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Let {(X?,Y?)}?=1 be independent from the continuous, bivariate dis-

tribution function F and let {(Ci’Di)}?=1 denote censoring variables

(independent of (X?,Y?)) from the continuous bivariate distribution G.

The pair X; = min(X?,Ci) and Y, = min(Y?,Di) is observable along with
. 0 0
(611,621), where E]i(ééi) = 1 or 0 according as X; = Xi(Yi = Yi)

Nonparametric estimators F of F are developed based on the hazard gradient

or not.

of Marshall (1975). The hazard function estimate is path-dependent.
Consequently two piecewise 1linear paths are considered: one linear from
(0,0) to (s,0) to (s,t) and the other linear from (0,0) ‘to (0,t) to (s,t).
Two estimators E]n and F2n result. For each path there is another easily-
computed estimator: Fin expressible as the product of conditional probabil-

ities and hence the product of two Kap]an-Meier-fype estimators. It is

proved that for S,T such that H(S,T) = P{X > S,Y > T} > 0,

sup Iﬁin(s,t) - Ein(s,t)[ = O(%J a.s. Further, each estimator Ein (and
0<s<S
O<t<T

hence Ein) is almost surely uniformly consistent for F; in particular, for
i=1,2, sup lﬁin(s,t) - F(s,t)| = 6(/Tog Tog n/v/n) a.s., provided

0<s<S
O<t<T

H(S,T) » 0.



LARGE-SAMPLE PROPERTIES OF NONPARAMETRIC
BIVARIATE ESTIMATORS WITH CENSORED DATA
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1. Introduction and Summary. The estimation of a bivariate distribution

function under random censoring is considered. The problem is to estimate
the distribution of the 1ife times under random censoring:in which one

knows whether the observations are losses. (censored) or deaths (uncensored).
There are numerous examples to demonstrate the importance of this bivariate
problem. In some eXperiments the data are naturally paired such as obser-
vations on eyes, lungs, twins, married couples, or matched pairs. Often-
times there are two sequential observations on the same individual (pre-test,
post-test). In a reliability setting, a pair of components in a system can
be observed.

Examples of (possibly bivariate) censoring mechanisms are plentiful.
There is, of course, the censoring due to patient drop-out or non-compliance.
The competing risk framework can be thought of as censoring. The censoring
may be essentially univariate, such as the random entry of subjects into
the study with fixed cutoff time for evaluation.

The one-dimensional random censoring model has been treated in great
detail in the recent literature, beginning with the landmark papers of Kaplan
and Meier (1958) and Efron (1967). The asymptotic normality and weak conver-
gence of the product-1imit estimator of Kaplan and Meier was treated by
Breslow and Crowley (1974). Strong uniform consistency was treated by Winter,
Foldes and Rejto (1978), F6]des,Reth and Winter (1979), and Foldes and
Rejto (1979).



The bivariate estimation problem with discrete times of deaths or losses
has been considered by Campbell (1979) using an extension of the self-con-
sistent approach of Efron (1967). Hén]ey and Parnes (1980) have treated
maximum Tikelihood approaches to bivariate estimation. In contrast to the
iterative estimators of these researchers this paper considers several new
closed-form estimators for the bivariate model and proves strong uniform
consistency to the true bivariate distribution of the 1lifetimes.

Two path-dependent estimators are introduced in Section 2. Each esti-
mator is the product of two one-dimensional Kaplan-Meier product limit
estimators.

A hazard function approach is employed in Section 3 tb estimate
-In F(s,t) and hence F(s,t). Two path-dependent estimators of -In F(s,t)
are proposed and these lead to estimators of the bivariate distribution fune-
tion.

Section 4 explores the relationship of the estimators of Sections 2 and
3. In Section 5 the pointwise consistency of the estimators that are
products of Kaplan-Meier estimators is considered under mild conditions on F.
Under stronger conditions, all the estimators of Sections 2 and 3 are proved
to be uniformiy almost sure consistent for F'with'rate_OéJlgg%ggnd’Qn the
‘rectangle [0,8] x [0,T]. - The final section presefits an example and some

discussion.

2. Two Path-Dependent Product-Limit Estimators.

Let {XS, Yoy

ifi=1 be independent identically distributed pairs of

nonnegative random variables with continuous bivariate survival function
F(s,t) = P(X°>s, Y°>t). Let'{Ci,Difﬁ=] denote another sequence of nonnegative

i.i.d. pairs of random (censoring) variables with continuous survival



function - G(s,t) = P(C>s, D>t). Define
X.i = m-ln{x'i,.e'i}’ Y_i = min{Y;, D_i} '|=1, 2, cees N
\ 1 - X; (uncensored)
1 T lo X; < XS (censored)
1 Yi = Y? (uncensored)
€7 " ]o Vo< ¥e (censored)

It is assumed that the two sequences {X3, Yoy

2}7.q and {C., D)

iti=1
independent. Let H(s,t) = P(Xi>S, Yi>t) denote the survival function of

are mutually
(Xi’ Yi)' By independence,

(2.1) H(s,t) = F(s,t) G(s,t).
Based on the elementary observation

(2.2) F(s,t) = F(s,0) F](tls),

where F](tls) = P(Y°>t|X°>s), the survival function F(s,t) is estimated by
separately estimating each of the two terms on the right of (2.2). This
leads to an estimator ?](s,t) based on the path from (0,0) to (s,t) which

is linear from (0,0) to (s,0) and linear from (s,0) to (s,t).

The following notation is established: Let

N(s,t) = _
1

(2.3) Nn(s,t)

He~15

I 5
1 {Xi>s, Yi>t}

(2.4) ai(s’t) = i=1, 2, ..., n;

I i =

(2.5 B.(s,t) = I = =1, 2, ..., n.
{2.5) J(§ ) {Xj>s, int’ €23 1} J



’ To estimate F(s,0), project all points vertically onto the line y=Q, and,
ignoring the (Y1,€21) values, calculate the Kaplan-Meier product-limit
estimator of F(s,0) using the one dimensional censored sample.

i

{Xi’ € This produces the estimator

1i74=1"
n /N(X.,0) \%(s:0)
i f s <
. iy \ N(X 00+ s =Ty
F]n(s,O) = :
0 ' otherwise,

where Ty~ Max X.}.
1<i<n

(The one-dimensional convention that the last observation is converted to a
death (if it is censored) is adhered to here.) To estimate F](tls), the
second term of (2.2), project all points for which Xi > s horizontally to the
line X = s, and ignoring the <X1’ 811) values calculate the Kaplan-Meier
product-Timit estimator based on the data {Yj, EZj}g=1 for which Xj > s

(see Figure 1). Observe that this method estimates the probability
P(Y°>t|X>s) but

(2.6) P(Yo>t]|X>s) = P(YO>t|X®>s,0>5) = P(Y%>|X°>s)

since C is independent of the pair (X°,Y°). Thus the following estimator
of F1(t|s) is obtained:
[ Mevp W8 _.
. =1 N(s,YT%?T_ if t < 1pn(s)
(2.7) Foo(tls) = J
0 otherwise,

where T2.<(S)= max {Y.: X.>s}.
n T<i<n 1
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Consequently the estimator for the F(s,t) is

, 0 otherwise.

Remark 2.1. In the event of no censoring in either coordinate this esti-

q . . . .1y '
mator reduces to the ordinary empirical survival function 0 ZI{X?>$;Y?>t}'

Remark 2.2. By changing the role of s and t it is possible to develop our
estimator F2n(s,t) (based on the relation F(s,t) = F(t,O)Fz(slt) =
F(t,0)P(X°>s|Y°>t)) using the linear path from (0,0) to (0,t) and to (s,t).

The corresponding estimator is

n B(Ost) n (S t)
) \"J N(X,t)
‘I=I<N(o T §+1 > JH<N(X K +1> if N(s,t) > 0

otherwise.

(2.10) Fon(sat) =

A1l of the results which are true for ﬁ]n(s,t) hold (using the same type of

arguments) for EZn(s,t). Therefore in what follows only E]n(s,t) is treated.

Remark 2.3. One can easily give an example which shows that ﬁ]n(s,t) is not

necessarily a distribution function.

3. Estimators Based on the Bivariate Hazard Function.

The multivariate hazard gradient approach of Marshall (1975) is employed
to develop bivariate survival function estimators based on the hazard

function. Define the hazard function R(s,t) as



(3.1) R(s,t) = -log F(s,t).

Assume that R is absolutely continuous with partial derivatives that exist

almost everywhere. Let r(z) denote the gradient of R(z) for z = (z],zz);

T1.€8.,

(3.2) r(z) = (ry(z),ry(2)), where
5R(z) aR(z)

(3.3) r](g) = iz and rz(z = 7,

Then R(s,t) can be reconstructed as the path integral of r(z) from (0,0) to
(s,t). By path independence one can write
(s,t)
(3.4) R(s,t) = | r(z) dz.
(0,0)
In particular, consider the path 1inear from (0,0) to (0,s) and linear from
(s,0) to (s,t). Then
S t
(3.5) R(s,t) = [ r](u,O) du + | rz(s,v) dv
0 0
By (3.1) and (3.3) from (3.5)
S 1 t
(3.6) -log F(s,t) = -fo o0y ¢ F(u 0) f —15—33- d, F(s,v)

where duF(u,t) denotes Lebésgue-Stieltjes integration over u for t fixed.

Using. (2.1),

(3.7) -]Og F(S,t) - fO ga 8; BF(gUO) du f H(S V angsV) dY‘

Introduce the following functions:

(3.8) E(s,t) = fs G(u,t) 3P (X°<u,Y°>t) du;

0 ou



t
(3.9)  Lis,t) = | G(s,v) PLEESV0) g
0 v
Applying the trivial
aP(X°<u,Y°>t) _ _3P(X°>u,Y°>t)
(3.10) CYYRE —
and
aP(X°>s,Y°<v) _ _ 3P(X°>s,Y°>v)
(3.11) m = TEE

relations yields

(3.]2) -log F S t = f ——a—aj'duK(u 0) + f ——E—ET d L S V)

Equation (3.12) suggests that H, K and U be estimated first. The natural

estimator of H(u,v) is the empirical survival function:

(3.13) H (s,t) = Z (K8, o) N(z,t)

The basic idea of estimating K(u,v) and L(u,v) is the following observation:

N S S
(3.14)  K(s,t) = [ G(u,t) d P(X°<u,¥°>t) = [ P(Cou,D>t) d P(X°<u,Y°>t)
0 0

. .
[ P(C>u,D>t|X° = u,Y°>t) d, P(X°<u,Y°>t)
0 v -

S
[ P(Csu,Y>t|X°
0

u,Y°>t) du P(X°<u,Y°>t) = P(C>X°,Y>t,X°<s)

f
2
/\

°
A
O
..<
\%
H'
><
| A

U)
SN
n

,,,,, E(ai(S,t)),

the Tast equality following from (2.4).

And similarly

(3.15)  L(sst) = E(8(55t))-



oo n,
Hence the natural estimators of K(s,t) and L(s,t) are

"N n
(3.16) K (s,t) = 1 1_21 05 (s,t)
and

" _ l n
(3.17) Ln(s,t) = j§1 sj(s,t).

Consequently by (3.12) - (3.17) estimate R(s,t) = -log F(s,t) by

. 1
IO “TU'6Y d K (U 0) +f0 HHTETVT d, Ln(s,v)

1 n (s 0) ] (s,t)

-7 L —J'(?Y_)

(3.18) R, (s.t)

if N(s,t}] >0 and-]et*a](s,t) = +o gtherwise. Moregyer, let
n n
(3.19) F]n(s’t) = exp(- R (s t)).

4. Relationship of the Product-Limit and the Hazard Function

Estimators.
Lemma 4.1.
(4.1) sup |H (s,t) - H(s,t)| = O< lgﬂlgﬂl) a.s.
O<s< w @ N n
0<t< =
- > Toglogn:
(4.2) sup [K (s,t) - K(s,t)]| = 0< —£§L££Li> a.s.
O<S< © n N
O<t< w
N n
(4.3) sup [L (s,t) - L(s,t)| = 0 M> s
Ocsc @ @ D n -

' Ogt< ©
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Proof. Result (4.1) simply follows frem the multi<dimensional law of the
iterated logirithm for empirical distributions of Kiefer (1961). To
prove (4.2) it -is enough to observe that

v

(4.4)  K(s,t) = P(X°<s,X°=C<0)~ P(X°<s,X°-C<0,Y<t).

N
Therefore Kn(s,t) can be considered as the difference of two empirical dis-

tributions:

17 17

{X°<s X° C. iO,int}'

That means that applying again Kiefer's result (once in two-, once in three-

- dimensions) (4.2) is obtained. A similar argument proves (4.3). O

Remark 4.2. Suppose that H(S,T) > 0 for S,T < @ Then from the abovef_

mentioned Kiefer Theorem for almost all « there exist an no(w) such that

ifn> no(w) then
(4.6) Hn(s,t) > %—H(s,t) forall0<s<S,0<t<T.

For technical reasons:intrOducewE]n,_the modified Kaplan-Meier-type estimator

(a similar idea was-used in Foldes and Reth (1979)):

N(X.,0)+1) %4 (5> °)< [ NS+ P (s,t)
(4.7) E1n(s,’c) = = (W J=1 W et > 0

0 otherwise.

Lemma 4.3. If H(S,T) > 0 (0<S,T< =) then

(4.8) sup IE (s,t) - F (s,t)] = 0(1) a.s.
: 0<s<S In In | n
O<t<T
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Proof. By the well-known inequality

M M m .
(4.2 II] ag -TI byl <} Ja,-b, | if la | <1, |b | <1, k=1,2,...,m,

estimate the difference of the original and the modified estimators as fol-

Tows:
010 et - F o)) < | a;(s,0) 1 gyl
4. [Eq (s5t) = Fy (s.t)] < £ 7 .
' In In =1 (N(K,00+)F ST (N(s,YJ._)+])2
Hence applying Remark 4.2
(4.11) sup |F, ($,t) —Fy (s,t)] < 20— < 2N
0<s<s I In N°(S,T) ~ nH(s,T)
0<t<T ‘ n
< =0(l)  a.s. O
nH2(S,T) n
Lemma 4.4. If H(S,T) > 0 (0<S,T< =) then
~ v 1
(4.12) sup |F. (s,t) - F, (s,t)| = 0(=) a.s.
0<s<S In n n
0<t<T

Proof. First observe that by the elementary inequality
(4.13)  [x-y| < [Tog x = Tog y| -~ - * (for 0 < x,y < 1)

and by Lemma 4.3:
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n, ~ v
4.14) sup |F. (s,t) - F; (s,t)] < sup [F; (s,t) - F, (s,t) |+
( XU£sEs F1n n = s | n n
0<t<T O<t<T
Fo(s,t) - F (s,0)]
sup }F. (s,t) - >
0<s<S n In
O<t<T

v Y]
= 0(%0 + sup [log Fy (s,t) + R, (s,t)] a.s.

0<s<S
O<t<T
Using Togarithmic expansion
(oot = -1 o b e ]
log F, (s,t) = - - a:{s,0
In j=1 NXp 0042 a8y k=2 (N(X.,0)+2)Kk
(4.15) ) i
n g.(s,t n o
1
- ) -%————7——- - ) Bi(s,t) 7 -
AR SR e - =2 (N(s,Y,)+2)
n a,(s,0) n B:(s,t)
-] -%—-———y—- -1 5 iz * D, (s:t)
i=] N Xi’o +2 j=] NIgsyj +2 n
where Dn(s;t) denotes the remainder term. Wow
2n n = 0(19 a.s
(4.16) sup |D_(s,t)| < = 25 n 22
0<s<$S | n | (N(SsT)+2)2 nzH (S,T)
O<t<T -

by estimating the infinite sums by geometric series, and using Remark 4.2.

Hence from (4.13) - (4.16) and by (3.13)



av

817) s fEyg(s0) < Fyp(s.0)ls I g (50) iy - o002

O<t<T
L oty - ) e

: §V>2 Y (s, Y, hd
ta nt Hy (s, Y5 )4y "

25 1 16 1 1

n + O(—- +0 ) = 0(_0

(Hn(S,T))(Hn(S,T)i-%—) n° - nHZ(S,T) (n n a.s

again using Remark 4.2. 3

Remark 4.5. Lemma 4.4 gives a large-sample result for the proximity of

A

v
F]n and F]n' In fact, an absolute bound can be obtained by repeated appli-

cation of a one-dimensional result of Breslow and Crowley (1974); namely,

0 < -1n F. (s,t) + In Fy (s,t) < (n=N (s,0))/nN (s,0)

n Tn

+ (Nn(sao)'Nn(sst))/Nn(590)Nn(sst) = (n“Nn(S,t))/nNn(S,t).

N

In particular, Fq (s,t) > Fy (s,t).

5. Consistency.

The pointwise consistency of the estimator E1n follows from the cor-
responding one-dimensional results, in that the estimator was constructed
as a product of two one-dimensional Kaplan-Meier estimators. The pointwise
consistency remains true in case of not necessarily continuous functions F
and G, as one can develop, using the same projecting argument the correspond-
ing bivariate estimator as the product of two one-dimensional Kaplan-Meier

estimators. Observe that for this pointwise consistency neither the continuity
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condition on F nor G is required in that the Kap]an—Méier estimator is con-
sistent (see Winter, Foldes and Rejto (1978) and Foldes, Rejto and Winter
(1979)). Under some smoothness conditions the following much stronger theorem

is now proved.

Theorem 5.1. If F and G are continuous and if F is such that -In F is
absolutely continuous with partial derivatives that exist almost everywhere

and if, for 0 < S,T < «, H(S,T) > 0, then

. .
(4.18) sup [Fy (s,t) - F(s,t)] = o<—°9—r1]29—“> a.s.
0<s<S
O<t<T

Proof. Applying again (4.13),-(3.12), (3.18) and (3.19) it is possible

to estimate the left-hand side of (4.18) as follows:

(u,0)| +

OoO—Wn
—_—
o
~

N S 1 4"
(4.19) | [Fi(sst) - F(s,t)] < 1{) mduKh(u,O) -

1 v b
lé H (s5v den(s’V) B é H(s,v de(s’V)l

Both of the terms of (4.19) can be estimated using Lemma 4.1, Remark 4.2

and partial integration as follows (we perform only their esfimation for the

(\’ r\‘ 3 »
first terms). (Observe that Kn(u,O) and K(u,0) are nondecreasing in u,
ny . . R
En(s,t) and L(s,t) are non-decreasing in t for fixed s, and Hn(s,t) and

H(s,t) non-increasing in both arguments.
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S v S LY
1 1
d K ,0) - s
0;;25 Ié Hniu,Oi u u(u ) é H(u,0) duKn(u 0] <
0<t<T
.I ny V] v}
sup fl - | d K (u,0) + sup If d, (K (u,0)-K(u,0) |
0<s<S 0 H O) H(u,O) un 0es<S u,0 n
0<t<T ' O<t<T
S n
2
< sup |H {s,t) - H(s,t)] [—-—— dK ( 25 sule s,t)-K(s, o) <
0<s<s 1 0 H(u,0) U (5 T) Des<S
0<t<T O<t<T

0oglog n 2 2 - [loglog n
OQ n ><H2(ST) ' “S’T> 0< n > B

Corollary 5.2. Under the conditions of Theorem 5.1,

(4.20) sup IE] (s,t) - F(s,t)]| = 0<fi§§j§§:5:> a.s.
0<s<S n n

0<t<T

Proof. Apply Lemmas 4.3 and 4.4 in conjunction with Theorem 5.1.

6. An Example.

Consider the example of Figure 2 consisting of four points. Here 1
denotes loss, and d death, so that the (d,1) at(x3,y3) denotes a point which
is a death in the first coordinate and censored in the second. At each
point in the rectangle [O,x4] X [O,y4] the estimator ﬁ]4 can be calculated.
Note that in the calculation of ?]4 (x,0) the final Toss in the first
coordinate is converted to a death (as is the convention in one-dimensional
Kaplan-Meier estimation). Suppose we wish to compute E](s,t) where

s € (xz,x3) and t ¢ (y3,y2). Then
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F14(s:0) = <23L')@<%>]

To compute F (t|s), note that there are two points such that X; > S»

14
the point (x3,y3) projected back to the line x = s is a loss, the point
(x4,_y4) projected to x = s is a death. Thus Igm(tls) = <—;—>O = 1. There-
: _: : _2.,.2 -
fore F]4(s,t) = F]4(s,0) F]4(t]s) =3 1 3 Another way to arrive to

the same conclusion is to follow (2.8) and then we get (see Figure 3)

i N0 T NGx,,0) 812. N(s5y,) 823_ NN/ 2
F]4(s,t) _<yix],05+1 ) N(x,,0)+1 N(s,yg) B <Z> <§> <?> T3

In this way the entire estimator ﬁ]4 can be calculated. It is displayed in

Figure 4 where the function is constant on the smaller rectangles. It was
remarked earlier that ?14 need not be a bivariate survival function and it
is not one for this example. Figure 5 presents the estimator E24 based on
the alternate path.

While the estimator in E]4 is not guaranteed to be a bivariate survival
function,Section 5 nonetheless proves under suitable conditions that as the
sample size tends to infinity that the estimator is uniformly almost surely
consistent for the true survival distribution function F (with rate 0&}h¥%¥lﬂl >).
This technique can be generalized from two dimensions to higher dimensions.

The difference is that the number of possible paths (and hence the esti-

k-1

mators) increases from 2 to 2 for the k-dimensional analog, but the uni-

formly almost sure consistency (with the same rate) of each of these 2k']

estimators can be shown.
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