ON T'-MINIMAX, MINIMAX, AND BAYES PROCEDURES FOR
SELECTING POPULATIONS CLOSE TO A CONTROL*

by

Shanti S. Gupta and Ping Hsiao
Purdue University and University of Michigan

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #80-9

April 1980

*This research was supported by the Office of Naval Research
contract N00014-75-C-0455 at Purdue University. Reproduction
in whole or in part is permitted for any purpose of the United
States Government.



ON T-MINIMAX, MINIMAX, AND BAYES PROCEDURES FOR
SELECTING POPULATIONS CLOSE TO A CONTROL

by

Shanti S. Gupta and Ping Hsiao
Purdue University and University of Michigan

ABSTRACT
Let HO,Hl,...,Hk be (k+l1) normally distributed populations
and let Ho be a control population. Our goal is to select those

populations which are sufficiently close to the control in terms
of the (unknown) means of the populations. A zero-one type loss
function is defined. TI'-minimax rules, Bayes rules and minimax
rules are derived for this problem and compared. Some optimal
properties of I'-minimax rules are shown; also I'-minimax rules

are derived for distributions other than the normal.
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1. Introduction and summary

Problems of selecting populations close to a control arise
frequently in industrial production, in situations such as for
matqhing parts. Assume that we have (k+1l) populations and one
of them is the control or standard population. Our goal is to
select those populations which are sufficiently close to the
control. Many authors have considered problems of comparing
populations with a control under different types of fqrmulations.
Paulson (1952), Bechhofer and Turnbull (1974) discussed problems
of selecting the best_populatioﬁ if the best population is better
than the control. Dunnett (1955), Gupta and Sobel (1958) considered
problems of selecting a subset containing all populations better
than the control. Lehmann (1961), Tong (1969), Randles and
Hollander (1971) dealt with problems of selecting populations
better than control. For problems of classifying a set of
populations into three groups which are 'superior', 'inferior'
and 'equivalent' to a control, see Kim (1979) and Gupta and Kim
(1980) and related references therein. However, not much work has

been done for the problem of selecting populations close to a control.

*This research was supported by the Office of Naval Research
contract N00014-75-C-0455 at Purdue University. Reproduction
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States Government.



Singh (1977) and Gupta and Singh (1979) considered this problem
and derived Bayes (and empirical Bayes) rules for various distri-
butions. In this paper, I'-minimax rules for selecting populations
close to a control are derived, and these are compared with
minimax rules and Bayes rules for robustness against the prior
information. In Section 2, definitions and notations are intro-
duced and a decision theoretic formulation of the problem is given.
Results in Section 3 and Section 4, deal with the cases when all
populations are assumed.to be normally distributed. TI'-minimax
decision rules are derived when the control parameter eo is known,
and restricted I'-minimax rules ére derived when 60 is unknown. In
Section 5, some optimal properties of T'-minimax rules are found.
In Section 6, results of Section 3 are generalized and '-minimax
rules are derived for distributions other than the normal.
F—minimak rules for selecting binomial populations with large
entropy are also discussed. In Section 7, 90 is treated as an
unknown. Bayes rules are found under the assumptions that ei has
a normal prior distribution with mean oy and variance Bi, i=0,
1,...,k, which are assumed known. Minimax rules are also derived
in this section. And Bayes rules, T'-minimax rules and minimax
rules are compared in Section 8 in terms of the Bayes risk, the
maximum risk over I and the maximum risk over all the possible

prior distributions.

2. Notations and formulation of the problem.

Let Ho,ﬂl,...,Hk be (k+1) independent normal populations with
. 2 2 2 .
means 60,61,...,8k and known variances 00’01""’0k’ respectively.

Assume that @I, is the control population, with mean eo which may

0



be known or unknown. For Hl,...,Hk, the treatment populations,
61,...,Gk are all assumed to be unknown. When 60 is unknown,
let § = (60,61,...,6k) and X = (XO,Xl,...,Xk) where Xi is an
observation from Hi, i=20,1,...,k. When 80 is known, no

observation from HO is taken, and 60, X0 are deleted from ¢ and
X, respectively. When there is no confusion, 8 and X are used
to represent either case. Let ® be the parameter space and X be

the sample space. For i = 1,2,...,k, define G, = {6€®||ei—90| < A}l

and B, = {e€d ]ei—e > A+e}, where A and ¢ are given positive

ol

constants. Hi is said to be good (or acceptable) if QEGi and

bad (not acceptable) if QEBi. We consider decision rules of the
form §(x) = (61(5),...,6k(§)), where Gi(§) denotes the conditional
probability of selecting Hi as a good population given X=x. The
objective is to select all the good populations while rejecting

all the bad ones. Let L, be the loss incurred when we fail to

1
select a good population and L2 the loss for each bad population

selected. The the loss function is defined by

k \ k
L(8,8) = izlLl(l—Si)IG_(9)+L 8,1, (8) = £

(i)
2°i"B. ‘< . L (9’61). (2.1)
1 i i

1

Where IA denotes the indicator function of A. We assume that the

partial information available is of the form: Hi has probability

Ai to be good and probability Ai to be bad. Let A = (Al,...,xk)

and \' = (A],...,Ay). Ve define 8* = {t|t is a prior distribution
on @}, and T = T'(A,A') = {TG@*IPT(Gi) = A;, P_(By) = Aj, for
i=1,...,k}, where 0 < A, + A! < 1 and P_(A) = [dt(8). Then,

= i i= T A~

I'(A,A') denotes the class of all the prior distributions which



summarizes our information about 9. We restrict our investigation
to this class. Let R(§,§) = Ee[L(§,§(§))] and r(r,§) = ET[R(9,§)].
In this framework, an ith comp;nent problem is concerned with the
selection or rejection of Hi. Then R(i)(g,Si) = Ee[L(i)(g,Gi)]

and r(i)(r,ﬁi) = ET[R(i)(Q,Gi)] denote the risk fu;ction and the

Bayes risk function of the ith component problem, respectively. It

is found that

£ (i) LNED
R(0,8) = ] R''(8,8;) and r(r,8) = I r 7 (r,8,).
=1 ~ ~ i=l :

A rule 8* is called a I'-minimax rule in D if
sup r(t,8*) = inf sup r(t,q)
T€T - §€ED TET ~

where D is a class of decision rules.:

3. Derivation of a I'minimax rule. when eo is known.

In this section, 60 is assumed to be known. We define

Gi1

and By, = {QEBi|9i=60-A-s}. Let &, (x) = 8,(x;) be an ith component

= {8€G;|0;=0,+A}, G;, = {0€G; |0;=0,-A}, By = {0€B, [8;=06 +A+e]

decision rule and let gi(ei) = Ee [Gi(xi)], then we have
i

Lemma 3.1. For any fixed i, if gga gi(ei) = gi(60+A) = gi(eo—A)
~ i

and . sup gi(ei) = gi(60+A+s)=gi(60—A-€), (3.1)
6€B.
IS |

then

sup ') (r,6,)0=r P (1,6,) for a1l tpEr (1),
T€T 1 +

where Iy(d) = {TGFIPT(Gil)+PT(Gi2)=Ai,PT(Bil)+PT(Bi2)=Ai}.



-2 = -
Proof: r ' (1,8;) = f.EQ[Ll(l §; (X)) 1dt (8)

G

+ [ BylLy8; (01T (@)
L

-— 1 ' -
< LgA, L,Ailnf gi(e.)+L2Ai sup gi(ei)

1" "1 igeq, 1 6€B.
MR 1 ~ 71
= Ll*i'Ll{PTO(Gil)gi(eo+A’+PTO(Giz)9i(eo'A’}
+ LZ{PTO(Bil)gi(60+A+e)+PTO(Biz)gi(eo-A-e)}
_ (1) .
=r (To,di) for all Ty € Po(l).
This completes the proof.
k
Theorem 3.1. If there exists a 1* € 0N Fo(i) such that Gz(x) =
i=1 -

5;(Xi) is a Bayes rule wrt t* for the ith component problem .and if

. 3 . N} ~ - * n=
(3.1) is satisfied for gi(ei) Ee_[Gi(Xi)] for.all i=1,2,....k,

i
then 8* = (6{,...,6%) is a I'-minimax rule.
Proof: su * § (1) ¥
: pr(t,8%) < } supr (t,8%)
T€T - i=1 t€T
LN E S I -
= Jr (t%,8%) by Lemma 3.1
i=1
LY
< Jr (t*,8;) =r(t*8) < sup r(t,§)
i=1 TE€T

for all &§. This completes the proof.

Lemma 3.2. Let the pdf f(x|6) of X be TP, (Totally Positive of
order 3). If g{(8) = Ee[I(a,b)(X)]’ and for some 90, g(e+eo) =
g(e-eo)/ then g is increasing for 6 < eo and hence decreasing for

6 > 60.



Proof: Let hc(x) = I(a,b)(x)—c for ¢ € (0,1), then gc(e) = g(8)-c
where gc(e) = Ee[hc(X)]. Let S(hc) denote the number of sign
changes of the function hc’ then S(hc) = 2. Now by Variation

Diminishing Property (VDP)(Karlin (1968), see p. 21) it is seen

that S(gc) < 2 for all c € (0,1). If g is not increasing for

g < 60, then there exist Gl < 62 < 60 and g(el) > g(ez). Let
[ - | - - ' i
61 = 260 el_and 62 260 62, then g(el) > g(eé). We find that
S(gco) > 2 for ¢, = l/2[g(el)+g(62)], so S(gco) = 2. But gco‘
does not change signs in the same way as hc does which contradicts
0
VDP. This completes the proof.
Now let
+ -
g, (0 = == 16 (e (X0
i i i i
, (3.2)
+A+ -A-
() = Lo [o (REREE) 4 (KOOTE)).
i i i - i
2
- X
1 2
where p(x) = — e . Then we have
Y2u
* = §% = -
Theorem 3.2. If §}(x) §¥(x;) I[_ti,ti](xi 8y) and t; > 0
satisfies
' = P =
szifo_(ti) = leigc_(ti) for i=1l,....,k, (3.3)
i i
then &§* = (6{,...,6;) is a I'-minimax rule.
Proof: Let t* € T be a prior distribution on ® such that 61,62,...,6k
: * = S =1- -A! =
are independent under t*, and PT*( ;50 At 2) 1-X;-As, PT*(Gil)
A Al
= = = = = i=
PT*(GiZ) = Pr*(Bil) PT*(BiZ) 5 for i=1,2,...,k.
k 1 xi-ei
Let f(x]e) = T o b ( ), then we have
T i=1 Y1 i



B ey = fL (-8, (x)) ) £(x]|0)P_,(8)
i 1 i e G PV
X 2Pi11Y%50
+ L,8; (x) ] £(x]8)P_,(8)dx.
~ 6€B,,yB.., ~ ~ T
~ Til¥7iz2
L £(x]|8)P_,(8)
0€G,, 7 7 i
If we let C(xl,...,xi_l,xi+l,...,xk) = o v < =5 =R
21 o2
205 oy
! f(EIQ)PT*(Q) ! f(§lg)Pr*(9)
_ 866Gy, _ 98By
ii 1 ¢(xi—60+A) 12 1 ¢(xi—6 -A—e)
2 04 o4 2 oy o4
I E(x[8)P_,(8)
6€B,., ~ ~ ~
=12 then
Ai 1 xi—90+A+e
= 5o ¢ ( 5 )
1 .
1

(i) — -
r (T*,Si) = 1/2£leigoi(xi GO)C(xl,...,xi_l,xi+l,...,xk)d§

+ 1/2f8, (%) [L M1 E
X _

i
xk)d§.
Hence the Bayes rule for the ith component problem wrt T* is
1 if LoA:g. (x,=08.)>L A!f_ (x.,-6,)
§%(x) = 6§(xi) - { 171%0, 71 0°—"2"1"0, 71 0
0 if <
X
. A!fg.(x) cosh[;?(A+e)]
Let hy ()= pirie—troy = k; =
1i%, cosh{Z5 Al
i 02
i
Lyri 1
where ki= ) expl- —~§(2A+a)e], then hi(x)=hi(-x) and hi(x) is
171 205 '
i

increasing for x > 0, hence h,(x) < 1 if and only if Ix] < to,

. . _ x - _
where ti > 0 satisfies hi(ti) 1. So, Gi(xi) I[_ti’ti](xi 90).

(xi-eo)—LlAigoi(xi—eo)]c(xl,...,xi_l,xi+l,...

4



4 = * 3 = -
Now, if gi(ei) Eeiléi(xi)], we find gi(ei+60) gi(e0 ei).

Also, Xi ~ N(Oi,oi), so the pdf of Xi is TP, hence TP3 from
Karlin (1968) (see p. 18). Now, by Lemma 3.2, (3.1) is satisfied,
then Theorem 3.l.shows that §* is a T'-minimax rule. This finishes
the proof.

Ay A

"—l'r---l_|')-
A Ak

Y; for i=1,2,...,k} where Y=(yl,Y2,...,Yk), then we have T (y)=

Let A/)A' be defined as ( If T(y)={t€®*|P_(G;)/P_(B;)=

U I'(A,A'). Since §* depends on ),A' only through A/)A', we find
A/Aat=y T 7 - T D
sup r(t,8§) = sup sup r(t,q8)
TE(I) ~ 5/§'=X TEF(g,é') ~
> sup sup r(t,d8*)

A/A'=y TET(A,A")

= sup r(t,8*)
TET(I) -

hence 6* is a I'-minimax rule for T = T (y).
It is possible that (3.3) does not have a solution. 1In this case,

the I'minimax rules imply that all populations are bad.

4. A restricted I'-minimax rule for 60 unknown.

When 6. is unknown, decision rules are restricted in a subclass

0
D', where D' = {§=(61,...,6k)[6i(§)=6i(x0,xi) for i=1,...,k}.

That such a restriction is needed was first pointed out by Randles
and Hollander (14). The following lemma has been used by Miescke
(1979). The original idea of this lemma is due to Ferguson (1967)

and Lehmann (1959).

[ee]

n=1 be a sequence of prior distributions on

Lemma 4.1. Let {Tn}

0

®, and let sin be a Bayes rule wrt Th for the ith component problem.

If



L i 0 i 0
lim inf Y(l)(Tn,din) > sup y(l)(f,ﬁi)
n- T€Tl

0

for all i = 1,2,...,k, then §° = (69,50

0, . -
1,62,...,6k) is a T-minimax rule.
A prior distribution T on @0 X ®l X...X @k can be specified
by the marginal distribution T on @0 and the conditional distribution

w on ®;x...x 8, , given 90=60. We use T=(T,we ) to denote such

8
0 0
prior distributions. Let Th = (Tn,mg ), where Tn is uniformly
0 . .
distributed over the interval [-n,n] and 61,82,...,6k are condition-~

ally independent under wg , and

0
Al
= = L
Pl (B;118g) = Pog (Bj,l0y) = —3
0 0
M
Pox (G31100) = By (Gi5l80) = —5 (4.1)
G 0
0 0
- €1 = 1.3 a1 . .
ng {olo;=6,+a+ 5} = 1-A,-A] for i=1,...,k.
0 -
Let wg denote the conditional marginal distribution of ei under
0,1
Wg % * Then, we have

-0

Theorem 4.1. When 60 is unknown, a T'-minimax rule in D' is given

0 _ 0 - L0 ' 0 _ _ Y
by 6~ = (61,...,6k),-where 6, (x) = I[-ti’ti](xi xo) and t; > O
satisfies
- ' ' . \_ .2, 2,1/2 :
leigoi(ti)—szifci(ti), with Gi—(00+oi) (4.2)
Iy and fc' are defined in (3.2).
i i
Proof: For Th defined above, let hc(x) = é ¢(§), then
e ,60)= T L (1-Ey o [6;(X,X;)])dwy  (8,)
-n  |6,-0,]<A 0'°1 0,1
i "0'—
+/ L,E [§.(X,,X,)]1dw} (8.)1}ar_(6,)
!ei'eo|ZA+€ 2 eo,ei it 071 eO’i i n 0
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w o LA,
= [ [ 32 ?g (x.-8 )h_ (x.-6.) %— d8.dx,dx
2 o, i “0'7¢o 0 "0" 2n 01770
= = -n i 0
oo o )\ n
2 i 1
* _i fGl(xO’X H—a— £f0i(xi—60)hco(x0_60) 57 99
LiA. n
171 1
- == Jg (xi-eo)hOO(xo—eo) 5o d6,}ax,ax,.

Hence, the Bayes rule wrt T, for the ith component problem is

n
. . _ _
1 if LAY JE o (x,-6)h, (x4-6,)d0

271 _ 70, o O 0
0 n
Sin(Xir¥p)= < Lgry Jog (x-84)h; (x4-84)d8,
-n "1 0
0 >
and the Bayes risk of ng is given by
rP i 6% = f fmmln{L 1 ? (x.-6,)h_ (x,-6,)d6
n’%in’ ~ In _19 . "*i7%0’ %, 0770’ %o
—® - ® -n i 0
szi n
1o _£ fci(xi—eo)hoo(xi—eo)deo}dxidxo.

Now consider the change of variables

XiThY*Y,
{ for the outside two integrals, then let 60=nyi—n0
¥0~™NY; 7Yy
for the inside integral.
(X, ,X,)
i’70
Since AT =2n and h.(x)=h.(-x), we find
(YiIYO) 0 0
o o n(yi+l)
r W) 0 5% )= [ fmin{22% (yatn)h_ (na-y,)dn
n’%in 2 95, WoTNg/ g _Ng~¥g Mo~
- -0 n(yi—l) i 0
szi n(yi+l) .
5 £ (y0+n0)h00(no-yo)dno}dyidyo-

n(yi—l) i
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It is known that

1 g (—2m2,

Jo%4n?  Jolen?

[ (e (XD ax =

hence
[a5 (ng=adhg (ng-b)dng=g_, (a-b)
- T3 0 i
and (4.3)
[£_ (np-a)h_ (n,~b)dn,=f_, (a-b),
—- 04 0 9 0 0 "oy
where
g! = (o?+02)l/2. Now by Fatou's lemma and (4.3), we get
i i "0
. o 1 LA, L_A!
. . 0 . .
lim inf r(l)(rn,éin) > [ f mln{—%—i 9y (2¥4) s —%—i £, (2yy) }dy;dy,
n-+w . - =1 i i
(4.4)
© Lixy szi
= mln{—i—— gc!(x), > fo!(x)}dx.
—o0 i i
On the other hand, for all T=(T,we JET
-0
(i) 0,_ ¢ 0
i
Yy U T,85)= L, (1-E, _, [6;(X.-X,)]1)dw (6.)
it _J ei__eoliA 1 ei 90 i*Ti 7o eO,i i
0
+ LE, _, [8;(X,=-X,)]dw (6,)AaT(6,)
lo =0, > d+e 270,-8, "iTL 70T T8, 4 0
< LiA,[l-inf g.(n,)I1+L, A!lsup g.(n.),
- 171 In-l<Al 1 len-‘>A+€l 1
it it~
-5 - = 0 =X . -
where n; = ei eo,gi(ni)—Eni[Gi(Yi)] and Yi—Xi Xqy-

Since YimN(ni,oiz), so as was shown in the proof of Theorem 3.2, we have

sup g.(n,)=g; (A+e) =g, (-A-¢)
l“i|3A+€ i1 1 i

and | (4.5)

inf g.(n.)=g. (A)=g, (-4).
Ini!iA 1 1 1 1

Thus,
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Py . (A)Y+g. (=A) g. (Ae) +g. (-A-€)
(i) 0 93 i I i
r (T,Si)leAi[l 5 ]+L2Ai[ 5 ]
oL, A, L A!
_ 171.. .0 271 .0
= [ 5=1-8,(yy) g, (yy)+ 5= 65 (v ) £, (v;)dy;
—00 1 1
o lei szi
= [ min{5—= g, (x), 5 £, (x) }ax. (4.6)
—c i i
By (4.4), sup r(l)(T,GQ) < lim inf r (T ,69 )
- 1€l 1 - n-c n in
. . . 0_,.0 0
for all ;—l,2,...,k. Lemma 4.1 now implies that 8§ =(§ ,...,Sk)
is a T-minimax rule in D'. This completes the proof.
5. Optimal properties of the I'minimax rule.
Suppose that we have n, independent observations Xil’
Xi2""’xin. from Hi’ i=1,2,...,k.
i
n,
- 1 1
Let X, ==— ] x,., then the '-minimax rule is of the form
in, n, .& ij
i i j=1
§*(x, )=I _ (x._ =8,) (5.1)
i ing [ ti(ni)’ti(ni)] in, 0

where ti(ni) is the positive root of the equation

1t 2 2, _
hi(x)—ki cosh{ni(A+s)x/0i}/cosh{niAx/oi} =1
- - _ 2
with ki = szi/(L,Ai)-exp{ ni(2A+s)e/20i}.

Consider
L, 2 2
fi(x)—kiexp{ni(A+€)x/0i}/exp{niAx/ci}

and

N =

g;(x) = kiexp{ni(A+e)g/cf}/exp{niAx/oi}.

Then, gi(x) < hi(x) < fi(x), for x > 0.
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Let ri(ni) and si(ni) be the only positive root of gi(x)=0 and

fi(x)=0 respectively, then ri(ni) > ti(ni) > Si(ni)'

2
oS An (LAY /2L,A)
= e _ _1 271 171
Now, rl(ni) = A+ -2' —
i
0Z2n (LAl /Lo As)
£ i 27177171
s.(n.) = A = - ’
i 2 n.ec
i
hence 1lim y.(n,)=lim t.(n,)=lim s, (n )= A&+ %.
n.—)m l n,+m 1 n.+03 i 1
: i i i
Then, _
lim inf E, [(8*(x._ )]
w8, -6,]<a 01 T T
i i "0'—
ti(ni)-A —ti(ni)-A ‘
= lim [@(——:_——") - ‘I’(——_—_——)]=l (5.2)
n,»o g.v/n, o.v/n,
i i’ i 7
and
lim sup E, [6¥(X, )]
n.sw|6.-6 |>a+e 0i T *Pi
i i 70'—
. (n,)-(A+e) ~t.(n.)= (A+e)
= lim [&(——— )= (——— )1 =0, (5.3)
n,->o® o.vn,; c. V/n. :
i i i i
for all i=1,2,...,k.
Theorem 5.1. lim sup r(t,8%) =0,

~

min(nl,...,nk)+m T€T

where §* = (6{,---,5ﬁ)

(5.1), for i=1,2,...,k.

is the I'-minimax rule with 6; defined by

k .
Proof: sup r(t,8%*) < Z sup r(l)(T,G;)
T€T - i=1 T€T
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<L

' (l— inf Ee.[az(iin.)])
i i

1’ lo,-0,1<a %1

1

+ LAl sup [6%(X._ )1].
Tl -8y1>04e ei TooAny

Hence, by (5.2) and (5.3)

lim sup r (T, 6*) = 0. This completes the proof.
min(nl,...,n y>o TET
When 90 is unknown, let § =(Gg,...,6£) and -
Gg(iin ’§0n ) Ii-t'(n.,n ) ,t! (n )](iln —ROn )y
i 0 FAARL A L AL A 0

where ti(ni,no) is defined in (4.2) with Oi and og replaced by

ci/ni and og/n0 respectively. Then lim sup v (T, 6 )=0
min(no,...,nk)+w TET

also holds. The proof is thus similar to that of Theorem 5.1 and
is omitted.

In deriving the I'-minimax rule §*, we have proved that §* is
a Bayes rule wrt t*. It is easily seen from (3.4) that §* is the

unique Bayes rule wrt 1%, and hence it is admissible.

Theorem 5.2. When 60 is unknown, the I'-minimax rule 60=(Gg,...,6£)

is admissible in D'.

Proof: Let To=(T0,w§ ) be a measure on ® such that TO is
0

Lebesgue measure on @0 and wg is defined by (4.1). Then for

0
k & i
all §€D', r(T0,§)='£ f f i L (1-6. (xo,x ))gci(xi—eo)hao(xo—oo)

i
+ - L 8. (xo,x )f (xi—eo)hg (x

8,)de . .dx . dx.
1
1 0

070 0-"0

k A
= z f fm—f ngoi(xi—xo)dxodxi
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o BaMi Ay
v L8y (xyaxg) IS Boy (Ri7%g) ™ 39 (xym%) 1dx;dxg
by (4.3).
. . . 0_,:0 0
Hence, the generalized Bayes rule is given by § —(61,...,6k)
where
1 if AL, G,(x =Xg) < Ay ng .(x %)
0 _
Si(xi—xo)—
0 >
which is>exactly the rule we defined in (4.2). Also, 60 is the

~

unique (up to equivalence) generalized Bayes rule wrt To in D',
and r(TO,GO) < =, Hence 60 is admissible in D'. This completes

the proof of Theorem 5.2.

6. Relaxing the assumption of normality.

In this section, Hi's are not limited to be normal populations.
Let Xi be an observation from Hi with pdf fi(xlei) and let Ai =

{x|L A} LE, (x]0 +A+e) +£, (x]|8,-A-€) ]

< lei[fi(xleo+A)+fi(x|eo-A)] } for i=1,2,...,k. (6.1)

Theorem 6.1. Let gi(ei) = Eei[IAi
(6.1). If gi(6i+eo)=gi(80—ei) and g; is increasing for ei > 8

(Xi)] where Ai is defined by

0

for all i=1,2,...,k, then 6=(Gl,...,6k) is a 'minimax rule where

6, ()=, (x,).

i
Proof: Let T* be defined as in the proof of Theorem 3.2, then

the Bayes rule wrt 1* for the ith component problem is given by
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Gi(g) = IAi(xi). Now, since g, 1s symmetric about 60 and gi(ei)

is increasing for ei > 60. SO

sup g, (6.)=g, (6 ,+A+e)=g, (8 ,-A~c) and
lei_eo|zA+€ i1 i 0 i* 0 ‘

inf gi(ei)=gi(60+A)=gi(eo-A).

|8.-6,1<A
_ i "0'—
Then by Theorem 3.1, we conclude that § is a I'-minimax rule.
- As an example of this theorem, we consider the problem of
selecting binomial populations with entropy larger than a given
constant. For i=1l,2,...,k, let Hi%b(ni,ei) and W(ei)= —eitnei—
(1—6i)£n(l—6i) where n; is known and Bi unknown. W(ei) is the
entropy associated with Hi. Define Hi to be good if W(ei) > B+e!
and bad if W(ei) < B. This is equivalent to saying that Hi is

' . 1 . . 1
good if [6,- fl < 4 and I, is bad %f |6, - 5‘ >A+e (6.2)

where A and € satisfy w(% +A)=B+c', and ¢(% +A+e)=R8.

n.=-x n.—x

Lol (2 rare) ¥R camey P d vave) TG a0 ®
7271 2 2 2 2
Let h. (X)=
S e BN e R e S R Tk
2 2 2 2
n n.
we find hi(f_ +x) = hi(f" -x) and
hi(x+l) ni—l
H;TET_— > =, <1if x >, =, < —5—. Hence hi(x) is decreasing
n, n,
for x < 5 and increasing for x > 5 Now, in view of (6.2), we
. _ 1
find 90 = 5, SO that

A, = {lezxi[fi(xlf +A+e)+fi(x]7 A-g)]

1 1
< LA [E; (x5 +0)+E; (x5 -0) 1) = {x|h; (x) <1}



ng n; n, o n;-x
= {xli— -my < X < 5m mi}, where fi(x|6)=(X )87 (1-6) and
n, n,
5= +mi satisfies hi(f_ + mi) = 1. Then,
gi(ei) = Ee.[IA.(Xi)]=Ee.[IA.(ni—xi)]
i i i i
- E. . [I. (X.)]1=9.(1-6.), so g. (% +6,)=g. (= -6.). Now, b
1-6, A, i i il ilg Y7947 TP r OY

Lemma 3.2 and Theorem 6.1, §=(61,...,6k) with Gi(xi) =

I[n./2—m.,n.(x.)2+m.] is a I'-minimax rule.
i it i

A density functionif(xle) is said to be a PF (Pélya-Frequency)
function if © is a location parameter and f(x|6) is TP. It is
known that if X has a PF density f£(x-6) and £(x)=f£(-x), then [X]|
has a TP density (see Karlin (1968) p. 738).

Hence,
f(x+62)+f(x—62)

f(x+el)+f(x—el)

(6.3)
is symmetric about 0 and is increasing for x > 0 when 62 > ei > 0.

Theorem 6.2. If X. has a PF density f.(x|8,)=f.(x-8.) and
i i i’ 1 i

fi(x)=fi(—x), then the assumptions of Theorem 6.1 are satisfied.
Proof: Now Ai defined in (6.1) reduces to

Ai={x+8 tiixiti} by the monotonicity of (6.3)

ol’

Then gi(ei)=Eei[IAi(Xi)]=P['ti+eoizi+eiiti+90]
where zi=xi—ei. Since Zi and —Zi have the same distribution, it
follows that so gi(6i+eo)=gi(eo-6i). By Lemma 3.2, the assumptions

of Theorem 6.1 are satisfied.
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An example where Theorem 6.2 is applied is when Hi has a

c. =-c.lx.,-6.]|
double exponential density fi(x|ei)= 55 e * Y 1 for i=1,2,...,k.
In this case the TI'-minimax rule is 6=(61,...,6k) with
AL, —ci[xi—eo-A-el -cilxi—90+A+e]
1 if 3 e +e <1
AiLl -cilxi—eo—A| -cilxi—60+A| -
e +e
Gi(xi)=
0 >

7. Bayes rules and minimax rules.

In Section 2, we assumed that partial information about © is
known and is summarized in the class I'. In this section, we
consider two extreme cases, namely, either complete information
or no information about 8 is known. Then we are interested in the
Bayes rules and minimax rules respectively. The problem will be

2

treated under the assumption that 60 is unknown and Xi “ N(ei,ci)

for i=0,1,...,k. Assume that ei has a normal prior distribution

with mean a. and variance B?, then 6.|X.mN(a.,b?) where
i i it irti

2 2 2.2
@ 0 +%;85 2 O3By
a. = ————==— and b, = . With the same loss function as
i 2. ,2 i 2. .2
oi+8i ci+8i

defined in (2.1), it can be easily shown that the Bayes rule is

B

B_
§ —(Gll

...,6?) where

1 if L2P[Iei—eoliA+€!xi,xo]iLlP[|6i-80liA|xi,x0]

6?(§)=
0 >
L2[¢(—yi-Ai-€i)+¢(yi-Ai-Ei)] <1

L, [0y +A1) =0 (y;=81)] =
= (7.1)
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. 2.,2 B .
, b! = /b0+bi and si is

where Y; = —%T——, Ai = =, € H

the positive root of the equation (7.1l) with inequality replaced

by equality. The following theorem determines the minimax rule.

Theorem 7.1. Let §=(al,a2,...,ak) and %=(l,l,...,l) and let
M

1:
(3.3)). 1If a; is chosen such that qi(ai)=l for all i=1,2,...,k,

..,65) be the I'-minimax rule in D' for F=F(§,l-a)b(see

~ o~

"= (s

where
ti(a)+A+e —ti(a)+A+e
q; (a) = £, @+ -t (a)-k ’ | (7.2)
Ll[(D( O,i ) +0 ( O_i— )1

M . ..
then 6 is a minimax rule.

s (1) My _ _
Proof: For 6€G;, R (g,oi)—LlP[lxi xolzti(ai)leo,ei]

_ti(ai;:(ei—eo))+¢(—ti(ai;T(ei—eo)
i i

)]

Ll[®(

-t. (a,)-A —ti(ai)+A

i'9q
Ll[Q(____EI_—_)+®( )1,

| A

o
i

Similarly, for QEBi,

t.(ai)+A+e -ti(ai)+A+e

) =9 ( )1,

(i) M
R (Q’Gi)iLZ[Q( c! o!
i i

If eiBiuGi, then R(l)(Q,G?)=O. Now from (4.4) and (4.6), we get
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lim inf r &z, 8% )
n in
n->o©
-t.(a,)+A -ti(ai)-A
i i
t. (a,)+A+e ~t. {(a.)+A+e
+ L, (1-a) [0 (——= ) =0 (——F )]
1 1
-t. (a,)+A -t. (a.)-A
_ i'7i 171
= Ll[®(~———ET———)+®( 5 )]
i i
t, (a,)+A+e -ti(ai)+A+€
= L2[¢( Oi )=90( ci )]

> sup R (0,87 for all i=1,...,k.

~ pEd
L 0 L (1) 0
Then, lim inf r(t,§)) > _Z lim inf r (85,
n->-wo i=1 n-—o
k (i) M M
> } sup R (8,6,) > sup R(6,68).
i=1 8€® - ped T
It follows that'<SM is a minimax rule.
L, (1-a) Foy ()
Let v, (a,x) = L2 9o (X)’ S (7.3)

i

then Yi(a,ti(a))=l by (4.2), which implies that ti(a) is a

continuous function of a by the implicit function theorem.

Hence qi(a) is a continuous function of a, for 0<a<l. Now,

lim g, (a)=1lim g:(a) = «» by (7.1) and (7.2). Also, for
i i
a-rl ti(a)->oo

2
0 Lzexp[—e(2A+e)/201]

a; = 5 t.(ag)=0, so qi(a2)=0. Then, by
L1+L2exp[—e(2A+s)/20i]

the continuity of q; there exists an ai(a2<ai<l) such that

qi(ai)=l. This shows that a minimax rule always exists.
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8. Comparison among Bayes, I'-minimax and minimax rules

When one faces a decision problem, the choice of 'the optimal
rules depends on the prior information one has. In general, one
would use Bayes rules if the prior distribution is known exactly,
'use F—minimax rule for incomplete prior information and use
minimax rule if no prior information is available. Hence one is
interested in studying the robustness of thése rules against the
assumption of the prior information. In this section, we compare
these rules in terms of the Bayes risk, maximum risk over T and the
maximum risk over 9*. Since the loss function is assumed to be
additive, the comparison is made for the first component problem

only. In this section, §=(x0,xl), Q=(60,61) and dTB(Q)=dT0(§O)dT1(el),

2 - -
where 1, ~ N(o,,B}) for i=0,1. Let GB(§)—I[_tB’tB](al_ao) be the

2 2
. ai0i+xiBi
Bayes rule wrt T (see Section 7), where a; = —5 5 — for i=0,1.
. o.+8%
i i

Also, let 6.(x)=I (x,-x.) be the '-minimax rule in D' and
G'~ tG] 170 _

[_tGI

oy — _ i . (L)
6M(§)—I[_tM,tM](xl xo) be the minimax rule. Define rl(G)—r (TB,5),

r,(8)=sup r M (1,6) and r,(s)=sup r P (z,8).
T€T TEQ*

Then, rlgsB)=LlPTB[|al—ao|>tB,lel—eoliA]+L2PTB[|;l—a0|itB,Iel—eoliA+e].

4
Let 4 = - w2= Bi i=0,1
= QTG WiT T ATV
Oi+8i

u2=8§+8§ and v2=w§+w§. Then, we find that
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a,—-a,—-d
1 0
7 0 1 o y
el—eo_d wN ’ where p = TR
—_— 0
p 1
u

Hence rl(GB)

Ll{F(—BllC;_p)+F(—Bl]D;fp)+F(B2/C;p)+F(B21D;p)}

+ L,{F(B,,D-A;p)+F (B,,D-A; ) +F (B) ,~C-A; ) +F (B,,~C-Ai-p) },

t,—-d -t -d
_ "B _ "B _ € ~_b-a __ -A-d
where Bl = v’ B2— el A= T C"_E_’ D= " and
Zl 0 1 o
F(xq,Yqip)=P[2y<Xq,2,%y,] with z, “Nilo /7l 1 .

Similarly, rl(dG)=LlPTB[|Xl-XO!>tG,!91‘90|§A1+L2PTB[le‘XoliﬁG'

|6,-041>a+€]

= LllF(-Gl,C;-p')+F(-Gl,D;-p')+F(G2,C;p')+F(G2,D:p')]

+ Lz[F(Ger'A7p')+F(G21D‘A;D')+F(G11‘C‘A7‘Q')+F(G2,_C‘A7‘O')]'

t .-d t .-d
_ G _ G -2, 2 2 v
where Gl = —?——, G2 = —7——, Y 00+ol+u and p' =

<l

Since §. and §,, have the same form except for the constant t
G M £ -a —t. -4 G
. _ M .
so 1if we let Ml = and M2 = > and replaces Gl’

and tM,

G2 by Ml’ M2’ respectively, in the above formula, we get rl(GM).

The following lemma is used to compute the maximum risk over T.

Lemma 8.1l. r2(6)=Lle(l— inf Ee[G(X)])+L2Ai sup E,[8§(X)].
|88l ~ 7 o -8, 128+ = 7

Proof: < is trivial. To prove the other inequality, let {On}
and {eﬁ} be two sequences such that 6 € {9||91“90|iﬂ}r-

o) € {8]|]8;=0y|>a+e} and E; [§(X) 1> inf Eq[8(X)1,
<n |8,-0gl2a ~
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E,,[8(X)~> sup E.[6(X)]. Let t_€r be defined by P_ [0=0_]=)
6 ~ 0 ~ n T~ ~Nn 1
-n lo,-6,1>0 =~ n
1 "0'—
—An 1] =1"!
and PTn[g—Qn]—Xl, then
e (1) . (1) _ .
r.(§)=sup r (t,8)>1lim r (t_,8)=L_ 2, [1 inf E.IS(X)])
2 - n 171 3] ~
TET n->c |, ~0,]<a ~
1 "0'—
+ szi sup E,[8(X)]. This finishes the proof.
|8.,-06,|>0+e = ~
1 "0'—
—tG-A —tG+A
From Lemma 8.1 and (4.5), we get rZ(GG)leAl[®(_ET__)+¢(7§I__)]
t.—-A-€ -t -A-¢
+ LA [0 () =8 (— ) ] .
1 1
| —t D ~ty =0
When t. is replaced by tyr we get rz(éM)=(xl+A2)Ll[¢( Oi Y+9 ( Oi
. . 2
To £ind r,(8y), first note that al—aolel,eomN(u,; ) where
2 2 2 4 2 4 2
_ B9 BpBp %101 %9% 2 B107 %0
u= . - +( - ) and ¢°= + : . Let
82+62 82+02 32+02 32+02 (32+02)2 (82+02)2
I "L 0 70 171 0 -0 171 0 -0
_ tB—u -tB—u
gB(u)=Ee[SB(§)]=Pu[-tBial-a0itB]=¢( z ) -9 ( 7 )y (8.1)
then gB(u)=gB(-u) and gg(u) is decreasing in [u].
We consider the following two cases:
og. 0% Bi Bg, ‘
(a) if —5 # —5 then # . Let 0,=08, ~ £ = then |u|-+=.
B2 B2 82+ 2 82+02 1 0
0 1 17%1 0"%
So, inf E.[6,(X)]=1im g, (n)=0 and sup E.[8.(X)]=g,(0),
6""B'~ B 6*"B'~ B
Iel-eo'liA” | u| e |81—60|1A+e 3
=0 - ! : = 1
because {Q[u—O}ﬂ{Qllel 60!1A+s}# g. Hence, r,(85)=LiA +L,A{g5(0).
2 2
9% _ %1 2 1 2
(b) If — = — = e°, thenyu= [(8,-6.)+e“ (a;~a,)]. So, when
2 2 2 170 170
80 Bl 1l+e
. . 1 2
|el—80]iA, the maximum value of |u| is Ho = I:;i [A+e Ial—uoll.

(8.2)
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When lel—eO|1A+s, the minimum value of |ul| is 0 if ezlal—aO{zA+g;
and is

1 2 . 2 .
= = [(a+e)-e laj-agl] if e laj-aglcate. (8.3)

1+e

M1
Hence, we get
. 2
LiAq [1-gg (1) 1+LyA 1g5 (0) if e|ay-og]>Ate
r2(6B)=

) :
LiA; [1-g5 (o) 4Ly {9 (1) if e_lal-a0|5A+e,

where g is defined in (8.1). To find ry(.), we need the following

lemma.

Lemma 8.2. r3(6)=max{Ll(l—|;nf Ee[6(§)]), L, sup Ee[6(§)]}.
1

-04l28 < |6 -6p1>8+0 ~
Proof: The proof is similar to that of Lemma 8.1.

: -t ~A -t HA
Now, from Theorem 7.1, r3(6M)=Ll[¢( e Y+d( 3 )1 =
tM-A-E —tM-A—E -tG—A
L2[¢( o7 ) =3 ( 57 y]. From (4.5), r3(6G)=max{Ll[¢(—ET——) +
1l 1 1
—tG+A tG—A—E —tG—A—E .
o (—)1, L, [%( —) =2 ( ——)1}. We also find that r (8.)=
a 2 g o] 3''B
1 1 1
5 | o1 5 _ %1 _ 2
max{L,,L,g,(0)} if — # —. For — = —5 = e,
1"72°B B2 B2 B2 B2
0 1l 0 1

Max(L, (1-g5 (ng)) ,Lyap (0} if e?fay-ag[>ase
ry(dg)=
Max{Ll(l—gB(uo), LZgB(ul)} if <

where Mo and ny are defined in (8.2) and (8.3). Thus we have

all the formulas needed to compute the tables for comparison.



Table I, II exhibit tB' tG’ tM and ri(G) for § = 6B'6B' and

GM, i=1,2,3. They are arranged in the following manner:

tB rl(GB) rZ(GB) r3(6B)

te rl(dG) rz(GG) r3(6G)

ty rl(GM) rz(GM) r3(6M)

“i °§ 2 2
The tables are computed with — = — = ¢” and (a,,B.)=(0,1).
nl n0 0’"o0

selected values of the variables are:

(1) o2 is .2 in Table I and is .5 in Table II.

(2) (al,Bi) is chosen as (0,.5), (0,1), or (0,2).
(3) A is chosen as 1. or 1.5.
(4) For A=1l., € is chosen as .3 or .8.
For A=1.5, € is chosen as .5 or 1.
(5) For (al,Bi), A, e, and 02 fixed, A, and A! are computed

1 1
so that TBEP.

25

The
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TABLE I. g = .2
A=1 (@.,82)=(0,.5) A=1.5  (0.,82)=(0,.5)
1771 ! - 1’71 re
= = - = = (.
€=.3 ll—.5858 Ki—.2885 €=.5 Kl .7793 Al .1025
1.1500 .1303 .8687 1.0 1.7500 .0524 .8818 1.0
2.0944 .1798 .2828 . 8955 3.3731 .0889 .1021 .9850
1.1503 .1512 .3553 ,4064 1.7500 L0771 .3054 .3463
€=.8_ X1=.5858 Ki=.l416 e=1.0 Kl=.7793 Ai=.0412
1.4000 .0508 .7268 1.0 2.0000 .0169  .8206 1.0
2.1098 .0619- .1207 .6879 3.1757 .0264 .0385 .8573
1.4001 .0708 .1917 .2636| 2.0000 .0351 .1761 .2146
A=1 (al,Bi)=(0,l) A=1.5 (ocl,Biz_)=(0,l)
€=,3 Xl=.5205 Xi=.3580 e=.5 IK1=.7112 Ai=.1573
1.1499 .1337 .3397 .5503} 1.7500 .0647 .2104 .5628
1.6494 .1461 .3333 .70971 2.9570 .1066 .1546 .9349
1.1503 .1447 .3570 .4064 1 1.7500 .0804 .3008 .3463
— —_— 1 — — —_ [
£=.8 Al—.5205 Al—.203l e=1.0 Xl—.7112 Al—.077l
1.4000 .0576 .1597 .42471 2.0000 .0241 .0887 .4372
1.8706 .0619 .1545 .5444 2.8887 .0344 .0663 .73006
1.4001 ,0690 .1907 .2636 2.0000 .0367 . .1692 .2146
2 2
A=l (aerl)=(012) A=1.5 (allBl)::(olz)
— —_— 1 — — — 1 —
e=.3 X =.4363  X}=.4529 = X,=.6135 1]=.2482
1.1499 .1260 .8724 1.0 1.7500 .0725 .8614 1.0
1.1044 .1350 .3612 L4349 | 2.4739 .0982 .2298 .7732
1.1503 .1318 .3614 .4064 1 1.7500 .0810 .2984 .3463
— — | R, pa— — |
e=.8 ll—.4363 Al—.2987 £=1.0 Al—.6l35 Al—.l489
1.4000 .0588 .7317 1.0 2.0000 .0304 .7624 1.0
1.5896 .0597 .1871 .36971! 2.5663 .0375 .1088 .5418
1.4001 .0648 .1937 .2636 2.0000 .0376 .1636 .2146
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TABLE II. 2 = .5

A=1 (0, ,82)=(0,.5) A=1.5  (a.,82)=(0,.5)

- all 1 - r- L. u‘ll 1 - r .

~— —_— c " _ —_ [

=.3  A,=.5858  1]=.2885 e=.5 A =.7793 1]=.1025
1.1469 .1968 8594 1.0 1.7500 | .0803  .8815 1.0
3.5136 2654 .2881 9866 | 5.8077 | .1022  .1025 19999
1.1771 ©2522 .3886 4445| 1.7509 | .1579  .3541 14015

— —_— | J— — —_— | R

e=.8  1,=.5858 Aj=.1416 £=1.0 A=.7793 A}=.0412
1.3991 .0928 7249 1.0 2.0000 | .0313 - .8205 1.0
3.1767 1131 1384 9157 | 4.9393 | .0398  .0412 19926
1.4117 1562 ©2533 3482 | 2.0003 | .0979  .2533 3087
A=1 (a-,82)=(0,1) A=1.5 (a.,82)=(0,1)

l’ l 14 . l’ l 4

—_— — — -— — |

€=.3  A;=.5205 1}=.3580 e=.5 A;=.7112 A}=.1573
1.1441 .2113 .3613 6601 | 1.7500 | .1066  .2081 .7340
2.4180 -2430 3516 8681 | 4.7675 | .1517  .1572 19972
1.1771 2412 23904 .4445| 1.7509 | .1592  .3487 L4015

— — —_— —_— —_— | -

e=.8  A;=.5205 1}=.2031 e=1.0 A =.7112 A]=.0771
1.3980 L1121 .1967 6167 | 2.0000 | .0493  .1008 6915
2.5834 1238 '1887  .7833 | 4.2218 | .0659  .0761 .9574
1.4117 1506 12520 "3482 | 2.0003 | .0979  .2433 3087

. 7 » 7

A=1 (ay,83)=(0,2) A=1.5 (0 ,83)=(0,2)

e=.3  A,=.4363  A]=.4529 e=.5 A,=.6135 A1=.2482
1.1409 .2058 .8343 1.0 1.7499 | .1269 .8574 1.0
1.1754 12212 -3952 4452 | 3.5599 | .1833  .2456 ©9406
1.1771 ©2210 .3952 ©4425 | 1.7509 | .1563  .3460 L4015

—_— — | -— —_— 1 —

e=.8  A,=.4363  1}=.2987 e=1.0 A =.6135 A]=.1489
1.3968 .1205 7177 1.0 2.0000 | .0679 .7615 1.0
1.8999 ©1230 .2423 5397 | 3.4159 | .0878  .1391 18201
1.4117 -1409 -2559 3282 | 2.0003 | .0967  .2353 13087
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Discussion of the Tables

It is seen from Table I and II that:

1. Minimax rules compare favorably with I'-minimax rules in terms
of rz(.), and with Bayes rules in terms of the risk l(.).

2. The Bayes.risk of the T'-minimax rules is only a little more
than that of Bayes rules.

3. When (al,B§)=(0,l),the performance of Bayes rules is close to
'~minimax rule in terms of r2(.) and close to that of the
minimax rule in terms of r3(.). If (al,Bi)#(O,l), Bayes rules
show some large increase of risks Yz(.) and y3(.) when compared
with T'-minimax rules and minimax rules, respectively. To
illustrate the use of the tables, let us look at the following

example:

Example 8.1. Type HO (control) machines produce part P(p) where

p is the diameter of P, and p|II0 ~ N(8,,1). Type N;,I,, and T,
machines produce part Qi(qi)’ and qi|I[i N N(ei,l) for i=1,2,3.

Let us assume that when lei—eol < 1.5, part P and part Q; can be
matched, and when |6,-84| > 2.5 they cannot be matched. Assume

that the partial prior information I' is as follows:

P[Iel—eol < 1.5]=.78 P[lel—eo[ > 2.5]1=.04
Pl]8,-64] < 1.51=.71 P[]6,-6,] > 2.5]=.08
p[|e3-eol < 1.5]=.61 p[|93-e0| > 2.5]=.15

Now, there are machines ao, aj ays ag for sale where aiEHi for
i=0,1,2,3. Suppose we can take 5 samples from each machine and
let ii be the mean diameter of the samples from machine ai(i=0,l,2,3).

Since A=1.5, ¢ = 1.0, from Table I, the T-minimax rule is:
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a; is good for a, iff Iil—iol < 3.1757

1
a, is good for a, iff lX2—XO! < 2.8887
ay is good for a, iff |X3—X0| < 2.5663

If we feel the claim regarding the partial prior may not be
correct and we would rather assume that there is no prior information,
then we might use the following minimax rule: a; is good for

a, iff |X;-X,| < 2.0 for i=1,2,3.

If from some other source, we know that 90 ~ N(O,1), 61 N~ N(0,5),

6., v N(0,1) and 8

5 ~ N(0,2). Then, we might use the Bayes rules,

3
from Table I we get

is good for a, if |% il— % XOI < 2.0

a1
a, is good for a, if |X,-X,] < 2.4
. . 10 3 5 3
a; is good for a, if 11T %3~ % X| < 2.0

If we are not sure about the definiteness of any prior information,
we may then use the rule which is most robust to the assumption of
the prior distribution. So from Table I, we may use F-minimax

rule for aj. use Bayes rule for a2 and use minimax rule for age
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