean speeds of cars oper-
ating on roads of the type that existed in Brazil, It was important
that the final equations be easy to apply. Therefore, the independent
vari;bles were defined as simple aggregate indices of the road charac-
teristics.

A traffic and fuel algorithm (TAFA) was developed by Zaniewski,
Moser and Swait (1979). The algorithm predicted speeds.of vehicles on
routes of any type and length. TAFA was used to generate a“data set .

of space mean speeds for cars.



A sample of twenty-eight routes was chosen from the pobu]ation of
routes in Brazil. Each route in the sample had a defined geometric
profile. The vertical and horizontal geometries of the routes were
quantified with an average rise plus fall and average degree of curva-
ture index, respectively.

On each route TAFA was run with two surface type and two roughness
values. Car speeds were then generated for each combination within
each roﬁte;

The randomization scheme for this experiment occurs in two phases.
The routes were randomly chosen within the levels of the geometric in-
dices. The factors surface type and roughness were then applied in a
‘ random order within each route. The effects of vertical and horizon-
tal geometry from the whole plot portion of the design. The effects .
of surface type and roughness form the split plot portion. The effect
of routes within the levels of the Qeometric characteristics is the
whole plot random component. The residual error is the split plot ran-
dom component.

The design layout is given in Table 1. There are'three levels of
average rise plus fall and average degree of curvature, two levels of
surfacg type and roughness. The design is slightly unbalanced since
there can be 2, 3, or 4 routes within the levels of the geometric
characteristics. The routes are coded from 1 to 28 and the values of

the dependent and independent variables are given in Table 2.

3. THE ANOVA MODEL -
The ANOVA model for the split plot design example is:

+BE

Y = A 4B AR 4C 5 5y PD E (g ) AD; o *BD;  HAE 5(2)m €4 5kem

(1)

ijkem i(2)m



= the space mean speed for cars in the ijkem combination

pu = overall mean space mean speed

A. = fixed effect of the ith Tevel of average rise plus
fall; i =1,...,1

B, = fixed effect of the ith level of average degree of
curvature; j = 1,...,J

C(ij)k = pandom effect of the kth route within the ijth combin-

ation of AB
Dﬁ = fixed effect of the sth level of surface type;
e =1,...,L
E(g)m = fixed effect of the mth Tevel of roughness within the
oth surface type; m=1,...,M
AB1j’ADiz"'"BEj(z)m’Eijkzm’

= pooled residual of the interactions CD(ij)kz’

m,ABD ABE,

i5(2)m random effect.

CE(i3)k(s)

The two random components of model (1) are C(ij)k‘a”d €5 ikem”

ije’
The
former is used to test the whole plot factors, the latter tests the
split plot factors. The results of the ANOVA weﬁghthé following:

(1) The mean square of C(ij)k is significantly larger than the

mean square of ¢.

ijkam® Therefore the two random components are not

pooled.

(2) The whole plot factors Ai and Bj are significant at o = 0.05.
Tests of the mean speeds per level of Ai and Bi showed _that no signifi-
cant change in speed4occurs after a rise plus fall of 27 (mtkm) and the
effect of average degree of curvature before 125 (degrees/km) is great-

er than the effect after 125.



(3) The split plot factors D> E(z)m’ BD. and AEi(z) are signi-

JjR m
ficant at o = 0.05. Tests of the mean speeds per level of the signifi-
cant factors were run. The tests indicated that the roughness influ-
_ ehce on paved roads was significantly larger than on unpaved roads, the
average degree of curvature influence was greater on paved roads than
on unpaved roads and the roughness influence increased with average
rise plus fall up to a value of 27 (m/km).

Since the means squares of C(ij)k and €4 3kem are heterogeneous
the regression model or models must identify two random components.
Two regression methods are presented below. Each approach includes
the independent variables that were identified as significant in, the

ANOVA.

4. METHOD 1 - SMALL SAMPLES
The first method uses one regression model. For the example prob-

lem the following model is hypothesized:

Y +a]RPF1]+a ADC11+a ADC12+b]ST+b2Q11+b3ST QI

2 3
+ b4ADC]1 ST+b5

RPF if RPF <= 27; 27 if RPF > 27

ijkem - %0

ADC12 ST+b-RPF11 QIi+e!. (2)

6 T ijkam

where: RPF11

. ADC11 = ADC if ADC<= 125; 125 if ADC>125
ADC12 = 0 if ADC < = 125; (ADC-125) if ADC > 125
ST = -1 if Paved Surface; 1 if Unpaved Surface
QI1 = (QI-65) if Paved Surface; (QI-135) if Unpaved Surface.

Any linear regression computer package can easily be applied to
calculate the regression table values and the standard errors of the

estimates. These values are presented in Table 3. The equation is:



Y = 75.6-.223RPF11-.105ADC11-.052ADC12-6.21ST-.076Q11+.023ST-QI1
+ .0092ADC11-ST+.0196ADC12-ST-.0020RPF11-QI1 (3)

The mean square error of E%jkzm is the pooled estimate of the
whole plot and split plot residuals. Tests of significance on the
whole plot coefficients must be based on the whole plot residual mean
square. The split plot residual mean square forms the basis for the

tests on the split plot coefficients. The error €; can be divided

ijk m
into its two components in the following way:

)2

(4)
€] is'ghe whole plot residual and €5 is the split plot fesidua].
The calculations for the example are done using the formula (4) pro-
:dUCe the fo]]owing'results:

1185.1 | (5)

SS(E-])

$S(c,) = 512.4 ~ | ®)

There are 28 routes and 4 coefficients estimated in the whole plot.

Therefore €1 has 28-4 = 24 degrees‘of freedom. From Table 3, ¢' has
102 degrees of freedom. Therefore €n has 102-24 = 78 degrees of free-

dom. The mean square can be directly calculated.

o 49.3 | (7)

e]) = MS(e]) = 1185.1/24

2

g 32) = MS(ez) = 512.4/78 = 6.6 (8)



F tests on the independent variables can now be performed using
49.3 for the whole plot tests and 6.6 for the split plot. The correct
standard errors for the coefficients can be calcu]ated using the follow-
ing formula: |

Whole Plot o(a)

o*(a)+ale;)/o(c") (9)

SpTit Plot  a(b) = o*(b)(e,)/ale’) (10)

correct standard error for any whole plot coefficient.

where: o(a)

o*(a) = corresponding standard error for the whole plot coeffi-
cient from Table 3
a(b) = correct standard error for any splif plot coefficient
o*(b) = corresponding standard error for the-split plot coeffi-

cient from Table 3.
T statistics to test the hypothesis that the coefficient equals
zero can now be calculated using the correct standard error values.

Whole Plot  t, ,, = a/o(a) (1)
 Split Plot t; 7g = b/o(b) (12)

Table 4 gives the F statistics, the corfect standard errors and
the t statistics for each coefficient. o |

These calculations can become tedious as the sample size or number
of sp]jt plots increases. Thus an equivalent alternative method is

presented.

5. METHOD 2 - LARGE SAMPLES .
The number of random components determines the number of-regression
models needed for Method 2. For the example two models are used. The

first is designed to predict the effects tested by the random component



ey» the second for the effects tested by e,. The two models are:

Visk... = 3 * aRPFI1 + aADCTT + agADC12 + e, (13)
Y= Vaskem ™ Yigk.. )
= byST+b,QI1+b,ST QIT+byADCT1-ST+ bgADCT2- ST+ bQIT-RPF11+ ¢, -

(14)
Model (13) is run as a weighted regression. The weight is the number
of observation per mean value of Yijk...'LM' For the example LM=2.2=4.
Model (14) is an unweighted regression. It is run without an intercept
since the split plot variables ST and QI1 are centered around zero.
The regression table values and standard error estimates of the
coefficients for Model (13) are given in Table 5. The equation is:
§ijk... = 75.6 - .223 RPF11 - .105 ADCI1 - .052 ADC12 (15)
The information reported in Tab]e 5 were produced directly by the
computer regression program used for this example. The values do not
need adjustment. A1l estimates and statistics are equal to the equi-
valent whole plot information given for Method 1. The result of model
(14) is: . |
Y' = - 6.21ST - .076QI1 + .023ST-QI1 + .0092ADC11-ST
. + .0T96ADC12-ST - .0020RPF11.QI1 (16)
A change has to be made to the usual computer regression output

for equation (16). The twenty eight mean values Y. were subtract-

ijk...

~ed from the original dependent variable Y, to define Y'. The de-

ijkam
grees of freedom of the error in equation (16) must be adjusted by the
number of mean values subtracted, in this case twenty eight. The mean

square error, the standard error of the estimates, and the statistics



must be recalculated.. All of these values are given in Table 6. The
formulas for the standard error of the estimate and t statistic calcu-

lations are:
o(b) = os(b)-os(ez)/o(ez) (17)

‘t-'. 106-28 = 78 * b/a(b) . (18)

where ca(b) std. error of estimate from the output given in'Table 6

06(82) std. error of the equation form the output before correc-
tion by the whole plot degrees of freedom (for the example

o*(ey) = [512.4/1061% = 2.2)

6. CONCLUSIONS
The two regression methods presented can be applied to split plot
- design data with any number of splits. A set of speed data is used to
describe the calculation procedureslfor the two methods. The methods
are shown to produce equivalent results with the second method being

slightly easier to apply.
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TABLE 1 - Design Layout for Car Speed Aggregation Example
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TABLE 2

Data for Car mumma Example

Route ADC RPF ST Q1 Y ST QI Y ST QI Y ST QI Y
1 5.2 11.5 -1 50 81.9 -1 100 75.2 1 70 71.7 1 200 70.3
2 5.3 11.4 -1 50 81.8 -1 100 74.5 1 70 70.3 1 200 65.8
3 0.0 11.2 -1 50 81.4 -1 100 75.9 1 70 74.3 1 200 73.9
4 104.0 9.8 -1 50 70.4 -1 100 63.1 1 70 63.5 1 200 47.9
5 104.9 6.8 -1 50 75.7 -1 100 68.3 1 70 67.1 1,200 55.1
6 100.9 10.0 -1 50 61.9 -1 100 54.5 1T 70 58.4 1 +200 42.5
7 240.6 13.9 -1 50 58.3 -1 1000 51.2 1.70 54.3 1 200 43.9
8 206.2 13.7 -1 50 61.3 -1 100 54.2 1170 56.9 1 200 45.9
9 240.4 14.4 -1 50 62.3 -1 100 54.9 1 70 56.9 1 200 44.5
10 16.5 27.2 -1 50 80.3 -1 100 73.3 1 70 69.0 1 200 51.6
1 17.8 26.7 -1 50 79.3 -1 100 71.7 1 70 67.9 1 200 47.9
12 153.1  30.4 -1 50 62.0 -1 100 54.7 1 70 57.9 1 200 43.9
13 132.3 25.9 -1 50 60.17 -1 100 53.1 1 70 57.3 1 200 43.6
14 138.6 26.0 -1 50 68.5 -1 100 60.9 1 70 60.8 1 200 44.8
15 191.1 26.4 -1 50 59.8 -1- 100 53.1 1 70  56.7 1 200 44.9
16 319.8  32.1 -1 50 49.3 -1 100 41.6 1 70 49.3 1 200 39.0
17 329.3 32.3 -1 50 55.1 -1 100 48.1 1 70 52.9 1 200 42.3
18 198.8 26.7 -1 50 54.2 -1 100 46.9 1 70 52.4 1 200 41.1
19 47.3 40.8 -1 50 76.0 -1 100 69.2 1 70 67.1 1 200 52.7
20 34.2 40.2 -1 50 78.1 -1 100 70.7 1 70 67.7 1 200 51.2
21 30.7  40.9 -1 50 77.8 -1 100 70.7 1 70 67.3 1 200 50.5
22 131.4 40.6 -1 50 59.4 -1 100 52.1 1 70 57.2 1 200 42.8
23 130.8 40.5 -1 50 69.8 -1 100 52.5 1 70 61.6 1 200 45.4
24 112.1  40.9 -1 50 74.4 -1 100 67.1 1 70 64.5 1 200 47.0
25 117.1  40.9 -1 50 70.2 -1 100 63.0 1 70 61.9 1 200 46.1
26 202.0  39.3 -1 50 63.7 -1 100 56.5 1 70 57.6 1 200 43.9
27 412.1  39.4 -1 50 45.0 -1 100 38.2 1 70 46.2 1 200 37.2
28 326.3 38.3 -1 50 46.6 -1 100 39.4 1 70 47.4 1 200 38.3



TABLE 3 - Regression Table and Statistics for Model (3)

Source d.f. Sum of Squares
RPF11 1 1244.4
ADC11 1 5555.1
ADC12 1 1398.1

ST 1 2137.2
QI 1 2860.9
ST-QIN 1 65.5
ADC11.ST 1 169.6
ADC12-ST 1 199.9
RPF11.QI1 1 57.6
e 102 1697.5
TOTAL 111 15385.8

Parameter Std. Error of Estimate = o*

INTERCEPT 1.35

RPF11 0.054

ADC11 0.0091

ADC12 0.0057

ST 0.801

QI 0.026

ST.QI 0.012

- ADC11.ST 0.0091
ADC12.ST 0.0057
RPF11.QI1 0.0011

12

*The standard errors come directly from the computer

output and must be modified by a multiple.



Estimates for Model (3)

13

TABLE 4 - Correct t.and F Statistics and Standard Errors of the

Parameter F t Std. Error of the Est.
INTERCEPT 32.5 2.32
RPF11 25.2 - 2.4 0.093
ADC11 112.7 - 6.7 0.016
ADC12 28.4 - 5.3 0.010
ST 323.8 -12.3 0.504
QI 433.5 - 4.8 0.016
ST-QIN 9.9 3.1 0.0074
ADC11-ST 25.7 1.6 0.0057
ADC12-ST 30.3 5.5 0.00356
RPF11.QI1 8.7 - 3.0 0.00067
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TABLE 5 - Regression Table and Statistics for Model (15)

Source df Sum of Squares Mean Sqqare

RPF11 1 1244.4

ADC11 1 5555.1

ADC12 1 1398.1

€&, . . .. 25 1185.1 49.4

TOTAL . - 9382.6
Parameter Std. Error of Estimate t value
INTERCEPT 2.32 32.5
RPF11 0.093 - 2.4
ADCI1 0.016 - 6.7
ADC12 0.010 - 5.3

TABLE 6 - Regression Table and Corrected Statistics for Model (16).

Sum of Squares

Source df . Mean Square
ST 1 2137.2
QI 1 2860.9
ST-QIN 1 65.5
ST-ADCT1 1 169.6
ST-ADC12 1 199.9
QI-RPF11 ] 57.6
€y 106-28=78 512.4 6.6
TOTAL 84 6003.1
o*(b) = o(b) =
v Std. Error Correct
Parameter t from Output Correct t from Output Std. Error
ST -14.4 -12.3 0.43 0.50
QI - 5.4 -4.8 0.014 - 0.016
ST-QI1 3.7 3.1 0.0063 0.0074
ST-ADCT 1.9 1.6 0.0049 <0.0057
ST-ADC12 6.4 5.5 0.0030 0.0035
QI-RPF11 - 3.5 - 3.0 0.00058 0.00067





