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Abstract

The form of distributions with sufficient statistics for multi-
~ variate location parameter is discussed, and a formula for the rank
of such family is obtained. We also give generalizations of these

formulas for the case of general transformation parameter.
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1. Introduction and Summary

The important role of exponential families in mathematical statistics
is well known. This special role suggests a closer examination of such
families in the multivariate case where reasonable alternatives to multi-
dimensional normd] distribution are sti]] scarce. A study of more general’
exponential distributions, which are generated from a single member of
the family by a group of transformations, . is also of interest.

In this paper we discuss the form of exponential families with multi-
variate location parameter. Logarithms of densities of these distributions
can be represented as exponential polynomials. This result in one-dimen-
" sional case was obtained by Dynkin (]95]). We obtain another analogue
of a Dynkin's one-dfmensiona] result:. an inequality for the rank of such
family is derived in Section 2. It is seen that in the case of a real
location parameter these bounds reduce to Dynkin's formula.

In Section 3 we obtain similar results for abstract transformation
parameter. A general formula, which gives the logarithm of a density as
a matrix element of a finite dimensional representat%on of the group,
is investigated. In the case of commutative group this formula is used
to show that exponentia1 families again correspond to exponential
polynomials, i.e., the logarithm of densities belongs to the algebra of
functions generated by complex valued additive and multiplicative
homomorphisms of fhe group. In the case of a locally Edhpact_group a

formula for the rank similar to that of Section 2 follows.



2. Sufficient statistics for Tocation parameter and their rank

Let P be a probability distribution given on Euclidean space BQm,
and let Pe’ ee:Rm, denote a translate of P by a vector 6, i.e.
Pe(A) = P(A-6) for all Borel sets A. It is known (cf. for example
Rukhin (1976) or the next section) that the family {pe, 9 eﬂlm}, where Pg
is the density of Pe with respect to Lebesque measure, is exponential
one if and only if the density p of measure P admits a representation
b <a,,u>
log p(u) = J 0;(u)e ', (1)
i=0
_ Here Qo(u),...,Qb(u) are.polynomials in m-dimensional vector u with
complex coefficients, g+ .53, are different m-dimensional.vectors
-of complex numbers and <a,u> signifies thé dot product of vectors
a and u.
In the case m=1 Dynkin (1951) established a useful formula for
the rank r of the corresponding exponential family. Namely he
proved that the density (1) forms an r-parameter exponential fami]y,
where
b

r = max(k0 -1,0) + 7}
j=

1(k1. +1). o (2)

Here ki denotes the degree of polynomial Pi and it is assdmed that
in (1) a0=0.
To generalize this formula to the case of arbitrary m we need

the following notation.

Let
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and js > is for some s}.
Denote f = f(Q) = card F and g = g(Q) = card G. (Here card A is just
the number of elements of a set A).
In the case m=1 clearly f(Q) = 0 and g(Q) = 1 for any polynomial Q.
In the case m=2 if, for example, Q(u) = u%uz, so that k=3, then
F={(3,0), (0,2), (1,2), (0,3)} and f(Q) = 4. Also G = {(3,0), (2,1),
(0,2), (1,2), (0,3)}, so that g(Q) = 5.

It is easy to establish inequalities
(™k) > g(Q) > £(Q)

and —

k-1
. g(@) > (5.

Theorem 1. Let pe(u) p(u-9), u, o € R™, be a location parameter
density which constitutes an r-parameter exponential family. Then
: b <aj,u> -
log p(u) = Qy(u) + .Z]Qi(u)e , ]
'|=
where Qi are polynomials of degree ki’ i=20,1,...,b, and a;, i=1,...,b

are non-zero compliex vectors. Also
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Here fi = f(Q.

1), i=1,...b; 9y = g(QO).

Proof. Let X dencote the linear space spanned by functions log

pe(u) - log p(u), 8 € R™ and constants. By the definition

r=dimx - 1.
Let
' J J
Q;(u) = Q(u) = ] Yyeed, U
_ m
and a; = a # 0. Then
i i
e U (urt) - W q(u) = W I u]]...ummpi ; (1)
. -i], ,-‘m ].-.m
where
m- - j. j.-i
p, =™ T e [__] Gt % -4
LERERR LS TR IS 19 s 10
s=1

Let ki be the number of linearly independent exponential polynomials

P; ; (t). Clearly k. does not exceed the number of these polynomials
1y

-

which are not identically zero. The number of the polynomials, which

are equal to zero, conincides with the number of coefficients q; j

N ]-..m

such that qj]_._ _ = 0 for all Jyp 2 i 24, e, with f(Qi)'
i, T

Since the number of all monomials uy ...umm of degree at most ki is

equal to
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we see that the impact in the dimension of ¥ contributed by the term

<a, ,u>
e ! Qi-(u), a; # 0 does not exceed

() - 5

One also has

Qo(u+t) = Qo(u) = ; Z j u] ...Um qi]...im(t)’
preeeain
where ' ]
iy J]>1]’ Iz ) ~dms=1 s
(J‘s --s )#( ]’ "?1m)
m+k0
Thus if ky > 1, the polynomial Qy(u) contributes at most () - 9(Q)

i i
basis functions of the form u]]...umm. Therefore in this case

m+ke b mHk, .
dimx<( ") - g, +_Z][( m )il
]:

If ko =—‘0, the basis of x is formed just by linear combinations of
. i i
functions g<dU> u]]...umm and constants. Hence
b mtk. - -
dgimy < JL(, ") -f1+1. ._
i=1

Combining these formulae we obtain (3) and complete the proof.

Corollary. Under notations of Theorem 1

Oy -1 00+

m

itk =1 ko mtk.
r < max[( )



" Indeed for k, > 1

In the case m = 1 inequality (4) reduces to Dynkin's formula (2).
Notice that the numbers f (Q) and g (Q) are not invariant under

nonsingular linear transforms of the argument, but the rank r is

invariant. Thus by taking a particular linear transformation one

can obtain a sharper bound for r.

3. Exponential families with transformation parameter

In this section we consider the case of general transformation
parameter. Assume that a topological group G of transformations acts

transitively on a space X. Thus we can suppose that X is the left
cosets space G/H where H is a subgroup of . Define fhe transformation
parqmeter family {Pg, g €G} as {Pg(A) = P(g']A) for all measurable A}.
We shall be interested in the form of measures which form an exponential
family. This is a natural generalization of the location parameter
families we have considered in Section 2. . '

Llet ¢ = {g:vPg = P}. Then C is a compact subgroup of ¢ and the
parameté} space @ should be identified with G/C.

Assume that there exists a relatively invariant measure u on x

i.e. p(gA) = x(g)u(A) where x is a positive function. If

p(u) = gg—( ), is the dens1ty of P with respect to u, which we assume

dpP
to be continuous, then x(g~ )p(g u) Hﬁg (u), ue 2. Since

x(glgz) = x(g])x(gz), so that x(c) = 1 for all c€C, we see that
¢ = {g: p{gu) = p(u) for all u}.
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The next result gives thev form of densities p from exponential
families. Formula (5) was proved under different.assumptions by
several authors (see Maksimov (1967), Roy {(1975), Rukhin (1975)).
The uniqueness up to equivalence of a cyclic finite dimensional
representation in this formula apparently was not noticed earlier.

By M' we will Adenote the transpose of a matrix M.

Theorem 2. If the family of densities {x(g'])p(g—]u), u€X, geEy}

constitutes an exponential family, then there exists a matrix homomorphism

M of the group (, 1i.e. M(g]gz) = M(g])M(gz), 91> 9 €G such that

Tog plu) = < M(u")e, & >. (5)
“"Here 2,A are fixed vectors of dimension equal to that of M(g-),
M(c)e=2 for all c€c, M'(h)a = A for all he¥d. The vectors M(g)s,
g €G, span the space< and the vectors M'(g)a, g €4, span the dual space
2. fhe representation (5) is unique in the following sense: if (5)

holds and

_ -1
Tog p(u) = < M (u ")aq58, >
for some matrix homomorphism M] and vectors 24 and Ay with properties

specified abave, then there exists a nonsingular matrix C such that

My (u) = ¢ "M(u)C and Ca, = z,(c‘])'A] = A

Proof. Under our assumption the linear space £ spanned by func-
tions log p(g']u), g€G is finite-dimensional. We can -c;)nsidgr the
function log p(u) as defined on G. Then log p{(gh) = log p(g) for
all he#d, ge€G. Under this agreement all functions from £ are right

invariant under multiplication by elements of ¥. The space £ is in-

variant under all operators L(g), g€¢, L(g)f(u) = f(g-] ). Let M{g)
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denote the restriction of the operator L(g) onto #£. Clearly for

all fex

M(gqM(gp)f = M(g))F(gy'+) = f(g;

g7'+) = F((g,9,)7") = M(g,9,)f,
so that |
M(gq)M(g,) = M(g]gz)-

Let A be a linear functional such that < f, A > = f(e), where e
is the identity element of the group . (Note that f(h) = f(e) for
he#, fex£). Then for all hedy and all f ¢

C<M(h)f, A > =< f, A,
so that M'(h)a = A, heH. Also

Tog p(g™") = < M(g)z, & >,
‘where ¢ denotes the function Tog p(-) considered as an element of 2.
Since by the definition of 2, M(c)2 = 2 the formula (5) is.proved.'
It follows from the definition of the operator M(g) that the
vectors M(g)s, gG(j, span £ and that the vectors M'(g)a, g€G, span £'.
If log p(u) admits another representation of the form (5) then the
space &£ contains all functions of the form < M](u'])z],.M'(g)A] > S0
that with some matrix C N |
. M](u)sz1 = CM(u)s .

It fo]]ows‘immediately that %, = C& and M](u) = C']M(u)C;

As an example to Theorem 2 notice that in the case of multivariate

location parameter every matrix homomorphism of R" has‘ﬁpe form

M(u) = expluy Ny +...+ umNm},

where N., i = 1,...,n are commuting matrices. Therefore the family

{p{u-2)1 is exponential one if and only if formula (1) holds.



We generalize this example to the case of a commutative group G.
In this situation all matrices M(g) commute, M(g])M(gz) = M(gzg]) =
M(gz)M(g]). Therefore (see Suprunenko and Tyshkevich (1968) p. 16) the
whole space ¢ can be represented as direct sum of subspaces
Wps 0= 1s...5N, which are invariant with respect to all operators M(g).
The irreducible parts of restrictions of M(g) onto wn are equivalent,

while for n#s the irreducible parts of restrictions of M(g) onto Nn

and Wy are not equivalent. Shur's lemma shows that all irreducible
parts of restriction of M(g) on wn, n=1,...,N, are one-dimensional
operators. Thus all matrices M(g) have the form M(g) = 77! (9’1)T,
.-where U(g) is a quasi-diagonal complex matrix with blocks U](g),...,UN(g)
on the principal diagonal, and Un(g);is lower triangular matrix of
“dimension W, = dim wn, n=1,...,N with the same diagonal elements

d (9), d (q) # ds(g), n # s.

It is clear that
d (9,9,) = d, (g;)d (9,),
so that all d . n =1,...,N are different non-zero m;itip1icative
continuous homomorphisms of G into complex numbefs. Also if a
density p forms an exponential family with transformation parameter,
i.e. formula (5) holds, then
N -

Tog p(g) = <U(g)r,s> = n§]<un(g)kn,sn>. )

Here 'x = T2, § = (T'])'A, and An(sn) is the projection of A(s) onto

wn(wa), n=1,...,N.
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One has U, (9) = d (9)Y (g) = d (g)( I +V (9)),
where Yn(g]gz) = Yn(g])Yn(gz) and all eigenvalues of Yn are equal to one.

W .
A]so"Vn is a nilpotent matrix, Vnn = 0. Therefore the function Sn(g) =

n

<Vn(g)An,6n> is a polynomial of degree at most wn-1, i.e.

w _
[L(g) - 11 "s (+) = o.
Indeed . e
_ oy PO -1 " - ¥n
0= <V (e)ay,8,> = <[d (g7 1)Uy (9)-11 ™ ,6,> = [L(g)-11 Mg (+)
Also Qn(g) = <Yn(g)xn,6n> = Sn(g) A8 > is a polynomial of the
same degree, and we have established the following result.

Theorem 3. Let(;be a commutative group. If a density p generates

an exponential family with transformation parameter from'q,'then

N
log p(g) = [ d (9)Q,(q),
n=1 ‘
where dn(g) are different complex-valued continuous multiplicative
homomorphisms of G, and Qn(g), n=1,...,N are polynomials on ¢ of the

form

Q,(9) = <Y (g)x .68 >, ~ (8)
where Yn is a matrix representation of the group Q‘gjtﬁ all eigenvalues

being identically equal to one.

-

If G is locally compact Abelian group then there is a finite number,
say m, of -different linearly independent additive homomorphisms x, i.e.
x(g]gz) = x(g]) + x(gz), and every polynomial Q over ¢ admits a

representation

J J i
e) = Jay x31(9)-.x."(g)
m

with complex coefficients qj Thus by using the proof of Theorem 1

173
one easily obtains an inequality for the rank of the corresponding expo-

nential family. Note, however, that if ¢ is a compact group, then



-1 -

necessarily all additive homomorphisms of G are identically zero, so that
every polynomial is a constaﬁt. Thus fn the case of a compact group log
p{u) is just a linear combination of multiplicative homomorphisms, or
characters, which are homomorphisms of ‘G into the unit circle.

Ih the case of a locally compact Abelian group every polynomial has
the form (6). quever if, say, ¢ is a Hilbert space considered as an
additive group and Q(g) = || g 2, then Q is a polynomial of degree two,

but Q cannot be represented with the form (6).
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