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ABSTRACT  This paper is in continuation to an earlier paper (Neyman
and Puri, 1976), which deals with a hypothetical structural stochastic
model of radiation effects in living cells. This model incorporates,
among others, two important details of the mechanism, overlooked in
its mathematical treatment by the previous workers. The first one is
that the passage of a single "primary" radiation particle generates a
"cluster" of secondaries which can produce "hits" that damage the
11vihg cells. The second detail concerns the time scales of radiation
damage and of the subsequent repair. The events of arrival of a primary
particle, its generation of secondary particles and their causing "hits"
on the sensitive targets within the cells, all occur for all practical
purposes instantly. On the other hand the subsequent changes in the
damaged cell, such as repair, etc., appear to require measurable
amounts of time. While the biological and physical justifications for
some of the underlying assumptions of the model were discussed in the
previous paper referred to above, the present paper is concerned main-
1y with the mathematical details and also how the model attempts to

explain some of the empirical findings available in Titerature.
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1. INTRODUCTION The purpose of this paper is to present certain de-

tails of and also some novel developments in the study initiated five
years ago and briefly summarized in Neyman and Puri (1976). This study
concerns the chance mechanism of radiation effects on single Tiving
cells. The literature on the subject is quite rich. Important sur- -
veys are due to Hutchinson (1966), Upton (1974) and Mole (1975). Sto-
chastic models of the phenomenon were proposed by Payne and Garrett
(1975a, 1975b, 1978). Our own approach incorporates certain detaiis

of the actual mechanism not included in the earlier studies.

The phenomenon of irradiation is composed of at least two different
parts: The source of irradiation emits particles which we label “primary"
particles. When a single primary particle crosses a living cell, it
generates a cluster of particles that we label "secondary?. The sizes
of clusters depend very much on the kind of irradiation, namely on
whether it is of lowor high linear energy transfer (LET). The low LET
radiation is exemplified by X~rays and by gamma rays. Examples of high
LET are a-particles and neutrons. Clusters generated by low LET

primaries contain few secondaries. Those generated by high LET



primaries contain many secondaries. Figure 1, reproduced from Neyman

and Puri (1976), illustrates the origin of the idea of clustering. This
figure is based on a photograph of a cloud chamber exposed to a certain
kind of irradiation. The white lines or "stripes" mark the tracks of
various primary particles. These lines consist of minute droplets formed
about ions generated by particles, primaries or secondaries. The greater
the width of the track, the more are the ions and thus the greater is

the number of secondary radiation particles. Also the width of the
visible track characterizes the distances traveled by secondary parti-
cles generated by a single primary. It is visualized that the irradia-
tion damage to cells is mainly due to secondary particles that "hit"

the sensitive parts of living cells. For details see Berendsen (1964).

Figure 1 here (for legend see p. 36 )

Another detail of the phenomenon of radiation damage that attracted
our particular attention is the difference in the time scales of radia-
tion damage and of the subsequent processes developing within the
damaged cell. The events of arrival of a primary particle, of its genera-
tion of a cluster of secondary particles, and of their "Hits" on .the sen-
sitive targets within the cells, all occur within a minute fraction of
a second, that is for all practical purposes, instantly. On the other
hand, the subsequent changes in the damaged cell, such as repair, etc.,
appear to require measurable amounts of time. Here it is appropriate
to mention that, although originally we were inspired by the experi-
mental work on animals such as mice, particularly due to Upton, et al
(1964) and Upton, et al (1967), our present work is limited to radia-

tion effects on cells of some homogeneous tissue. The biological and



physical justification for some of the underlying assumptions were

discussed earlier by the authors (1976). In the present paper, we shall be
mainly concerned with the mathematical details. Also the implications of

the model are qualitatively compared with some of the empirical findings avail-

able in literature. Here, some fresh mathematical work appears necessary.

2. STOCHASTIC MODEL OF RADIATION EFFECTS ON SINGLE CELLS In order to

allow some further flexibility for the underlying mechanism of the phenome-
non in question, we consider a stochastic model which is slightly more
general than the one considered earlier in Neyman and Puri (1976).

We consider a hypothetical experiment jn.which a live cell is subjected
to a particular single kind of irradiation, perhaps gamma rays or a-particles
but not simultaneously to several such kinds. The experiment continues
over T units of time, with the preassigned total dose of irradiation
denoted by D. The irradiation is supposed to be administered at a con-
stant dose-rate, denoted by p. Thus D = pT. The assumptions of our
stochastic model are as follows.

(A1) Primary radiation particles arrive at the cell Poisson-wise at
the rate A(t) per unit of time and per unit volume. Here
A(t) =A>0for 0<t<Tand A(t) =0 for t > T.
(Az) Each primary generates a cluster of secondary particles. The
letter v designates a random variable representing the number of
secondaries in the cluster. No specific assumptions regarding
the distribution of v are made except that it has a finite
expectation denoted by vy
The numbers v of secondaries generated by several primaries
are independent and identically distributed. Symbol g(-) designates

the probability generating function (p.g.f.) of v.



(A3) The secondary particles of a cluster travel independently from
each other and independently from all other variables of the system.

(A4) The contemplated cell has two disjoint "targets" denoted by letters
R and K,respectively. Letter R connotes "repairable" and letter K
"killing". If target R is "hit" by a radiation particle then the
cell experiences a "repairable" damage. On the other hand, if tar-
get K is hit, then the cell dies or is'"inactivated". The two tar-
gets R and K are located in a region A within the cell called
"region of accessibility". We postulate: (i) the passage of a
primary radiation particle outside of A does not affect the cell
considered; on the other hand, (ii) 1if a primary crosses A, then
each of the v generated secondaries has the same positive probabilities
up and Ty of hitting the targets R or K, respectively.

It will be convenient to use the same letter A to designate
the volume of the region of accessibility A.

(A5) The generation of a cluster of secondaries by a single primary
particle and the subsequent possible hits on R and K occur
instantaneously.

The above assumptions (A]) through (A5) concern the physical aspect
of our stochastic model. We now turn to its biological aspect. Deaq
cells being of no interest, we begin by considering a cell that at time
t has a non-negative number k of unrepaired hits of target R. During
the subsequent short period of length h, say in [t,t+h), the following
events may occur in the cell considered.

(i) Some of the damages incurred may be repaired,

(ii) The cell may become cancerous,



(iii) The cell may die.
In addition, even if the cell considered has at time t no repairable
damage, it may die in [t,t+h) from causes not directly connected with
irradiation. Our assumptions regarding these possibilities are as
follows.
(Aﬁ) We assume that the probability of more than one of the above events
happening in [t,t+h) is o{h).
Given k, the conditional probability of a single repair in [t,t+h)
is
akh + o(h)
Given k, the conditional probability of the cell becoming cancerous
in [t,tth) is
gkh + o(h)
Given k, the conditional probability of the cell dying in [t,t+h)
is
[yk + s1h + o(h)

Here o , B , vy and & designate positive, possibly time
dependent quantities of which & refers to deaths not directly connected
with radiation.

The last assumption underlying our hypothetical process refers to a
cell that at time t is cancerous. We assume that the only change in it
occurring in [t,t+h) is death. The death will occur as a result of
three possible events in [t,t+h). One is a hit on target K, the other,
say the vy risk,of one of the unrepaired damages becoming lethal, and
the third, saythe & risk,of the cell dying from causes not directly

related to radiation.



The theory embodying the above assumptions refers to three random
variables X(t), Y(t) and Z(t), all referring to an irradiated cell,

defined as follows.

X(t) = number of unrepaired hits on R, present at time t,
Y(t) = number of hits on R, turning the cell into a can-
cerous cell during (0,t),
Z(t) = number of all the cell-killing events experienced during (0,t),

that is hits on target K and those due to risks y as well as 6.
To begin with we assume that all the rates A, a, B, ¥ and & are '
time-dependent and derive the expression for the joint p.g.f., say
Y
G(sq»55,835t) = E[s§(t) sz(t) sg(t)] , (1)

defined for |51| <1, i=1,2,3. This is done in the next section.

3. DERIVATION OF THE PROBABILITY GENERATING FUNCTION (1). Let for

t >0, k,2,m=0,1,2,...,
Pk’l’m(t) = PIX(t)=k, Y(t)=2, Z(t)=m] . (2)
Subject to the assumptions (A]) - (A6), since {X(t), Y(t), Z(t)} is a

Markov process, it follows in a standard manner from Kolmogorov-Chapman

equations, that for small positive h, we have

(t+h) alkHDRP gy (8] * BRIP4y oy ()

Pk,z,m

<+

¥ (kP o g (8) +shP o ()

k m

AAh 'ig':-o jZO P.isgzs\)(t) HZO P(V=n)P(€=k‘i ,ﬂ=m"ﬂ\)=n)

+

+ [1-k(a+g+Y)h -sh-xAh]Pk,z,m(t) + o(h) . (3)



Here, for the sake of simplicity, the argument t of functions a, B, v,
§ and A is suppressed. The summatjon symbol appearing as the coefficient of
AAh corresponds to the probability that the random number v of second-
aries generated by a primary particle, produce just enough hits £ on
target R and hits n on target K to bring the values of X(t+h) and Z(tt+h)
to the levels k and m from the possible values of i and j they could
have had at time t.
Subtracting Pkgzsm(t) from both sides of (3), dividing by h and
taking the 1imit as h + 0, one obtains the forward Kolmogorov system

of differential equations given by

i

de,z,m(t)/dt a(k+1)Pk+19£’m(t) + B(k+1)Pk+]31_19m(t)

+

¥ (k+])Pk+1,zsm—1(t) * SPk,z,m—l(t)

k m e
+ AA ) ) Pi ; z(t) Y P{v=n)P(g=k~i,n=m-j|v=n)
i=0 j=0 "°¥° n=0

- [larser)kssnllp , (8) (4)

with k.e,m = 0,1,2,... Multiplying both sides of (4) by sisssh and sum-

ming for k,2, and m, one obtains the first order partial differ-
ential eguation for G, given by
Gt+ [(u+8+y)51-u—852vys3]@45] = [)\Ag(ﬂ-is]+ﬂ253+]‘ﬂ'-]“"ﬂ'z)“‘)\A‘G(1‘53)](;, .
(5)

where we have suppressed the arguments of G and of its partial derivatives
Gt and Gs . This equation is to be solved now subject to the initial

1
condition

6(51,32,53;0) =1 . (6)
For this the auxiliary system of equations associated with (5) is given

by



ds
1 .4t dG (7)
TQ+B+ Y)S-I-Q-BSZ"Y 53 —T- AAg(ﬂ-]S-I+Tr253+]-TT'I—T"Z)—AA-G(]-S3) )

The first equation leads to
ds] .
o (a+B+Y)S] = - (a+BSZ+YS3) . (8)

Treating So and S5 as fixed, this equation yields the solution

t t . . T
51 = exp[ [ (atg+Y)dr] {C]- / (a+BSZ+YS3) exp[ - [ (a+B+Y)duldt} , (9)
0 0 0
or equivalently

t T

t
C, = sqexpl- [ (atatY)dr] + [ (a+Bs,*vs5) expl - [ (a+B+v)duldr , (10)
0 0 ' 0 '

where C1 is the constant of integration. Again the second equation of
(7), after substituting the expression for s, from (9), yields the solu-
tion for G subject to (6), as

t t
on G = -(1—53)é sdr-A j(; )\(T)[]-g<1r253+'|—1r.'-1r2+'

T T u
i exn[é(a+s+v)du]{C1-£ (u+852*YS3)eXp[-é (a+B#v)dVJdu})]dr.

(1)
Finally, substituting the expression for C, from (10) in (11), we have
t
G(s1,52,s3;t) = exp[-(]-s3) £ § (1) dre-
t
A é A(r){l—g[¢(s],52’53;r,t)]}dr], (12)
where A
$(5725,583315t) = (T=my=mp) + mpsg + m10(S1:59:533751) (13)
and



t
w(s],sz,s3;r,t) =5, exp[~ [ (a+Bt+v)du] +

T

& Sy

(d+852+753)exp[- } (atg+y)duldy . (14)

T

it

In particular, when A(t) = A for 0 < ¢ < T, and zero otherwise, (12)
becomes
t
G(s],sz,s3;t) = exp[—(l—sB)é s(t)dt -

min(t,T)
i (1-gLs(s7,5,,55375t)] }dT] . (15)
0
Furthermore, if a,8,y and & are all independent of time, then
using (13), (74) and {15), we have
G(s],sz,ssgt) = exp[—(1—s3)6t -
} ( ) (
AA {1-gld(s,,5,55,37 ]}dT} s 16)
max (0,t-T) 1772773 -
where
J(513529533T) = (]"TT}"TTZ) + 7\'253 + W1h(31352953;'f)3 (]7) :
h(sy:5558551) = sy exp[-(atgtv)t] +

(atps,+vs,) (atety) T [1-exp(-[atgtyI)] . (18)

The result (16) was reported earlier in Neyman and Puri (1976), in the
present form.

As mentioned in the Introduction, the subject of this paper includes
the comparison of certain empirical findings with the implications of the
hypothetical stochastic model just developed. In this connection it
appears expedient to modify the above formulae by altering the notation

so as to conform with that customary in radio-biological studies. One
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of them is tﬁe "dose" D of irradiation applied during the duration T

of the experiment, and we have D = pT, where p stands for tne dose-rate
of irradiation supposed to remain constant during the experiment. Fur-
~ thermore, the results of empirical studies are formulated with reference
to different kinds of irradiation, each characterized by the mean size
V1 of clusters and, presumably, of varying values of 6. It is not
improbable that values of & depend on the dose-rate at which the irra-
diation is applied.

In order to cover all the possibilities, we set

AAV] = ep ’

where 6 is a positive constant. Furthermore, in the discussion of shapes
of the so-called dose-response curves, it would be convenient to consider
§ as a function of p.

Now, equations (15) and (16) become, respectively
t
G(s],sz,s3;t) = exp[ é §(p,t)dr -

%o

min(t,D/p)
|
1 0

{]'g[¢(s]952953;Tat)]}dT] ] (19)

and

6(s7,55553t) = exp|-(1-55)8 (o)t -

I

{l—g[J(s],sz,s3;r)]}dr]'; (20)

<

% |
1 max(0,t-D/o)

In the rest of the paper, using the basic formulae (19) and (20), we derive
results considered to be the theoretical counterparts of the various empirical

observations available in literature.
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4. SURVIVAL PROBABILITIES. Motivated by certain empirical findings,

the purpose of this section is to deduce a formula for the probability
that the irradiated cell will survive up to T.
It is known that the behavior of the logarithm of the pro-
portion of cells surviving immediately following the exposure of
a total radiation dose D (measured in rads), when plotted against
this dose varies with the type of radiation. In general, it is
a decreasing function of D. However, for high LET radiation such as
neutrons or a-particles, this plot is almost like a straight Tine, wheré*
as for the Tow LET radiation this plot is nonlinear and shows what is
commonly called the "shouldering effect". Essentially, this effect
corresponds to a degree of concavity in the plot. The reader may refer
for this to the so called dose-survival curves exhibited in Barendsen (1968),
Hutchinson (1966), Hall and Bedford (1964), among others (see also figure 2).
We now proceed first to obtain their theoretical counterpart, namely
the survival probabilities under the present model and later shall com-

pare them with the empirical survival curves.

Figure 2 here (for legend see p.36)

For this we have from (19) after some simplification

P(cell is 'alive' at t)=G(1,1,0;t) (21)
t min(t,D/o)
=exp{—j cS(p,T)dT'" Sp f {]-Q[L(T,t)]}dr],
0 Y1 0
where
t u
L(t,t) = ]-wz-ﬂ] fexp[-— f (a+B+Y)dva vy{u)du. (22)
T T
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In particular, when all the rates are independent of time, we have from

(20), .
P(cell is 'alive' at t) = exp[—d(p)t- %%- i (0.4-0/ ){1—g[K(r)]}dr} .
ax(0,t-
" i (23)
where
y
(=) = 9(1,1,050) = Tory (i Uenpl-(arptn)el} . (28)

The theoretical counterpart for the logarithm of the proportion of cells
surviving immediately following the exposure to the total radiation dose
D is obtained from (21) or (23) by taking its logarithm and putting
t =T=D/p. For instance, for the case with constant rates, we have
from (23),

S{p)D fo D/p (25)

on P(cell is 'alive' at T)= - Pl ;q- é {1-g[K(7)] ¥dr,

where K(f) is given by (24). We shall consider this case in some de-
tail and study the behavior of (25) as a function of dose D, specially
in the light of the empirical findings mentioned in the beginning of
this section. Taking first two derivatives of (25) with respect to D

and using (24), we obtain

I L -Vﬁ’]—n—g[K(D/p)]}, (26)
32 on P 6w1Y
= = - o g'[K(D/p)lexp[-D(atBtv)/0 1 , (27)

where g'(-) denotes the derivative of g(-). As expected, (26) being

negative, expression (25) is a decreasing function of D. Also as long
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as myy is positive, and hence {27) is strictly negative, (25) is strictly

a concave function. Consequently the plot of (25) may often show some
shouldering effect. However, this effect may become negligible for high

LET radiation characterized by very large values v of secondaries generated /;
by a single primary. Thus, for the high LET radiation, we may take

approximately.

g(s) ~g(0) , (28)
for s not close to one. Since in our case K(t) < 1-m, for all t > 0
(see equation (24)), with Mo > 0 the approximation (28) used for g[ K(t)]

in (25) may not be unreasonable. Thus we have approximately

on P (cell is 'alive' at T) m - S)D - Bprgon . (29)
] \

This being Tinear in D, explains the absence of shouldering effect for

the case of high LET radiation such as neutron or a-radiation, as also

observed empirically (see Figure 2). |
Again,the behavior of the empirical dose-survival curves also varies

with the dose rate p, specially for a Tow LET radiation case; for in-

stance for the case of gamma-radiation see Hall and Bedford (1964) and
figures 3 and 4 taken from Bedford and Hall (1963). In the case of a
Tow dose rate, a given total dose D is administered uniformly over a
Tonger period of time compared to the case of a high dose rate. The
empirical survival curves for the case of high dose rates, in general,
tend to be steeper than those for the low dose rates. However, the de-
pendence of the dose-survival curves on the dose rate appears less sig-

nificant for the case of a high LET radiation. Such behavior of the
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survival curves, specially for low LET radiation, can now be explain-
ed by our expression (25), while treating it also as a function of the
dose rate p. Taking the partial derivative of (26) with respect to p
and using (24), we have
2

] f/n -

el oo dslelle) —Tg[K(D/pnexp[ -D(atg+v)/p 1 . (30)
The plot of g P as a function of D will be steeper for higher dose
rates provided (30) is negative. In particular, this will occur if the
derivative of [8(p)/p] and hence of &(p) is sufficiently positive. It
should be noted that for this, the dependence of § on p is essential.

Of course, for high LET radiation case, this may not be needed.

Figures 3 & 4 here (for legend see PP. 36 & 37

5. PROBABILITY OF A CELL EVER GETTING CANCEROUS. On occasion, empirical

curves of incidence of cancer plotted against total radiation dose D, show
a maximum. For example, see Upton et al (1964). A roughly similar be-
havior has been observed for the frequency of occurrences of pink somatic
mutations in stamen hairs of Tradescantia with varying doses of exposures
to X-ray and neutrons (see figure 5 taken from Sparrow, et al (1972) and
figure 6 taken from Nauman, et al (1975)). Here, according to these
authors, each hair consisting of several cells resembles, in a sense, a
culture of micro-organisms or cells in culture (see Nauman, et al (1975)).
As a possible theoretical counterpart of these findings, we now
derive a formula giving the probability that an irradiated cell will ever
becomé cancerous. We do so by assuming that the rates a, B, y, etc. are
time-independent. Using assumption (A6) of our model, it is easily seen

that
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P(cell ever gets cancerous) = PIX(t)=k,Y(t)=0,Z(t)=0]kg dt

O 8
ne~1 8

k=0

86(51,0,0;t)

='Bé s |S]=1 dt . (31)

Figures 5 & 6 here (for legend see p.37)

Using (20), (17) and (18), we have

BG(S],0,0;t) Gpﬂ1
Ty 1 —'} =G(],050;t)
1 17 1

t

- f g'1J(1,0,057)lexpl-(otp+y)rldr . (32)
max(0,t-D/p)

On the other hand using (17) and (18), it easily follows that the in-

tegral on the right side of (32) simplifies to

(+v) “][g{R[max(o,t— —%)}}— g{R(t)}] . (33)
where
ﬂ]m+Y)
R(t) = J(],0,0;t) = ]*'Hz" WTH—exp[—(a*ﬁﬂ'Y)t]} . (34)
Thus using these in (31), we have
P(cell ever gets cancerous)
go " ) D '
;;15%?7; é G(Tsoaost){g{R[max(O,t-50]}-g{R(t)%Jdt . (35)

Alternatively using (20), this can be rewritten as
= B
P(cell ever gets cancerous) = BTy (S 1t 9, ) (36)

where
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D/p
T W (f) {g[1-m,] - gIR(t)])
6 t
. exp[—é(p)t— ;Q- / {T-Q[R(r)]}dr]dt (37)
1 O
and
5,=% | (gIR(t- D - gIR(E)
1 D/o
D/p
-exp[-a(p)t- %‘1’- é {'I-g[R(t-T)]}dr]dt. (38)

However J 1 and J o can be further simplified as follows.

5 D/p

t
- 9
5= 3 [ el-s(e)t] [-g R(e» exp - ol (1-gIR(x)] ) | dt

D/p
- gg; [1—g(1-w2)]~é exp[— (o) t-‘—— f {1-g [R( )]}dr}dt . (39)

Integrating the first integral by parts we have,after some simplifica-

tion,

D/p
- §(p) 8
Iy " 1-exp[~ —%?— D- ;? é {1-g[R(r)]}dr}-

D/p t
{s(p)+ & [1-g(1-n )]}-fexp[—d(p)t— % fn-g[R(m}dT}dt.
vy 277 0 V10 |
(40)
Similarly we can write
_8 7 .
Iy > ;Fﬂ gl R(t)] }-{1-g[ R(t )]}]
5 t
. exp[ s(e)t- 2 [ {-dR(t)] }dt]dt. (41)
1D
P
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Assuming that &{(p) > 0, this yields after integrating by parts,
D/p
) _ s(p)D e ) }
5, = exp|- 200 2L O-dR

[e]

t
- 8(p) [ exn{-a(p)t~ %"- / {I-g[R(T)]}erdt. (42)
D/p 1 £- D
p
Substituting these expressions in (36), we finally have for the case
where s(p) > 0,
P(cell ever gets cancerous)=-§$? [1—{6(p)+ %%—[T—g(]—wz)]}

Do t
. [exp(-a(o)t- % {1-gIR(x)1}dr)dt
0

0 1
) 6 T
- 6o) [ exp(colp)t- 2 | 0{1-g[R(T)]}dT>dt}.
D/e T t- =
P
(43)
However when §(p) = 0, we need to redo the part of the above calcula-
tions following (41). This would lead to
P(cell ever gets cancerous) _
D/o t
= B 7. 8o [1.4(1- . . %o -
s+v[] V] [1-g(1-7,)] éexp( o éﬂ g[R(T)]}dr>dt
- exp(? %?~{1—9[R(w)1§} : (44)
where from (34) we have
W1(B*Y)
R(m) = .! - rn-z - W ° (45)

In order to explain the empirical findings mentioned in the beginning
of this section, using the theory developed here, we now prove the follow-

ing proposition.



18

PROPOSITION.  Let the nates o,8, ¥ and §(p) be all independent of Lime.
Then, under the assumptions (A]) - (A6), P(cell evern gets cancerous)

treated as a function of D has exactly one maximum Lf and only

Af
© D/
s(p) [ exp(-é(p)t- %p— fp {g[R(u)]—g[R(u+t)]}du)
0 1 0
o {1-glR(t)I}dt < 1-g(1- "2) . (46)

whenever §lp) > 0, and
{ [o-]
exp(— %% é {gl R(u)I- g[R(w)Hdu){]-g[R(w)]} < 1-9(1—172) , (47)

whenever §(p) = 0. Othewdise Plcell ever gets cancenous) As an Ancreas-
ing function of D.
PROOF. Let &(p) > 0. Differentiating (43) with respect to D,

after some algebraic simplification, we have

D/p
P _ 9 _ 8lp)D _ fp - )
5 _B—iLY— v exp ( J-E—L v é {1-glR(z)]}dt

w 6o P
-+ Jste) [ exp-so)t- 2] talRG - ol R(t+7)] Jdr
- LR 3t - [-g(1= 1] (48)

Since R(t) is a decreasing function of t with R(O) = 1 - o the ex-
pression in the last square brackets of (48) is positive when D=0 and it
decreases as D increases. Furthermore, it may become negative if and
only if (46) holds, the only case in which the solution D* of %%—= v
exists. That the solution D*, whenever it exists, is indeed a point of

maximum, can easily be verified by showing that E—%—I < 0. Again in
3D~ D=D*
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the event (46) fails to hold, (48) always stays positive for all D, so
that P(cell ever gets cancerous) is an increasing function of D. A
similar analysis using (44) leads to (47) for the case when 6(p)=0. O

It is evident that under appropriate conditions on the parameters
as indicated by (46) and (47), our model is consistent with empirical
findings of Upton, et al (1964) and also with those in figures 5 and 6. A
rather interesting fact emerging out of the above proposition is that in our
model, in order to have a point of maximum in these curves, it is necessary
although not sufficienf that o be positive.

Before we close this section, it is interesting to make the following

observation concerning the behavior of P(cell ever gets cancerous) as a

function of the dose rate p. Considering first the case with &8(p) = 0,
the corresponding expression (44), after routine transformations, can be
rewritten as

P(cell ever gets cancerous)

= —L[lu S r1-gli-m,)] ?exp(— S ?{1-0[R(n/p)]}an)d£
By v s TR TR vioo

- exp (- %%{1— g[R(w)]})] . (49)

Since R(-) is a decreasing function of its argument, it is easily seen
from (49) that P(cell ever gets cancerous) is a decreasing function of
the rate p. However this does not appear compatible with what is em- |
pirically observed, at least in the case of mice [see Upton, et al (1964)
and Upton, et al (1967 and also for the case of pink somatic mutations in
stamen hairs of Tradescantia Lsee Nauman, et al (1975) and figure 6], the
Jatter case being more close to what one might expect in cells. Thus,

it appears essential to assume that §(p) is positive in order to fit such
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empirical findings. For this one needs to study more closely the ex-

pression (43). After suitable transformations, this expression
can be written as

P(cell ever gets cancerbus)

- B [1_{ §é§J.+ g;[1 -g9(1-7,)1}

Bty
? §(p) ,_ 8 :
- {) i v é“'ng(n/p)}}dn)dE

® 3

§ § )

- —ffi [ exp(— —%—’l e- — [ £1-g[R(n/o )]}dn>da] : (50)
D 1 ¢-D

The empirical findings of Nauman, et al,,illustrated in figure 6,

show that the dose response curves begin by increasing with D, that

they may have a maximum, and that they depend strongly on the dose

rate p: the higher the dose rate, the higher the corresponding curves.

It is interesting that, in order to achieve a qualitative consistency

of (50) with these findings, it is sufficient to make an appropriate

assumption regarding the function §(p).

6. MEDIAN LIFE-SHORTENING. Several studies on the median life-shortening

due to irradiation of animals, such as mice, have been carried out.

In particular, our own interest in this direction was inspired in

part by papers due to Upton, et al.(1964) and Upton, et al. (1967).
Looking at the median life-shortening versus dose curves (see figure 7j,
it appears that while the effectiveness of low LET radiation, such as
gamma-rays, varies with dose-rate, those of high LET, such as neutrons,
are relatively dose-rate independent for smaller doses,but for higher

doses may show some dose-rate dependence. Also in general, these
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curves often show a maximum before showing some drop in the median
1ife~shortening for higher doses.

The veader will notice that the above findings of Upton, et al
(1964) refer to experimental mice, while our present study deals with
irradiated cells. Clearly, it is not impossible that, with some modi-
fications, the single irradiated cells behave like irradiated mice,
even though the bodies of the mice represent conglomerations of a
variety of different tissues of cells. Thus, it is interesting to
examine whether the present model could fit the 1ife shortening findings
relating to mice.

The 1life shortening experiments of Upton,:et al, dealt only with
mice that survived the first 30 days after the start of irridation.

Then they were observed until their death. The median life-shortening
was observed for only these animals, when compared to a control group of

similar animals which also survived 30 days from the start, but without receiv-

Figure 7 here (for legend see p. 37)

ing any radiation. Visualising something anatogous for a single living
cell, let L be the length of "life" of a cell measured from the start
of irradiation. Also unless otherwise mentioned, in this section we
shall restrict our study to the case where the rate ¢ is time-dependent
while the rates o,8 and ¥ are constants. Thus, from a modified ver-

sion of (23), we have
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P(L > t) = P(cell is alive at t)
t 6 t
= exp4- fd(p,’t)dr- L f D {1‘9[K(T)]}d'r’s (51)
0 Y1 max(O,t-;

where K(t) is given by (24). However, what we need is the conditional
probability of survival up to t, given that the cell survived for a
fixed period & (in the experiment of Upton, et al, & was equal to 30 days).

Thus, for t > 2 we have

t
P(L > t|L > 2) = exp[- [ s(psr)dr-Q (p.D,t)] , (52)
2
where
Q,(p,D,t) = 22 f {1- g[K(z)]3d
22 Y1 | max(0,t- g) I '
f oo -kl (53)
- {1-glK(z) 1} . 3
max (0,2~ g& ’

The median length of life denoted by t;(p,D) (conditonal on the survi-

val up to period 1) is now given by the solution for t(t > 2) of the

equation
t
n 2 = f 6(D’T)d1’ + Ql(pstt) . (54)
2
Also for the control population without irradiation, the analogous
median length of Tife is given by the so]ution.tz* of t of the equation

t
m?2 = [ GO(T)dT s (55)
2
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where 50(°) is the time-dependent risk of death in the absence of irradi-
ation, which in general may be different from the 1imit of 6(p,r) as
p + 0. The curves (figure 7) of Upton, et al (1964) now correspond simp-

1y to SQ(Q,D), the median 1ife-shortening given by

sz(p,D) = t;* - t;(p,D) . (56)
In the light of an earlier remark made in the last paragraph of §5,

for the case of Tow LET radiation, such as gamma rays, we shall as-
sume that 6(p,t) is a nondecreasing function of p, whereas for the high
LET radiation, we shall assume that the dependence of 6 on p is practic-
ally negligible. 1In the following subsections we consider separately

the two cases (a) £=0 and (b) ¢>0, and in each case we shall attempt

to see how our model holds out in comparison with the curves exhibited in

figure 7.

(a). CASE WHEN & = Q.

(A). We first consider the case of low LET radiation, where § is

assumed to be a nondecreasing function of p. When & = 0, ta* and t6

are respectively the solutions for t of the equations

m2 =] sylc)dr | (57)

O ot

and

m?2 = [ &(p,r)dr + Qlo,Dst) (58)

O+
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where

t
QplesDst) = £ [ {1-g[K(x)IMx . (59)
1 max(0,t-D/p)
Since K(t) of (24) is decreasing and hence 1-g(K(t)) is an increasing

function of t, it follows that QO is an increasing function of t. Also

o} 0
2 [ {1-glK(e)rde s if t<=
\)" O P

aQO )

t
8 f - gik(o)de - 2o1-glk(e- 213 |, i ot 2
V] D P P p
- =
P
(60)
In either case aQO/ap is positive; that it is positive also when t > D/p
follows from the fact that 1-g[K(t)] is increasing in t. Thus Q, is
an increasing function of p. Furthermore,it is clear from (59) that Qo
is a nondecreasing function of D. Thus Qo(p,D,t) is nondecreasing
in each of its three arguments. From this and that §(p,t) is nondecreas-
ing in p and the fact that tS(Q,D) is the solution of (58), we make the
following observations:
(i) For fixed dose rate p, the median length of life ta(p,D) is
a decreasing function of D, as long as D 5_D6(p) and thereafter for all_
D> Da(p), we have ta(p,D) = Da(p)/p, where Da(p) is the solution for
D of the equation
D/p
on2 = é s(p,t)dr + Qo(DstD/D) . (61)

From this it follows that the median 1ife-shortening so(p,D)=.t6*-t6(p,D)
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is an increasing function of D as long as D E_DS(Q) and thereafter for
all D > D3(p), sylesD) = t&* - [D*(p)/oe].

(ii) Again it follows that if Py > Pps We have t6(p1,D)§_t6(p2,D),
for all D, or equivalently SD(p],D) 3‘so(p2,D), for all D.

Note that the above behavior of the median 1ife-shortening is
‘approximately' compatible with the corresponding observed curves for gamma
rays of Upton, et al (1964), depending upon where the solution Dj(p)
of (61) actually falls.

(8). In order to explain the corresponding curves (see figure 7) for
neutron radiation, we assume that the dependence of § on p is practi-
cally negligible. Also,as pointed out earlier, the distribution of the
number v of secondary particles caused by a neutron particle given

that v > 0, is concentrated typically on much larger values as compared
to those caused by a photon in the case of gamma rays. The typical value
of v may be in thousands or sometimes more. Thus as before, for the
neutron radiation case g[K(t)] would be close to g(0), so that approxi-

mately we have from (51)
t 8p D
P(L>t) mexpi- 6 (t)dr- 7{1-gmﬂmmcu;) . (62)
0 1

Also, analogous to (56), our tg approximately satisfies the equation

2 = z §(t)dr + %?-[1- g(O)]min(t,g) : (63)
Clearly, for fixed p, the solution of (63) for t is approximately inde-
pendent of the rate p for small doses D, whereas for larger doses it
will depend on the rate p. In fact when § is constant in time; we

can explicitly solve (63) yielding
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-]50/;22-3—\?]—[1—9(0)%, if D < D§(e)
th(e,D) = (64)
v]EnZ Da(p) ' .
6v1+-p6[1- g(0)] ) p if D> DO(D) ?

where, as before, Dafp) is the solution for D of the equation analogous

to (61), and is given by

. pv]2n2
Do) = s FesrTgton] - (65)
Also, when 8, is constant (typically 8, is no greater than §), we have
from (57)
e = Pf_g_OZ , (66)
so ‘that the median life-shortening is approximately given by
SO(D,D) = t§* - t(p,D)
(—]—- l)mz + 2 [1-g(0)ID, if D < DX(o)
55 8 5, g ’ = Yple
2
o2 Vi .
Sy vy Fes[T-g(0)] ° oo gle) . (87)

Thus for fixed p, the median life-shortening increases approximately
linearly as long as D i.Da(p) and then stays constants this
constant being larger for larger dose rates o. Note that for
smaller doses i.e. for D ﬁ_Da(p), the median 1ife-shortening is almost
indepehdent of dose rate p, the boundary Da(p) being larger for larger
rates.

The above theoretical conclusions are approximately compatible

with the results of experiments. For instance, the present model does
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explain in part the empirical observations quoted in the beginning of
§6 (see also figure 7). However it does not appear to imply

the occasional maxima observed in the median 1ife~-shortening curves for
animals. This may partly be due to the fact that the above analysis is
too approximate. Furthermore, since the present model is meant primari-
1y for cells, it is unlikely to fit all the aspects of the behavior

of the animals. Somewhat similar observations are made for the case

with ¢ > 0. This case is dealt with below.

(b). CASE WHEN & > 0,

(A). First we consider the caée of low LET radiation, assuming that

8§ is a nondecreasing function of p. As before,we begin by studying

the behavior of the function Qz(p,D,t) given by (53). Again since

1 - g[K(t)] is an increasing function of t, it follows that for fixed

p, the function Qz(p,D,t) is nondecreasing both in t and D. Thus

for fixed dose rate p, the behavior of Qz(p,D,t) and hence of tz(p,D)

and the median 1ife-shortening sg(p,D) are similar to those found
earlier for the case with £= 0. Unfortunately the behavior of Qz(p,D,t)
as a function of p is not quite clear. Some qualitative aspects |
of this are described below.

Remembering that ¢ < t, the following three cases arise:

(i) T-= g <% ® o> %

(i1) 2 < g— =T<te %~< p < %
s D D

(iii) I=B—>’t@p<ft‘

(i) Case with p >
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t : %
Q,(050st) = 2 | [ {1-glK(1)]¥de- [ {1-glK(x)] ™
5 -5 }

-

o [ t
=22 [ gK()]dr- ng[K(der

\)-I D
LZ-S' t-B'
0/
- ép talK(2-t) 1~ glK(t-t) dr . (68)

Differentiating with respect to p, and after some simplification, we have

3QQ(O,D,t)

D/e /D/
5 = é%. ép (’fp {g' [K(2-u)]K'(2-u) - g'[K(t-u)]K‘(t-u)}df>dT .
' (69)
where g' and K' are the corresponding derivatives. Now,since
(g k(K (1)) = o' k(LI [K' (£)1° + g TR(EK"(2) » (70)
and using (24)
K'(t) = -y yexpl- (atpty) t,
(71)
K'(t) = - mqy (atBty) exp[- (atsty) t] »
we have
&g k() IK (1)) 2 0 . (72)

Thus g'[K(t)IK'(t) is nondecreasing for all t. Consequently, for all

u <2 <t, we have .
g'[K(2-u)IK' (2-u) - g'[K(t-u)IK' (t-u) < O, | (73)

so that 8Q,/3p < 0. Hence Ql(p,D,t) is a nonincreasing function of o

for the case (i) with p > %—.
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(ii) Case with %—< p < %-: Here using (53), we have
. t %
Q,(0,D,t) = 2% | [ {1-glK(r)]}dr- [ -glKk(x)Iydr| . (74)
11, Db 0
P

Unfortunately, it was for this case that we could not observe a clear

cut behavior of Qz(pgD,t) as a function of p, since it depends very

much on 2.
(i11) Case with p < %-: Here using (53), we have
6pt
Q(p,Dst) = 05 [ {1 glK(z)1}dr , (75)

V1%

which of course is an increasing function of p.

Thus,qua]itative]y,Qg(p,D,t) is increasing for small values of p
(i.e. p < %) and nonincreasing for larger values of (i.e. p > %) .
Consequently for the median 1ife-shortening Sp(p,D) = tg* - t;(p,D),
since tZ(p,D) satisfies (54), we can only say the following for its
qualitative behavior as a function of rate o, for fixed D.

For smaller values of p(i.e. p < %), sl(p,D) increases with p.
Also for large values of p(i.e. p > 9), Sl(p,D) decreases with p, as-

2
suming that for such values of p, the dependence of § onp is weak.

This observation is not surprising, since when p is large, the whole
dose D is administered before the time % and we follow only those
thatsurvive until 2.

(B). Here we consider the case with & > 0, for high LET radiation
where, as before, we assume that the dependence of & on p is negli-
gible. We again use the approximation glk(t)] = g(0), subject to

which we have from (52)



-t .
P(L>t|L> 1) ~expl- [ 8(t)dr- %%?[1- g(0)]+[min(t,D/p) - min(&,D/e)1}.
2
(76)

Also, because of (54), tz(p,D) becomes approximately equal to the solu-

tion for t of the following equation

. |
Pm2=[{ §(7)dd + %"— [1-g(O)J[min(t,g)-min(z,g)] . (77)

If & 1is constant, then ecuation (77) reduces to
m? = (t-2)s + 22 [1- g(0)1[min(t,2) - min(e,2
o 9(0)][min(t,=) - min(e,2)] » (78)

an equation that can be solved explicitly.

Lenote by D*ﬂp) the solution of the equation

© ok

8 *
AR R O I L (79)
which can be rewritten as
D*(p ) ) \)]Q//zZ
0 P sl Togo)T (80)

Further developments depend upon the relation between D*(p) and D.
If D*(p) < D then we must have & < tz(p,D);iD/p, so that t} satisfies

the equation

0?2 = <t-z>a+%§(1-g<o>>(t-z) , (81)

Solving (81) for t, we get

(t;(D,D).k _D*pfo) . (82)

However, if D*(p) > D, then we must have tE(p,D) > max(%,D/p), SO

30
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that now tz satisfies the equation

m2 = (t-2)s + 2 [1-g(OIL2 - min(e, 2], (83)
1

which yields

022 [1-g(0)1[2 —min(e, 2)]
\)'] 8} P

t5(p,D) ~ 2+ 5 (84)
Putting all this together, we have
(o + B2 , if D<o
the.0) = | 2+ (m2- %— [1-g(0)](D-p2)}, if o2 <D< Do)
D*(p)/p , if D> D*p)
(85)

Finally, if 8 is a constant (typically 8, < 8), since

prx o= g o4 n 2,
L 8o

the median life-shortening sﬁ(pgD) is given by

(%-%)mé? . if D<o

O-:I...l

s,(psD) ~ (él—~ ) ;m2 +5‘e‘g[1-g(0)](0-p2)5 if  pg < D < D*(p)
0 1

{vq(s-68g) +e0l1-9(0)]} 2 . )
\ §,Tv,8+80 [T - 9(0)13 > if D> D*p)

(86)
It is seen that, for a fixed p, the dependence on D of the median
1ife-shortening varies. For small doses D < pf&, the median life
shortening is constant, and may be zero. For intermediate values of D,
between limits pg and D*(p), the median 1ife shortening is an increasing

linear function of D. Finally, after reaching its maximum value at
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D = D*(p), the median life shortening remains constant, this constant
being dependent on the dose-rate p.

This behavior of the median life shortening is approximately com-
patible with the curves exhibited in figure 7, that correspond to
neutron radiation administered at moderately high dose-rate p. This
is not so when the dose-rate p is really high. However, this circum-
stance does not necessarily imply the lack of realism of our hypothe-
tical stochastic model. 'If p is very large, such as in the case with
p = 85 rads/min in figure 7, so that D/p is small roughly of the order
of 0.003 or less for D < 300 rads, then the approximation to (52) would
be

ot 6D
P(L>t|L>2) =~ exp{-—{ §(t)dr- ;{-{g[K(R)]--g[K(t)]} . (87)

Consequently the median t; becomes approximately the solution for t of
the equation
t

2= [f o(x)éds —61— {g[K(2)]- g[K(t) 11D . (88)

Clearly tf is still a decreasing function of the dose D and hence the

median life-shortening s, = tz* - t; is an increasing function of D.

7. CONCLUDING REMARKS. The present paper, and also the one published

in 1976, have resulted from two stimuli. One was the inspiring empiri-’
cal studies, primarily those of Arthur C. Upton, concerned with radia-
tion effects on mice: carcinogenesis and life shortening. The other

stimulus was the information on the two very different time scales, one
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referring to the physical irradiation phenomenon and the other to the
biological developments in 1living irradiated cells. The relevance

of a mathematical model of a natural phenomenon depends on the

degree of its realism. In particular, this applies to the present
hypothetical stochastic model of irradiation effects occurring in
single cells. As discussed in §3, the stochastic model is expressed

in terms of three interrelated observable random variables: frequency
of live non-cancerous cells, frequency of cancerous cells and frequency
of dead (or “"inactivated") cells. Because these three frequencies must
add upto unity, the verification of the model may be based on empirical
results referring to bivariate distribution of any two out of the

three frequencies just mentioned.

Contrary to the above, the empirical data we managed to find in the
literature refer to only one frequency, either of survivina cells or of
cancer cells, both dependent upon the various details of the experiment,
such as the dose D, the dose-rate p and the kind of irradiation, etc. The

question is about the possiblity of an experiment that could provide
data on two subpopulations of irradiated cells, the subpopulation of

cancerous and the subpopulation of noncancerous cells.
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LEGEND

Figure 1. Photograph of a cloud chamber. (Taken from Neyman and Puri

(1976).)

left ord fraction of surviving cells

abs dose in rads x 100

Figure 2. Dose survival curves of cultured T-lg cells in equilibrium
with air, irradiated with different mono-energetic heavy charged
partic]es in conditions where narrow distributions of dose in LET

are obtained. (Taken from Barendsen (1968).)

left ord fraction of cells Surviving

abs dose in rads

Figure 3. The fraction of cells surviving various doses of gamma-
radiation delivered at 44.9 rad/min (closed circles) and 9.5 rad/hour

(crosses). (Taken from Bedford and Hall (1963).)

left ord fraction of cells surviving

abs dose in rads

Figure 4. The fraction of cells surviving various doses of gamma-
radiation delivered at 44.9 rad/min (closed circles) and 19 rad/hour

(crosses). (Taken from Bedford and Hall (1963).)



left ord pink mutant events/hair (minus control)

abs dose (rads)

Figure 5. Neutron and X-ray dose-response curves for pink-mutant events
in stamen hairs of Tradescantia clone 02. (Taken from Sparrow,

et al (1972) with the kind permission of the authors and the

Publisher.)

left ord pink mutant events/hair (minus control)

abs dose (rads)

Figure 6. Dose-response curve for pink mutant events/hair after
X-irradiation at 0.05, 0.5, 5.0 and 30 rads/min. (Taken from

Nauman, et al (1975) with the kind permission of the authors.)

left ord shortening of mean survival time (days)

abs dose (rads)

Figure 7. Life-shortening in female mice as influenced by dose and
dose rate of gamma rays and neutrons. Open symbols represent gamma

rays; filled symbols, neutrons. (Taken from Neyman and Puri (1976)
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Figure 2. Dose-survival curves of cultured T-1_ cells in equilibrium with
air, irradiated with different mono-energetic hgavy charged particles in
conditions where narrow distributions of dose in LET are obtained. (Taken
from Barendsen (1968).)
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Figure 3. The fraction of cells surviving various doses of gamma-
radiation delivered at 44.9 rad/min (closed circles) and 9.5 rad/hour
(crosses). (Taken from Bedford and Hall (1963).)
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Figure 4. The {raction of cells surviving various doscs of gimma-
radiation delivered at 44.9 rad/min (closed circles) and 19 rad/hour
(crosses). (Taken from Bedford and Hall (1963).)
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'Pigure 6. Dose-response curve for pink mutant events/hair after
X-irradiation at 0.05, 0.5, 5.0 and 30 rads/min. (Taken from Nauman,

et al (1975) with the kind permission of the authors.)
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