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ABSTRACT

This article surveys statistical techniques which are nonparametric
in nature and used in formal ranking and selection of populations. Such
methods have been developed only within the last fifteen years and are
usually based on rank scores and/or robust estimators (such as the Hbdges-
Lehmann estimator). The procedures surveyed are applicable to one-way
classifications; two-way classifications,and paired-comparison models.
Computational methods, useful inequalities, and appropriate numerical tab]és
required to implement these techniques are identified and discussed.
Asymptotic relative efficiencies of the nonparametric methods, compared to
their parametric counterparts, are presented. Specific applications of
these methods (such as traffic fatality rates) are mentioned and areas

for further theoretical and computational research are identified.

-

1. Introduction to Selection and Ranking Procedures

A common problem faced by an experimenter is one of comparing several

categories or populations. These may be, for example, different varieties of
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a grain, different competing manufacturing processes for an industrial product,
or different drugs (treatments) for a specific disease. In other words, we
have k(> 2) populations and each popu]atidﬁ is characterized by the value

of'a parameter of interest 6, which may be, in the example of drugs, an

| appropriate measure of the effectiveness of a drug. The classical approach to
this problem is to test the hdmogeneity (nu11) hypothesis Hp: 89 =-+.= 8y |
where e],...,ek are the values of the parameter for these popd]ations. In |
the case of normal popu]gtions with means 61,...,6k and a common variance o, -
. the test can be carried out using the F-ratio of the analysis of variance.

The ébove classical approach is inadeqdéfe and does not answer a
frequently encountered éxperimenter's question, namely, how to identify the
ﬁbest categoky? In fact, the method of least significant differences based

on t-tests has been used in the past to detect differences between the average
yie]ds of different varieties and thergby choose the 'best' variety. But this
method (and others related to it) is indirect and does not easily provide
an overall probabf]ity of a correct se]ection; Aiso the multiple comparison

techniques deve]opéd largely by'Tukey and Scheffé arose from the desfre to draw .

inference about the populations when the homogeneity hypothesis is rejected.

Selection and Ranking Procedures

The formulation of a k-sample problem as a multiple decision prquem
enables the experimenter to answer questions regarding the best |
cafegory. The formulation of multiple decision procedures in the framework
of selection and ranking procedures has been accomplished génera]]y using
éither the indifference zone approach or the (randomrsized) subset selection

approach. The former approach was introduced by Bechhofer (1954). Substantial



contribution to therearly and subsequent developments in the subset se]eétion
theory has been made by -Gupta starting from his work in 1956. For moré |
details about the numerous contributions and the related bibliography,

reference should be made to a recently published book by Gupta and Panchapakesan

(1979). This monograph discusses both approaches.

A Brief Description of the Two Approaches

Bechhofer (1954) considered the problem of ranking k normal means. In
order to explain tHe basic formulation, consider the problem of selecting
the population with the Targest mean from k normal populations with unknown
means ;. i=1,...,k, and a common known variance 02. Let ii’ i=17,....k,
denote the means of independent samples of size n from these populations.

" The 'natural’ procedure (which can be shown to have optimum properties)'w111

be to select the population that yie]ds the largest ii. The experimenter
would, of course, need a guarantee that this procedure will pick the population
with thé largest Wy with a probability not less than a specifﬁed level P*. For
the problem to be meahingfu] P* 1ies between 1/k and 1. Since we do not know
the true configuration of the nis We look for the least favorable configuration
(LFC) for which the probability of a correct se]ectjgn;P(CS),wil] be at least
P*. Since the LFC is given by My SeeeT Mo the probability guarantee cannot

be met Qﬁatever be the sample size n.

A natural modification is to insist on the minimum probability guarantee
whenever the best population is sufficiently superior to the next best. In
other words, the experimenter specifies a positive constant A* and requires
that the P(CS) is at least P* whenever wup,q-ury 72 A%, where‘u[]] 22 HRK]
denote the ordered means. Now the minimization of P(CS) 1is over the part Q) of

the parameter space in which Mrk] T M[k-1] > A*. The complement of Q)% is



called the indifference zone for the obvious reason. The LFC in Q% is
given by Mr1] =...= M[k-1] = M[k] " A*. The problem then reduces to determing the
' minimum sample size required in order to have P(CS) > P* for the LFC.

Bechhofer's formulation can be generalized from that described above.
His general raﬁking problem includes, for example, selection of the t best
populations.

" In the subset:selection approach, the goal is to select a non-empty
subset of the populations so as to include the best population. Here the
size of the selected subset is random and is determined by the obserVations
themselves. In the case of normal populations with unknown means HysesosHyos
and a common variance 02, the rule proposed by Gupta (1956) selects the

.

_population that yields ii if and only if ii 3_ max X. -'99-, where d = d(k,P*) > 0
1<i<k 7 /m

is determined so that the P(CS) is at Teast P*. Here a correct selection is selec-
tion of any subset that includes the population with the largest ﬁi' Thus, the

LFC is wifh regard to thé whole pafameter space €. Under this formulation, for
given k and P* we determine d. The rule explicitly involves n. In general,

the rule will involve a constant which depends on k, P*,rénd n.

The performance of a subset selection procedure is studied by evaluating the

expected subset size and its supremum over the parameter space Q.

-

Nonparametric Techniques in Multiple Decision Theory

In the present paper, we describe selection and ranking (ordering)
procedures which are nonparametric or distribution-free. Such procedures
"have the desirable property that their app1icabiTity is valid unHer_re]ative]y
mild assumptions regarding the underlying population(s) from which the data

are obtained. ATthough the importance of nonparametric methods as a



significant branch of modern statistics is recognized by statisticians,
modern nonparametric techniques are usually restricted to hypothesis testing,
point estimators, confidence intervals, and multiple comparison procedures. |
Other recent advances in nonparametric tests can be found in Ho11andef and
Wolfe (1973) and Lehmann (1975). The development of nonparametric methodé
for multiple decision procedures is important in statistical research. The
present paper deals with selection procedures with special emphasis on the
subset selection approach related to the largest unknown parameter!

Analogous procedures (with proper modifications) are available for the

selection in terms of the smallest parameter.

In Section 2, we discuss procedures based on the rénks in the
combined sample. Section 3 deals with bounds on the probébiiity of a
correct selection associated with thé first two procedures'R](G) and
RZ(G) of Section 2. In Section 3, the exact and asymptotic distribution

of the (appropriate) statistic based on rank sums is discuséed. In
vSection 5, we provide comparisons betweén R1 and R3 and certain parametric
procedures in terms of their asymptotic relative effibieﬁcies; ‘Se1ection
procedures based on pairwise ranks are discussed briefly in Section 6.
Section 7 deals with selection procedures based on vector ranks. In

Section 8, procedures based on Hodges-Lehmann estimators are discussed.



2. Pquedures Based on Combined Ranks.

Let TyseeesTy be k(> 2) independent populations. The associated random

variables Xij’ j-= 1,...,ni, i=1,...,k, are assumed independent and to have

"a continuous distribution Fei(x), where ei belong to some interval ® on the

~ real line. Suppose Fe(x) is a stochastically increasing (SI) family of
distributions, i.e. if 0y is less than PP then Fe](x) and Fez(x) are distinct
and Fez(x) 5_Fe1(x) for all x. Examples of such families of distributions are:
(1) any location parameter family, i.e. Fe(x) = F(x-8); (2) any scale parameter
fami]y, i.e. Fe(x) = F(x/6), x > 0, 8 > 0; (3) any family of distribution
functions whose densities possess the monotone likelihood ratio (or.TPz)

_ property. Let Rij denote the rank of the observation xij fn the combined
sample; i.e. if there are exactly r observations less than X355 then Rij = r+l.
These ranks are well-defined with probabi]fty one, since the random variables

are assumed to have a continous distribution. Let Z(1) < Z(2) <...< Z(N) denote
k .

an ordered sample of size N n; from any continuous distribution G, such
i=1 _ :

that

- w < a(r) E[Z(r)|G] <o (r=1,...,N).

With each of the random variables Xij associate the number a(Rij) and define

H, =0t T a(Ryy)  (i= T,....k). o (2.1)

Using the quantities Hi’ Gupta and McDonald (1970) have defined procedures for

. selecting a subset of the k populations. Letting e[i] denofe the ith smallest

unknown parameter, we have

F > F >...> F (x), Vx. (2.2)
o) = Fopgy ™ 2= Fopg ™ -



The population whose associated random variables have the disfribution
Fe[k](X) will be called the best population. In case several populations possess
the largest parameter value e[k], one of them is tagged at random and called
the best. A 'Correct Selection' (CS) is said to occur if and only if the
best population is included in the sg]ected subset. In the usual subsetr
selection problem one wishes to select a subset such that the probability is

at least equal to a preassigned constant P*(1/k < P* < 1) that the selected

subset includes the best population. Mathematically, for a giVen selection

rule R,
inf P(CS|R) > P*, (2.3)
Q

where Q={9 = (61,...6k): 8. €e, i=1,2,...,k}. , (2.4)

The following three classes of selection procedures, which choose a
subset of the k given populations, and which depend on the given distribution

G, have been considered:

R](G): Select ™ iff Hi > max H.-d (i=71,...,k, d > 0), (2.5)
| 1<j<k
R,(6): Select m, i Hy > ¢V omax H, (i=1,...0k c> 1), (2.6)
i i~ ] ~2 -
, 1<j<k
R§(G): Select . iff H, >D  (i=1,...,k; == <D< ®). (2.7)

It should be noted that rules R1(G), RZ(G)’ and R3(G) are equiva]ént if k = 2.
The procedures R](G) (and their randomized analogs) have been suggested by
Bartlett and Govindarajulu (1968) for continuous distributions differing by

a location parameter. The procedure RZ(G) will be studied in thds paper only
for the case where Hi > 0 for all i. The constants d and c are usually chosen

to be as small as possible, D as large as possible, while satisfying the



probability requirement (2.3). The number of populations included in the
selected subset is a random variable which takes values 1 to k inclusive for
rd]es R](G) and RZ(G)' The subset chosen by rule R3(G), however, could possibly
be empty. This aspect will be addressed further at the end of Section 3.

It has been shown by Gupta and McDonald that the infimum of P(CS[Ri(G)),

i=1,2,3, over @ is attained for § € Qk = {8: e[k_]] = e[k]}' This shows

. that for k = 2 the infimum occurs at an equi-parameter configuration.

For k > 3 the least favorable configuration (LFC) is not given by the
equi-parameter configuration for R](G) and R2(G) as can be seen from the counter-
examples of Rizvi and Woodworth (1970). The counterexample distribution is a
mixture of two distinct uniform random variables and is established for P*
near 1. |

| For the procedure R3(G) we can say more about the infimum of the probability
of a correct selection. The LFC is given by the equi-parameter configuration
and so
inf P(CS|R3(G)) = inf P(CS|R3(G)),
Q 2
where 9 = {s € Q: e[]] =...= e[k]}. .
These se]ectibn rules are ca]Ted distribution~free»(or nonparametric) if
"the constants reqUired for implementation are computed from P(CS|R1(G)) = p*
for 8 € QO' In this case the probability does not depend on the common parameter

value and on the underlying distribution functions. The probability computation

is based on a random assignment of rank scores.

3. Bounds on P(CS[R.(G)), i = 1,2.
Since the exact LFC for the selection rules R](G) and RZ(G) is unknown for
k > 2, it is useful to have bounds for the probabilities of correct selection.

We will assume ny =n, i=1,...,k. First consider rule R1(G). Since

(k-])'1 ki] H, .y < max H ? < n'] ) a(r), | (3.1)
j.:] (J) - 1ij<k-] (J) -



and

N
where ) al(r) = A, it follows that
r=1

inf P(H, \ > v) < inf P(CS|Ry(G)) < inf P(H, y > u).
in (Heey 2 v) < in (CS| 1(‘)) < in (Hiy 2 u)

Thé quantities u and v are defined by

u = u(d,k,n) - [A-nd(k-1)]/nk,

and
=1 N
v = v(d,k,n) =n a(r)-d.
r=N-n+1
For the rule RZ(G)’ we get a similar expression:
o T inf P(H > v') < inf P(CS|R,(G)) < inf P(H >u'),
s (k) . A (k)
where
' = u'(dykon) = nTV A[He(k-1)17
and
-1 N
v' = v'(d,k,n) = (nc) ) a(r)
r=N-n+1

(3.5)

(3.6)

(3.7)

The important point to note from the inequalities (3.2) and (3.5) is that

the 1nfima'oVer o of éxpressions of the form P(H(k) > } are attained when

e[]] SR e[k].

For the particular case when a(r) = r, nHi = Ti’ the rank sum statistic

associated with T Denoting Ri(G) by Ri in this case, the infimum of

P(CS|R1) can be related to the Mann-Whitney statistic. If U is the Mann-

Whitney statistic associated with samples of size n and (k-1)n taken from

identically distributed populations, then

inf P(CS|R1) > P(U > nd).
9]

A similar expression can be derived for R2. The Mann-Whitney U-statistic

has been tabulated by Milton (1964) among others.
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k
Since ) Higy = A/n, we see that
=1 Y

max H, > A/nk. (3.9)
1<j<k

Hence, a sufficient, but not necessary, condition for the selection rule

R3(G) to select a nonempty subset is that P* be sufficiently large so that

D < A/N. (3.10)
For large n, this sufficiency condition for rule R3(G) is satisfied if P* > %n
For ru]e'R3; i.e. when a(r) = r, the condition is D < (N+1)/2. As an examp]e; '
with k = 3, n = 5 the sufficient condition D < 8 is satisfied for P* > 0.523
and for such values a nonempty subset will be selected.

The evaluation of the constants D = D(k,n,P*) for the rule R3 can be

effected as follows:

p* < P(T,

< P(T; > Dn) = P(U < n®(k- 3)-n(D- m. | (3.11)

where now we considgr all populations identically distributed. Hence, Dn is

the largest integer satisfying the inequality (3.10).

4. The Exact and Asymptotic Distribution of max T. T for Identically
- 1<j<k N

Distributed Populations.

‘ In this’ section the random variables Xij’ j= 1,...,ni; i=1,...,k, are
assumed independent identically distributed with a continuous distribution
F(x).. In this case the Hi are exchangeable random variables if n; = n, i =
1,...,k. It should be noted that in a slippage-type configuration, the constants
requ1red to implement rules R (), i =1,2,3, are determined~%rom the basic
probability requirement P( CSIR (6)) > P* calculated with 1dent1ca11y distributed
populations. In the case a(R..) = Ry; the procedures R.(G) reduce to the rank

sum procedures Ri’ i=1,2,3. The d1str1but1on of the statistic max T. —T],
: 1<j<k
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both exact and asymptotic, is somewhat easier to obtain than the corresponding

distribution of the statistic max T./T]. For some results concerning the
1<j<k

Tatter statistic, see McDonald (1969). Our concern here will be the former
which is tantamount to considering rule R1. Corresponding to rule R3 is the-
statistic T], the-distribution of which has been well-treated elsewhere in the
Mann-Whitney format.

Gupta and McDonald (1970) have tabulated the quantity P(T] 3'1T§f3 T.-m)

for n = 2(1)5 and m = 0,1,...,2n2 (which covers the entire distribution).

Asymptotically (as n - «), they show

o0

PIT, > max Tom) > [ [o(xtm/z)]*7 o(x)dx (m>0), (4.1)
T<j<k —o .

“where o(-) and o(-) are the cumulative distribution function and density of a

standard normal random variable, respectively, and
- _ 1/2
z = z(n,k) = n[k(nk+1)/12]/°~. (4.2)
Integrals of the type

[ Le(eh2/2)1 T o(x)dx = px o (4.3)

have been considered in several publications. The h quantity appearing in this
expressioﬁ has been tabulated (to 3 dp) by Gupta (1963) in Table I for

k = 2(1)51 and P* = .75, .90, .95, .975, and .99. Similar values are provided
(to 4 dp) in Table 1vof Gupta, Nagel and Panchapakesan (1973) for the same P*
and k = 2(1)]1(2)51. Additional tabulation of h is provided by Milton (1963).
In Table IB of Milton's report, the h quantity is tabulated (to 6 dp) for

k = 3(1)10(5)25vand P* = 3(.05).95, .975, .99, .995, .999, .9995, and .9999.

In Table II of the same publication P* values are given (to 8 dp) for h = 0(;05)5;15
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for all the previously mentioned values of k. Thus, this asymptotic value
~can be obtained from a varietyvof sources and can be applied directly to very
large data sets - up to 51 populations and any (large) sample size.

~ Matching the right hand side of (4.1) with (4.3) yields an asymptotic

approximation to m = nd given by

m = hn[k(nk+1)/61"/2, (4.4)

h being the appropriate solution to (4.3) corresponding to the given_Pf and

k. In the selection rule the smallest integer not less than m should be taken.

Approximations to the Constant m for Use with R1.

We saw that inf P(CSIR]) over 2' = {6: 6[1] =...= e[k_]] 5_e[k]} is
attained when 8y =...= the Suppose we want to evaluate d for which this
infimum is at least P*. Using the rank sum statistics, this means that we

want the smallest integer m = nd such that
P(Tk 3_T[k]-m) > p* (4.5)

where the Ti ére j.i.d. random variables. McDonald (1971) has discussed two
methods of approximatfng the solution. The first method uses the asymptotic
(n > ») expression for the probability given by (4.1). o

The second approximation is forv1arge P* (near 1). Suppose Z],...,Zk

are N(0,1) random variables with the correlation matrix . Let

P{Zpyy 2 -6} = Px o (4.6)

Dudewicz- (1969) has shown that, for large P* (near 1), an approximation to §

is given by

52 ~ -2[10g(1-P*)] | | (4.7)
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in the sense that the ratio tends to 1 as P* > 1. Using his approximation
and the joint asymptotic normal distribution of [nzk(nk+1)/6]'1/2(TK-T1),.
i =1,...,k-1, we obtain the approximation
me ~ - [n2k iﬂkglla Tog(1-P*). (4.8)
One can also obtain this approximation from (4.1) by noting that
mz'] ~ /§'®'](P*) as P* > 1, a result of Rizvi and Woodworth (1970), and

using the well-known fact that

o7l (P*) ~ [-2 Tog(1-P*)1V/2 as P 5 1. (4.9)

The two approximations have been compared by McDona]d'(1971) in the case of

P* = 0.99 for k = 2(1)5, n = 5(5)25.

~

Let m, and denote the approximate values of m given by (4.4)”and

1 2
(4.8), respectively. The numerical eva]dations of ﬁ] and ﬁz showbthat (a)
ﬁz-ﬁ] increases in n for fixed k, and decreases in k for fixed n, (b) ﬁ1/ﬁ2
increases in k for fixed n, and is constant for fixed k over various values
of n, and (c) both approximations are conservatiye, &2 being more so than &1'
For k = 2, McDonald (1971) has analytically shown that ﬁz—@] i; positjve gnd

increasing in n, and that ﬁz/ﬁ1 is independent of n.

-

5. Comparisons between R] and R3 and with Parametric Procedures.

Recall that for k = 2 the rules Ri(G)’ i=1, 2, 3,
are equivalent. For the special case of rank sum statistics based on equal
sample sizes, Gupta and McDonald (1970) have studied the asymptotic efficiency

of R, relative to the means procedure of Gupta (1956) for normal populations

1
and the efficiency of R2 relative to the procedure of Gupta (1963) for gamma

populations both in the case of k = 2 populations.
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Let ™ and Ty be independent normal populations with means %0 and
60+9(e > 0) and common unit variance. Let R denote Gupta's means procedure.
“For both R] and R satisfying the P*-condition, the asymptotic efficiency of

Ry relative to R is ARE(R],R;e) = ]im€+0nR(€)/nR](€), where nR(E) and an(E)

are the sample sizes for which E(S)-P(CS)=€ for R and Rys respectively. It

is shown by Gupta and McDonald that
Y 2¢§e//2§-1 2

82(0) = [ o2(x+0)p(x)dx-62(6/v2).

where

-0

As o decreases to zero, we see that ARE(R;,R;0) ~ 3/m = 0.9549.

Some exact ca]cu]atfons for the probabi]ities of choosing ™ and Ty
using rank sum procedures can be made using Table C-1 of Milton (1970) for
6 = .2(.2)1.0, 1.5, 2.0, and 3.0. This table tabulates the distribution of the
Wilcoxon two-sample statistic under the normal shift alternative specified byv
6. As an example, for k=2,n=6, and P* = .910177, the rank sum selection

rules take the form: select ms iff Ti > 31, i = 1,2. If.the underlying |

distributions are normal with means 0 and 6 = .2 with un{f variances, then

by summing the appropriate rows in Table C-1 we find P(T] > 31) = P(Choosing
w,) = .8465 and P(T, > 31) = P(Choosing 7,) * .9518.

Let R’ denote-Gupta's procedure for gamma populations. Let the scale

parameters of ™ and ) be 8y and 838> 0 > 1. In this case

ARE(Ry,R';30) = [4re+1§32231og %, | ‘ (5.2)
where now :
82(0) = 1-2(1+6)" " + (26+1)7" + a(2+8) 7 -20%(1+0) 2.

As 6 decreases to 1, we have ARE(RZ,R'; 8) »~ 3/4.



15

In another paper Gupta and McDonald (1972), have compared the procedures

R R2, and R3 based on rank sum statistics with a procedure Rm which they

'l,
proposed for selection from gamma populations in terms of the guaranteed
life. Let s have the associated density function

-(x-05)/A

[ar(r)]7 L (x-0,)/21" e ., x>,

f(x—ei) =
0 elsewhere,

where r(> 0) and A(> 0) are known common parameters. In Tife-testing problems,
the parameter 6 is called the guaranteed life time. We can assume with no 1oss
of generality that A = 1. Let Yi'= X1[1], be the smallest order statistics based
on n independent observations from m;. It is known that Y, is complete and
.éufficient statistic for 8- The procedure Rm of Gupta and McDonald for selec-

ting a subset containing the population with the largest guaranteed life is

Rm: Select ms iff

Vi > Ypups | | (5.3)

where b = b(k,n,P*) > 0 is chosen to satisfy the P*-requirement. They have

shown that &q;'

k-1

” inf P(CS]Rm) = ? H™ ' (x+b)dH(x), (5.4)
0

Q
where H(x) is the cdf of Yi when 6. = 0.

In the special case of r = 1, the exponential case> (5.4) reduces to

inf P(CSIR ) = w0, (5.5)
] < .
-nb.

where w = 1-e For this special case, Gupta and McDonald (1972) have tabulated

the values of b for k = 5, 103 n = 2(1)25; and P* = 0.75, 0.90, 0.95, 0.975, 0.99.
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 Consider three exponential populations with_]ocation parameters 8, = 0,

6, = 63 =6 > 0. In this case, Gupta and McDonald (1972) have compared the
expécted subset sizes for the procedures R], R2, R3, and Rm for e* = 0(0.1)1.5
and P* = 0.6, 14/15. The computations indicate that (1)'R] and R2 perform
equally well for P* = 0.6, (2) R2 and R3 perform equally well for P* = 14/15,

(3) E(S|R2) = E(S|R3) 5_E(S|R1) for all o, equality holding for 6 = 0, (4) Rm
performs better than all the distribution-free procedures for the smaller value
of P*, (5) for the 1argef P*, the distribution-free.procedures are better than
.Rm for o < 0.5, and.(6) for 1afger values of 6(6 3_1.1)Rh is the best among

the four rules. |

Ofosu (1974) has studied the procedure Rm and compéres its performancev
wdfh a procedure that excludes from the selected subset those populations .for
which Yi js sufficiently below Y, the average of the Yi' Based on a comparison
of the eXpected subset sizes, Ofosu concludes thaf Rm is superior to the rules
based on averaged Yi in almost all situations. For those rare situations where
Rm is not superior, it is only slightly inferior.

“Gupta and McDonald (1970) compare the performance of selection rules R]-
and R3 in some Monte Carlo studies. Normal and logistic distribptions With
variance unity were studied for different configuratioﬁ;“of their means. For
k =3 and n"= 2,3,4, these configurations were taken to be (0-1,0,0), (0-2,0,0),
(0-5,0,0),(1-0,0,0), (2-0,0,0), (0-1,0-1,0), (0-2,0-2,0), (0-5, 0-5,0),
(1-0,1-0,0), (2:0,2-0,0). The number of simulations were 500 or 1000. The
logistic distribution was chosen because equally spaced scores such as ranks
yield 10cé]1y most powerful tests for the Tocation parameté;‘of this distribution.
The constants d and D were chosen to yie]d.approximately the same P* in the case
of identica1 distributions. Then the ratio of kP(CS|R) and E(S|R) was computed

for both rules R] and R3. The bigger ratio for a rule indicates it to be
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better than the other. For example, for k = 3, n = 2, then D = 2 and d - 3
give the probability 14/15 for the jdentical case. Using the configuration
(0¢1,0,0) for the normal means, the two ratios are 1-012 for R] and 1-005 for

R, so that R] seems slightly better than R3. Using the configuration (0-5,0,0),

3

R, was slightly better than Ry; the ratios being 1-045 for Ry and 1-049 for R,.

3
These Monte Carlo studies showed no significant uniform superiority of

either of these ﬁroceduresf However, R3 seemed to perform slightly better

than R1 in the cases where the two highest parameters are equal. No difference

in the performance of R1 and R3 was noticeable when the distribution changed

from logistic to normal. In all cases the frequency of correct se]ections‘for

R, was higher than the theoretical value exactly calculated for the identical

1
distributions. Thus, there was no indication that the infimum of the probability
of a correct selection does not take place when all popu]ations are 1dent1cé]1y

distributed as normal or logistic distributions under shift in location.

6. Seiection Procedures Based on Pairwise Ranks

As noted earlier the least favorable configuration over @ for the -
se]ection rule R](G) is nbt’known'and a counterexample exists showing that the
infimum of the probability of a correct selection doesxpot'occur when all
popu]atﬁohs aré identically distributed (Rules of the form R3(G) do not share
this diffiéu]ty). Hsu (1980) overcomes this difficulty by constructing a
rule based on pairwise rather than joint ranking of the samples.

X X:., and

(i) Sl o
Let Rjg denote the rank of le within X11,...,X1n, 5170 %5n

. n - .
let R§1) = ) Rgl) be the rank sum statistic for ™ compared to w.. Let
- 2=1
{D§J1), L = 1,...,n2} denote the collection of nZ ordered differences Xiu'xjv’
i} ' (31) = gianiptdi)y g (31) ; i
“u, v =1,...,n and set Dmed = med1an{Dl }, i.e., Dmed is the usual Hodges
1

j=1

D(ji) where
m

ed °

Ine-~=

Lehmann (H-L) estimator of 8;-0;- For i=1,...,k, let Mi=k_
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Dé;;) = 0. The procedure proposed by Hsu for selection of the population with

the largest 05> denoted by Rp, is as follows:

R,: Select TS iff

R:
' M; = max M; or max R(i) < rn(P*), (6.1)
1<j<k j#i .
where rn(P*) is the smallest integer such that Po[max R§i) < rn(P*)] > P* and

j#i
PO(-) indicates the probability is computed assuming all populations are
identically distributed. '

The procedure RR does not depend on the pairwisé ranks alone. However,

3 5 _max M." portion is small when n is large,
123<k

and is included to insure that a nonempty subset is selected. The constants

the contribution from the "M

rn(P*) can be obtained from Steel (1959) for P* = .95, .99, k = 3(1)10,

n = 4(1)20; from Mi]]er‘(1966, Table VIII) for P* = .95, .99, k = 3(1)11,

n = 6(1)20(5)50, 100.

Hsu also investigates the Pitman efficiency of the RR procedure compared
to a means procedure (with common unknown variance) and shows it to be the

same as the Pitman efficiency of the Mann-Whitney test re]a?ive to the usual

t-test. —.
Letting ng;) j_Dgg;) 5,..§_D(j;) denote the n’ ordered values of Diji),

AN U |
m=r_(P*) - n(n+1)/2, and D('1) = k'] ) 0(31), an alternative procedure was
n (m) J#'I (m) _

also suggested by Hsu and is given by:

[ :

RR. Select T iff
min(D§ﬁ1) - Mj) > 0 or max R§1) < r(P*). (6.2)
j#i J#i |

- The subset selected by Rﬁ always contains the subset se]ected‘by RR; however,

the two rules are equi-efficient in terms of their Pitman efficiencies under

the location model.
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7.. Selection Procedures Based on Vector Ranks.

In the preceding procedures.R], R2’ and R3, the statistics Hi are defined
using the ranks of the observations in the pooled sample. In cases with
equal sample sizes, vector-at-a-time sampling can be used éffective]y to
remove block effects, such as in a two-way layout, and to reduce data storage

requirements. These procedures cover, for example, models of the form

X.. =p + 8., +B. + €.

i j j i3 i=T1,....k, J=1T1,...50, ‘(7.1)

where 6 refers to a population effect, 6 to a block effect,and € to an error
term with any {(not necessarily normal) continuous distfibution.

'Ij,xzj’--‘n,ij
.the k observations of the vector. Let Z(1) < 2(2) <...< Z(k) denote an ordered

Let (X ) be the jth vector and R, be the rank of Xij among

sample of size k from a continuous distribution G. Define a(r) as in Section 2, i.e.

a(r)

it

E[Z(r)|6], r=T1,...k,

and set

_ -1 T .
J; = jZ] a(Rij)’ i=1,....k. - (7.2)

McDonald (1972) investigated the classes of procedures Ri(h;G) and
Ré(g; G) which are defined using the two classes of fqggtibns {h(x)} and
{g(x)3, where h and g are nondecreasing real-valued functions defined on
the interval I = [b(]),b(k)] and h satisfies the additional property that

h(x) > x for all x € I. The two classes of procedures are

Ri(h;G): Select iff

and

Ré(g;G)r Select w, iff

g(J;) > 0. (7.4)
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Particular members of these classes that are of special interest are
Ri(G) with h(x) = x+b, b > 0, and Ré(G) with g(x) = x-d, d real. Of course,
Ré(g;G) can se]eét an empty set; however, the rule RZ(G) will necessarily
. choose a nonvoid subset if P* > .5 and n is large. The treatment of Ri(G)
and Ré(G) para]]e]s that of R1(G) and RZ(G) described earlier. The infimum
of P(CS) over @ is attained at a point in 2 in the case of Ri(h;G). HoWever
as in the case of R](G), it is not generally true that the infimum is.attained
at an equi-parameter configuration. But the statement is true in the case of
R5(g;6).

When b(r) = r, nHi = Ti’ the rank sum statistic associated with Ty
McDonald (1973) has discussed the related distribution of U = max1<j<k.Tj-T1,
where the distributions Fi are identical. He has tabulated P(U 5753‘f0r k = 2,
n=2(1)20; k =3, n=2(1)8 k =4, n=2(1)5; and k = 5, n = 2,3. For
-'P(U 5_b) = Px = (0.75, 0.90, 0.95, 0.975? and 0.99, he has tabulated the
asymptotic value of b for k = 2, n = 10(5)20; k = 3, n = 6(1)8; k =4, n =
3(1)5; and k = 5, n = 3. '

The investigations of McDonald (1973) with respect to slippage configuration
based on simulations show that Ri and Ré (which are Ri(G) aqd'Ré(G), respectively,
in the special case with b(r) = r) are roughly equivalent: when the under]yfng

distribution has a long tail and the slippage is small, and that R1 is better

otherwise. These rules have been used by McDonald (1979) in an analysis of state
traffic fatality rates recorded by year. 7

Lorenzen and McDonald (1980) further investigate the probability of a
correct selection using rule Ri by Monte Carlo simulations covering a wide
range of distributions and parameter configurations (both location and
scale). In all cases investigated the LFC, i.e., the configuration minimizing
P(CS), appeared to be the equi-parameter configuration. This suggests that

the practical inference corresponding to the selection procedure need not be

restricted to the slippage configurations.
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In another paper, McDonald (1975) considered the case of three exponential
distributions with parameters (guaranteed lives) 0 = e] 5_92 = 63 =0 witﬁ
samples of size two. For the rules R], R2, and R3 (using rank sum statistics
Ti) the infimum of P(CS) takes place when 8,6, = 65. However, it is shown
that the expected subset size is not bounded above by kP*, a property enjoyed
by many parametric procedures [see Gupta (1965)] for the location parameter
casé under monotone likelihood ratio conditions.

Within the context of a block design (2-way classification) Lee (1980)

considers another type of selection rule based on the statistics

n
Yi = jz1 Yij’ i=1,...,k, where

1, if X.. = max X .
1 T<a<k 2
i = (7.5)
0, otherwise.
The selection rule is stated as
RMS: Select ji iff
Y. > max Y, - dMS’ (7.6)

L PR

where dMS js the smallest nonnegative integer required to insufe the probability
of a correct selection is no less than a prescribed P*. The procedure is a
multinomial selection rule (hence the subscript MS) designed to choose a

subset to contain the population having the highest probability of yielding

the largest observation. An analogous rule for choosing a~subset to contain

the population having the highest probability of yielding the smallest

observation is also defined.
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The constants dMS required to implement the procedure RMS have been
determined by Lee (1980) using Monte Carlo simu]ation; assuming the underlying
distributions are identical, for k = 49'and n = 17. These values were then
used to select subsets of states on the basis of traffic fatality rates
recorded over a perfod of 17 years. Gupta and Nagel (1967)‘in§estigated
" the least favorable configuration in a corresponding multinomial formulation
and. concluded, based on some numerical case studies, that the identically
distributed case appears least favorable. Panchapékesan (1971) proved that

the idenfica]]y distributed configuration is asymptotically least favorable.

8. Selection Procedures Based on Hodges-Lehmann Estimators

Let Xij (3 =1,...,n3 i =1,2,...,k), k > 2, be independent random
observations from k populations with continuous cdf's F(x-ei), 1= 1,2,...,k,
with common variance 02 = 1. The following problems havé been considered by
Bechhofer (1954) under the normality assumption:

(i) Select a "good" population, the ith population being regarded as
good if 05 > e[k]—A, for some preassigned A > 0(i = 1,2,...,k;1); |

(ii) select the best t populations, i.e., the populations wiph location
parameters é[k-t+1]""’e[k] without regard to order; '

(iii1) select the best t populations with regard to order.

His approach, ‘now known as the "indifference zone“ approach selects the
"best" populations with a guaranteed minimum probability P* (preassigned) of
correct‘se1ect1on when (»1,. . ) 11es in a subset, say Q of the. parameter
space. The region Q' is called the preference zone and Rk-Q- is the

indifference zone. Some of the procedures discussed earlier use rank

statistics for selection purposes.
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However, when formulated for the problems discussed in this section, the s1lippage ‘con-

figuration of parameters defined by the indifference zone is not necessarily the LFC.

The slippage configuratioh as pointed out by Puri and Puri (1969) is least
favorable when the parameters satisfy the relation 6p.q - G[j] =‘0(n'%)
for al1 1 < 1, j < ks i # J.

Ghosh (1973) has proposed alternate procedures, based on one-sample
Hodges-Lehmann estimators of ei's under the additional assumption that
F is symmetric about the origin. Ghosh's procedures give in all these cases
least favorable configurations for finite n without needing any restriction
on the parameters. |

Gupta and Huang‘(1974) have proposed some procedures to select. a subset

of the given k popu1ations which is guaranteed to exclude é]] bad populations

with probability not less than some preassigned P*.

1, 07 . o
Let Rij =5t 221 u(lxijl—jxizl), j=1,2,...on, 1 =1,2,...,k, where
u(t) = 1, %3 or 0 at t>, =, or<0. Thus Ry, is the rank of ‘Xijl among
IXsqlaeeeslXyy b (T2 5;k;.1 <J<n). Let Xi= (X;q5...,%;,). Consider
the one-sample signed rank statistics
() = sontx B D )
h(X.) = sgn(X,.)EJ(U . (8.1
=i j=1 ij nRij

-

i=1,2,...,k; where sgn(t)= 1,0 or -1 according as t >, =, or < 0;

Un] < Upo <e..2 U, are the n ordered random variables from a rectangular
_ ~1,1%u

(0,1) distribution, and J(u) = ¢ (—E—), where y(x) is the df of a random

variable satisfying v(x) + ¢(-x) = 1 for all real x.

The one-sample H-L estimators are given by

A 1, - |
8;(%5) = 7 (o7(X5) + 055(%5)3, (8.2)
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~i=1,2,...,k, where 6, = sup{a: h(X;-al,) > 01, 0,,(X;) = infla:
h(xi-aln) > 0}, 16 = (1,...,1) is an n-tuple with all elements 1.
A1l these statistics and estimators depend on n. The following '
property of location invariance (See Hodges and Lehmann (1963)) is

satisfied by these estimators:
91(2(1 + Cln) = 61()-(1) +C, o (83)

i=1,2,...,k, c being any constant. In the particular case when J(u) = u
or x{1(u) (the inverse of a chi-distribution with one degree of freedom) the
statistics become-the Wilcoxon signed-rank or normal-score statistics. In

‘the former case

. X; %5
0.(X;) =  med —J—z——l— i=1,2,....k.
1<j<y'<n |

Let e[]] 5_6[2] 5,..5_e[k] denote the ordered estimators and let 6(1)

be the unknown estimator associated with e[i] (1 <i<k).

An Elimination Type Procedure to Select a Subset Excluding All "Strictly Non t

Best" Populations

Let d(ei,ej) be a suitable distance measure betweeneeivand ej; the
. . " . noz = - \
population gy is strictly non t best" if d(e[k-t+]]’ei) e[k-t+]] 05 > 4,
where A is a given positive constant. Let m denote the unknown number of

"strictly non t best" populations in the given collection of k populations.

A

Clearly, we have 0 < m < k-t. Let @ = {8: o] - e[m] < e[k-t+1]"A,f-e[h+1] <o

A
A

< Ork-t+1] =
Then '

Q= yu .
=0m
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Let CD stand for a correct decision, which is defined to be the selection
of a subset which excludes all the "strictly non t best" populations.

Gupta and Huang (1974) define the rule R as follows:
R: Reject ms iff

Py

8 < e[k-t+1] - A+ d] (0 < dy < A). (8.4)

The constant d] is chosen to be the smallest number such that

inf P, (CD[R) > P*.

ocn 2
‘Gupta and Huang (1974) have shown that PB(CD|R) is a nonincreasing function
of e[i] (i =1,...,m) and a nondecreasing function of e[i] (i = m1,...,k).

Hence

inf P_(CD[R) = inf  inf P, (CD{R).
6EQ = O<m<k-t geq =

It is known that if ei's are true values of the parameters, then under

some regularity assumptions vn (éi(xi)-ei) B(F)/A tends asymptotically
1 -

(as n > =) to Y, with N(0,1) where A” = 1 | 9%(u)du, B(F) = [ 3o 3(2F(x)-1)dF(x).

0 0 :

These statistics Yi's are mutually independent. This leads to a Tower'bound.
on the infimum of the probability of a correct decision for 1arge.n as
follows:

inf P_(CDIR) 3 —rreibrrr [ oK™ E(xedvin)ol ()1 t-r-1

ocn O 2 PI(E-r-1)7 4 x+dvn)e’ (x)[1-9(x)] w(x)dx, (8.5)
where r=min(t, k-t-1), d = /0.864 d] (or d1) for the Wilcoxon (or normal
score) case. For the case F(x) = o (x), then using normal scores the inequality
(8.5) is an equality and the result agrees with that obtained by Carroll, .
Gupta and Huang (1976).



It has also been shown that

Vim inf P_(CD|R(n))
Mo 8EQ =

Tim ﬂttTnT LT okt B-lgfl dy/me” (x)[1-0(x) 15" Tp(x)dx
e ! |

. B(F)
1, since o

d-l>0’

so that the sequence of rules {R(n)} is consistent wrt Q.
Since the cdf of each 61(51) is stochastically nondecreasing in 8: 5

it follows that for every 6 € 2 and 1 < 1 < j < k.

PQ{R(n) rejects “(i)} Z_PQ{R(h) rejects "(j)}’

and thus R(n) is a so-called monotone procedure.

26
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