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SUMMARY

LARGE DEVIATION INDICES AND BAHADUR EXACT SLOPES
by
- Leon Jay Gleser
_ Harvard‘School of Public Health and Purdue University

| ‘When it exists, the Bahadur exact s]bpe c(e]) of a sequence

{Tn: n> 1} of test statistics'pan be used to compére this sequence of
test statistics with other test‘sequences as tests of HO: egcao V.S.
Hy: eé(J]. Since it is often fairly easy to show that lif n'%Tnfb(e])
exists almost surely for ei §@W » most attempts to calculate c(e]) in

- the Titerature try to compute c(e]) as a function h(b(e])) of b(e1). A
result due to R;_R. Bahadur states that for c(e1) to exist as a function
of b(e]) it is sufficient that the index of large deviation

: 1
g(t) = Tim  inf [- l-109 PALT > n?t} ]
N> QE@O

exists in a neighborhood of b(e]) and is continuous at t = b(e]); in
which case, c(e]) = 29(h(e])). The present paper studies the conse-
‘quences for the existence and properties of g(t) implied by assuming
that both b(s,) and c(eq) exist, all 6, €@; , and that a functional re-
lationship c(e]) = h(b(e1)) holds between c(e1) and b(e]). Results ob-
tained include inequalities for large deviation probabilities based on
the function h(t), and a converse of Bahadur's result. It is shown that
existence of the relationship c(e]) = h(b(e])) implies that the index of
large deviation g(t) must exist and be continuous at all but a countable

number of points t in the interior of the image set'{b(e]): 01 g@l}.
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LARGE DEVIATION INDICES AND BAHADUR EXACT SLOPES

by

Leon Jay Gleser1

Harvard School of Public Health and Purdue University

1. Introddctidn. Let (S,s)’be a sample space of sequences
S = (x1,x2,..;), X3 €%, i=1,2,..., where X is an arbitrary space. Let
{Pe: e€5®0lJ ®1 },'®()ﬂ.®1 - ¢ , be a collection of probability measures
defined on (S,8). Let'{Tn: n>1}, Ty = Tn(s), be a sequence of B-measur-
_ éb]e functions from S to the real Tine R. In statistical applications,
T.(s) is a function of s only through Xq1>Xgs-.+5X > and is thought of

n

as a test statistic for testing HO: o€ ®, V.s. H]: 6 € 0, » with large
values of Tn giving evidence against Ho‘
- For t €R, define
(1.1) Fn(tle) = Pe{Tn < t}, Fn(t) = (322f Fn(tle),
) 0 )

- _ 1 _ 1
(1.2) L (t) = - o Yog {1-F (t)} = eén®f [- = Tog Pe{T, > t1].
0

The random quantity 1- Fn(Tn(s)) is the P-level of Hy based on the test
étatistic Tn. Since large values of Tn offer evidence against Ho’ an
a-level test of H0 V.s. H] based on Tn rejects H0 whenever 1 - Fn(Tn(S))fi“ .

as equivalently whenever
1 _
- 7 10g f_Ln(Tn(s)).

If for e1§®],

(1.5) a.s. [Pe 1 Tim Ln(Tn(s)) = %-c(e1),

T oo

then c(e]) is called the‘BaHadur éxéct §16be Of'{Tn: n 3_1} at 61.

Bahadur (1971) shows that exact slopes can be used to compare the



asymptotic performances of test sequences. For this reason, Bahadur
exact slopes have been computed for a wide variety of test sequences.

The most commonly used method for finding Bahadur exact slopes pro-
ceeds indirectly, rather than by a direct .calculation of the limit (1.3).
Usually the Timit
-1

F

(1.4) ' b(ej) = a.s; [P. ] limn

T (s)
'91 N>

n
exists for all ei §c>1, and is easy to determine. Let
(1.5). J={t: t-= b(e]), some 6, §C)]} .

The indirect method for calculating C(GT) attempts to find c(e]) as a
function
(1.6) C(e'l)‘= h(b(e]))

of‘b(e]), where h(t) maps J onto [0,=).

A sufficient condition for (1.6) to hold has been given by Bahadur:
Theorem 1.71.  [Bahadur (1971; Theorem 7.1)] Suppose that the Timit (1.4)
exists for all 8, €@ ,. A sufficient condition for c(e1) tb exist, and
for C(e]) to be a continuous functipn h(b(e])) of b(e1), all 6,€0,, is
that for evehy';EJ,

1 : .
(a) g(u) = 11m_Ln(n2\1) exists in a neighborhood M, of t,
. N> '

(b) g(t) is continuous at t.
In this case, c(e]) = Zg(b(e])), all 601 €@.

For t €R, the quantity

(1.7) | o() = Tim L (n3 1),

N

if it exists, is called the'indexidftiarge:devfaffoh of'{Tn: n>1}

under Ho' The justification for this terminology is apparent from (1.2)

and (1.7). Even if g(t) does not exist at t, the lower index of large




by

(1.8) g(t) = Tim L (n*t), §(t) =T L (n¥t),

N0 N
a1Ways exist for all t €R. The index of large deviation g(t) is of in-
terest to probabilists [Bahadur (1971)], independently of its use in
calculating Bahadur exact slopes.

The present péper attempts to answer the following question: "Sup-
pose that the goals of the indirect method for calculating Bahadur ex-
act slopes (described in the paragraph before Theorem 1.1) are met. That
is, suppose that the 1imits (1.3) and (1.4) exist for all 6, €@, and
| that there exists a function h: J+ [0,») such that (1.6) holds. What
consequences do these assumptions have for the existence and properties
of the index ofvlarge deviation g(t) defined by (1.7), or for the prop-
erties of g(t) and g(t)?"

For the existence and properties of g(t), the answer to this ques-
tion is provided by Theorem 1.2 and Corollary 1.1, which are proven in
Section 2.

Theorem 1.2. Assume that the Timits (1.3) and (1.4) exist for all
01 €@, and that J defined by (1.5) has a nonempty interior, 1ﬁf(J).
If there exists a function h: J- [0,=) such that (1.6) holds, then

gi) The function h(t) is nondecreasing for t €J, and thus is con-

tinuous at all but a countable number of points t in J;

Qii) If h(t) is continuous at t€ int(J), then g(t) defined by

(1.7) both exists at t and is continuous at t, and g(t) = 1 h(t);

(iii) 1In consequence, g(t) exists and is continuous at all but a

countable number of paints t € 1nt(J);



Corollary 1.1.  Suppose that the Timit (1.4) exists for all éi §'®].

For c(e]) to exist and to be a continuous function h(b(e])) of b(e]),

all b(e1) € int(J), it is necessary that g(t) defined by (];7) exist
and that g(t) be continuous at all t € int(J). If such is the case,
then h(t) = 2g(t), te int(J).

If attention is restricted to alternatives 8, é;)] such that
b(e]) € int(J), then Corollary 1.1 is the converse to Theorem 1.1. More
important, Theorem 1.2 shows that the indirect method for calculating
Bahadur exact sTopes c(e]) as a function c(e]) = h(b(e])) of b(e]) can
hope to succeed only in cases where the index of large deviation g(t)
exists for all but at most a countable number of points t in int(J).

In addition to a proof of Theorem 1.2, Sectioﬁ 2 provides some
additional results relating functions h(t) defined by (1.6) to the upper
and Tower indices of large deviation g(t) and g(t). Section 3 sketches
an example of interest in connection with Theorems 1.1 and 1.2 and in
its own right, illustrating that when b(e]) exists for all 61_6(3] and
g(t) exists, all ted, it is possible for c(e]) to exist and equal

2g(b(e])) for all 81 €@, , even when g(t) is not continuous at all points
ter.

2. Proof of Theorem 1.2'ahd Related Results. Throughout this sec-
tion, reference is made to the following assumptions:

Assumption A.  For all 6, €6, ,

(2.1) a.s. [Pe]] ;iz n'é'Tn(s) = b(e1),
(2.2) a.s. [Pe 1 Tim Ln(Tn(s)) = 1 c(e]).

1T now

Aésumptfdn B; Int(J) # ¢, where J is defined by (1.5).




ASSumption C. There exists a function h: J->[0,=) such that

c(eq) = h(b(e;)), all 6, €0 .
Let g(t) and g(t) be defined by (1:8);
Lemma 2.1. Each of the functions Fn(t), Ln(t), g(t), g(t) is nonde-
creasing in t.
Proof.  Since F (t[e) is a c.d.f., F.(t]e) is nondecreasing in t, all
0 € C)o. The stated assertions now follow directly from this fact and
the definitions of Fh(t)’ Ln(t), g(t), and g(t). O

Lemma 2.2. For all e > 0, 81€@ 4,

(2.3) g(b(e])-e) §_§(b(e])-e)_5 %d«31) f_g(b(e])i-e) §_§(b(e1)+-€y

Proof.  From Assumption A, there exists Se c S such that Pe (Se ) =1
‘ 1 1 1
and
' 1
. - _ . - 1
(2.4) limn 2 Tn(s) = b(e]), , llz Ln(Tn(s)) =1 c(e]), all s €S,

1

N

Fix s €S, . By (2.4), for each ¢ > 0, there exists N = N(s,e1,e) such
' 1 v

that n > N implies

1
2

(2.5) n®(b(oy) =€) < T (s) < n®(blog)+e).

Since Ln(t) is nondecreasing in:t (Lemma 2.1),

w=

(2.6)  Ly(n®(bog)-2)) < L (T (s)) < L (n®(blo,)+e)),

all n > N. The result (2.3) now follows from (2.6), (1.8) and (2.4) by

first taking‘ljm;on all sides of (2.6), then taking Tim on all sides of
: N->« N>

(2.6), and finally recalling that g(t) < g(t), all teR. O
The following Temma summarizes known facts about nondecreasing func-
tions of a real variable [Apostol (1958)];

Lemma 2.3.  Let r(t) be nondecreasing in t for teQ, QcR.



(i) - The Timits r(t-), r(t+) from the left and right, respective-
1y, exist at all t€ int(Q). Indeed, for all t€ int(Q),
Tim r(u) = sup {u: u <ty ,

o ust
u E(gf1(-w,t)

r(t-)

(2.7)

Tim r(u) = inf {u: u > t ;
) u->t

r(t+)

and
(2.8) r(t=) < r(t) < r(t+) .

(11) r(t) has only a countable number of points of discontinuity

in Qs

(iii) For t € int(Q), r(f—) is left continuous at t, r(t+) is

right continuous at t, and r(t) is continuous at t if and only if

r(t-) = r(t+) = r(t).

Remark. If Qlﬁ (t,=) # ¢, all facts stated about r(t+) in Lemma 2.3 are
valid, while all facts stated about r(t-) in Lemma 2.3 are valid if
QN (-=,t) # ¢.

The next Temma, proven as Theorem 7.2 in Bahadur (1971), requires
only Assumption A, and provides what Bahadur calls a "partial converse"
to Theorem 1.

Lemma 2.4. If only Assumption A holds, let
{ inf{3c(ey): 8;€0, b(6g) >t} , if Jn(t,=) # 4,

g,(t) = | _
o , otherwise .
sup{%C(91): e'l E@ 1° b(e]) <t }s if qn(—m,t) 7‘ %
gz(t) = { '
0 , Otherwise .

Then for all t¢R,
(2.9) 92(t) < g(t) < §(t) < g(t) .



One final Temma is needed before the‘proof of Theorem 1.2 can be
given. | |
Lemmaj2.5. Under Assumptions A. B, C,

iil The function'h(t) is nondecreasing in t for all t €J;

iiil; For all ﬁ € int(J);'the Timits h(t-) and h(t+) eXist, and

(2.10) h(t-) = 2g,(t), h(t+) = 2g;(t) .

(i1i)  Consequently, for all te int(J),

(2.11) 2h(t-) < g(t) < g(t) < Fh(t+) .

| (iv) Further, for all te int{(J),

(2.12)  zh(t-) < g(t-) < g(t-) < 2h(t) < g(t+) < g(t+) < Fh(t+) .
Proof. To prove Assertion (i), let t < t*, where t, t*€J. Then by

(1.5) there exist 81,67 €@ such that t = b(e1), t* = b(ef). Let

e* = £ (t*-t) > 0.
Applying (2.3),
h(t) 2cog) < g(t+e*) = glt*-e*) < zc(ey) = 2h(t*),

1]

from which it follows that h(t) < h(t*), proving Assertion (i). Asser-
tion (ii) now follows from Assertion (i), Lemma 2.3(i), and the defini-
tions of g](t) and gz(t). Applying Assertion (ii) and (2.9), Assertion
(iii) directly follows. Finally, to prove Assertion (iv), note that
te int(J) implies that (t- e,ti-e) € int(J) for all small enough ¢ > 0.
Applying (2.3) and (2.10),

2h{(t-¢)-) 5_g(t-e) < 9(t-e) < $h(t) < gt+e) < glt+e) < Fh((t+e)+) .
Taking Timits as ¢ -~ 0, using the fact that h(t-) is left continuous
and h(t+) is right continuous at all t€ int(J) [Lemma 2.3(111)1, proves
(2.12). O



Proof of Theorem 1.2 and Corollary-1.1. Assertion (i) of Theorem 1.2

is a direct consequence of Lemma 2.5(i) and Lemma 2;3(ii)g Assertion

(i1) of Theorem 1.2 follows directly from Lemma 2;3(iii) and (2.71).
Assertion (iii) of Theorem 1:2 follows from Assertions (i) and (ii).
Finally, Corollary 1;1 is an immediate consequence of Theorem 1.2(ii). I

3. An'IntereSt%ﬁgTEXamp1e. The following example, which is of

independent interest, provides an illustration of a situation where the
Bahadur exact s]opé c(el) can exist as a function c(e]) = Zg(b(e])) of
the Timit b(e1), even when the index of large deviation g(t) is not con-
tinuous at all pointS'ﬁe int(J).

Let ® 0 = {0}, ®, = (0,), and Tet G(u) = P{U < u} be the c.d.f.
of some nonnegative random variable U. [Thus, G(0-) = 0.] Because,
G(u) is a c;d.f.,'it must be right continuous at all u €[0,~), but G(u)
can be discontinuous at a countable number of points u. Under Pe’

8 € o, ve,, 1et'X](s),X2(s),..., be i.i.d., with Xi(s) having the same

distribution as 6 + U, i= 1,2,... . Let

(3.1) Tn(s) = r|% min Xi(s) .
I<i<n

Then, it is easily shown that

(3.2) Ln(n%t) = Tog[(1- 6(t))7'] = g(t) = Tim L, (n i)

N->e

for all n>1, t > 0, and

oy

(3.3) n 2T (s) converges from the right to b(e,) = 8, a.s.[P. ],
1 1 01

n

for all 89 énal . Since G(t) is right continuous, it follows from (3.2)

and (3.3) that for all 91' §®] s

(3.4)  2c(o) = a;s.[pelj Tim L (T (s)) = g(ey) = g(b(e; ).

N>
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