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SUMMARY

'Comparison of’two—way'contingency tables using measures of
association is considered. Multiple comparison procedures for both
independent and dependent tables formed from larger multi-dimensional

tables are proposed.
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1. Introduction

This paper deals with comparison of measures of association from
two-way contingency tables that may be dependent. This allows for
two-way tables that are faces of a multi-dimensional table or a gen-
eralized mu]ii-dimensional table. A generalized multi-dimensional table
is such that given any pair of two-way tables formed from the table,
there is a set of observations for which there are responses for both
tables, but there can also exist some observations giving results in
only one of the two-way tables. The situation will be presented precisely
in Section 4. We are given a set of R.(generalized) multi-dimensional
tables from independent samples. Typically the R tables consist of
similar responses taken at different time periods. We are interested
in the association between pairs of variables from the multi-dimensional
tables. Let L denote the set of two-way tables corresponding to the
pairs we are interested in. A two-way table from a larger multi-dimensional
table is said to be permissible if the two-factor interaction terms in the

two-way table's log-linear model is equal to the corresponding two-factor

tarms in the log-linear model of the whole multi-dimensional table.
Let .Lg denote the set of permissible two-way tables from the multi-

dimensional table r; r =.1,...,R. We will assume that

LetY- ULE (1.1)



in order to insure that the interaction in the relevant two-way tables
measures the true interaction between the corresponding variables. Let |
K be the number of two-way tables in L. We present'a general theory
for multiple comparisons of measures of association from these K two-
way tables. The condition L c:L0 implies that the comparisons made are
meaningful, but the mathematical theory itself is independent of (1.1).
If all the multi-dimensional tables are two-way tables, then R = K,
all the two-way tables are independent and (1.1) is of course satisfied.

For a presentation of measures of qssociation, we refer to Goodman and
Kruskal (1954) and Bjdrnstad (1975). Also Altham (1970) proposes meaningful
measures, based on cross-product ratios. In addition to measures presented
in these papers, Srikantan (1970) proposes some measures based on canonical
correlations. However, these do not seem to be appropriate for comparing
tables. Bishop et al. (1975), Chapter 2, give necessary and sufficient
conditions for a two-way table to be permissible. This will be discussed
later. |

In Section 2 we present the asymptotic theory for a given two-way
table. In Sections 3 and 4 we consider the problem of ordering the tables
‘according to the measures of associatioﬁ, assuming (1.1) is true. Section
3 describes a multinomial model that covers the case where a generalized
four-way or three-way table is given, and presents the main asymptotic
result. In Section 4 we first show how the general situation with K
permissible two-way tables formed from a set of generalized multi-dimen-
sional tables can be described, and then pairwise comparisons of the tables
are considered. Section 5 deals with multiple comparison of independent

two-way tables.



2. Asymptotic Theory for Measures of Association in a Two-way Table

Let n be the total number of observations in the table, Xij the
frequency in cell (i,j), i =1,...,I; j=1,...,J, and q1.j = Xij/n'
Let Pij (assumed positive) denote the cell-probabilities. Let
A5 = (@59--45059)s Py = (PyqaeeesPyy) a = (ayseeisap)s p = (pyseeuspp).
Let d(p) be a measure of association with continuous partial derivatives.
(Three measures suggested by Goodman and Kruskal, 2, Aps Ay do not sat-
isfy this. A similar theory for these measures has been developed in

J

Goodman and Kruskal (1963, 1972)). Let now n;, = )

Xezs 1= Toeeosl
J Y

1

Thé following two sampling methods will be considered:

(1) Multinomial sampling over the entire two-way cross

classification.

(ii) Independent multinomial sampling in the rows so that the
rows marginals n, ,....,n; . are fixed. (This includes,
of course, the case where the column marginals are fixed
instead.)

For comparison of possibly dependent tables we will only consider
sampling method (i), i.e. mu]tfnomia1 sampling over the whole table for
each table. (This seems to be the most ffequent case when the tables
are dependent.) For comparison of independent tables the theory covers’

both sampling methods.

2.1 Multinomial Sampling over the Whole Two-way Table

Let

2 _ 2 _ TRY:
o4 © Ud(p) = ; jpij(dij d*)



where dij - _8d d* = ) p..d Then from Bjgrnstad (1975) and

"Pij IS

Goodman and Kruskal (1972) we have:
2
If o4 > 0 then
) 2,
Ald(@)-d(p)) 2 N(0,02)
and
/n(d(g)-d(p)) D, y(0,1) (2.2)
g
d

where Gﬁ = og(q). Here Xn 2, N(0,1) denotes that the distribution of

Xn converges to N(0,1).

2.2 Independent Multinomial Sampling in the Rows

Let  Xi = (Xiqs.000X09), Pij = Pis/Pi.s Py = (PyqseevsPyy). Here

Py, = Z pij' Then X]"“XI are independent. L(Xi) is multinomial
J

(n;.sp5). Let

Then Vni.(qi/mi-pi) N N(O,zi), and we get the following asymptotic

distribution theory for the multinomial estimates.

"n

LEMMA 1. Let ms =, /n. Assume thene exists W > 0 such that

1.
1,...1. Then

/ﬁ(mi-wi) +~0 for i



) (G- (B Moy oW P1)) > N(0,)
b) G- (B 5w gpp)) 2 H(O,2)
where.

A, -1
q = (w1m] Qpse-- oWy qI)

and

From Lemma 1 we get the following result which generalizes somewhat

the results for this case by Goodman and Kruskal (1972).

THEOREM 1. Assume there exists w;> 0 such that /ﬁ(mi—wi) + 0

for i =1,...,1. Then if Tﬁ > 0

a)  /RLd(py Wy agse e upp iy tap) - d(p)] B (0,55)
b)  ALd(pym aqs. gy ap) - d(p)] 2 H(0,49)
whese
T, = — P P = — P . o—Az
="y = ="y g=1p WOV
and
% .
d¥ = p;.d: ..
Ty 134



Proof. The results are proved by applying the s-method to Lemma 1
(see for example Rao (1965) or Bishop et al (1975)). Let

P1. P1.
’XI) = d(W——x],...,——~xI).

f(Xq,...
1 1 Wi

let 6 = (w]p],...,wlﬁl). Now f has total differential at 6 given by

- = ~iid.;(p). It follows

2 _r of 1xIJ of ad
f(e) = [ax.. _ ] A TR ay..l W, .
ij|x=8 ij|x=o ijly=p i i

that ‘
ALF(Q)-F(0)] 2> YF'(8) ;3 Y - N(O,z)

ALE(E)-F(8)] -2 YF' (o).

f(q) = d(p],w] q],---,DI,WI qI)’ f(a) = d(P]mﬂq],-.-,PIm?qI), and
the results follow. Q.E.D.

Remarks

1) Goodman and Kruskal (1972) assume that Wis Py, are known and that

i
/ﬁ(mi-wi) + 0, and Theorem 1 can be applied.

n, = n.i.(nwi) (nearest integer to nwi). This implies that

2) Tg is the same asymptotic variance as given in Goodman and Kruskal -

(1972), Section 3.
3) The theorem holds even if we cannot write d as a function of p only.

To use this result to estimate or to test on d(p) we only have to

assume that the pj. are known. (Usually this means that Pi. © Ni/N,



where Ni is the size of population i and N 1is the size of the whole
population.) As is seen in the next result, we do not have to assume
that the W, are known as Goodman and Kruskal (1972) do.

If p,, s known and /n(m;-w;) ~ 0, Vi, then a consistent estimator

of Tg is given by

where

J
- " . T = -1
d;. = d..(p1‘m] Gpses-sPp. My qI), d¥ = J.Z]qijmi dij’

If w. 1is known, different from Pi.» then it is better to use

i

. 'i . . . 3 ~ Q
w; nstead of m; in Ty

For the case of proportional sampling, i.e. Pj. = Wj is known for

all i, it follows from Theorem 1 that if t2 > 0 then

/mld(q)-d(p)) 2> N(0,<%), where

2 2 2
= = 17(p) = ) p,.(d,.=d¥) (2.3)
i,j 1] 1) 1

A consistent éstimator of = dis 17 = ¢

3. A Multinomial Model for Two Two-way Contingency Tables

Under Sampling Method (i) for Each Table

The situation can generally be described as a multinomial model with
two possibly dependent sequences of trials as follows (where a sequence
of trials corresponds to a two-way table). In sequence J, rj events

(the events cannot be the same in the two sequences) can occur with



probabilities Pij 3 i= 1,...,rj sy =1, 2. Zpij = 1. Let
i

r=ory + ro. All p are assumed to be positive. Let kn be the

ij

total number of independent trials, and let nj be the total number

of trials in sequence j. Let n = ny + n,. We always have n 3_kn.

If n»> kn then some of the trials give observations in both sequences.
If each trial gives observations in both sequences then ny=n, = kn’

n = 2kn and the situation corresponds to a usual four- or three-way table.

The other extreme is when each trial gives observations only in one se-

quence. Then kn = n and the situation corresponds to two two-way

tables from independentvsamp]es. Let now M denote the set of trials

that gives observations in both sequences and let m = #(M). Then

k =n-m For the trials in M, is the probability of event

n ij
i in sequence 1 and event j in sequence 2, i = 1,...,r]; j= 1,...,r2.

Let now Nij be the total number of observations in cell i of se-

N... Denote the relative frequencies by

uen ji. T ,
quence j hen nJ E

0
i
I

;
qij = Nij/"" Let tj = nj/n, t = m/n. We will assume that there
exists "> 0, = >0 such that

Mte-n.) >0, j=1,2 and t-+7 as n - (3.1)

P: = (P1ja---,pr_9j) ,» J=1,2
q' = (q]j""’q ) 3 \j = ],2
q = (q]’qZ) 3 p= (p]spz)~

Iy is the covariance matrix of Vﬁ}hj, that is,



jl

z, = D(p;) - P3P; where D(pj) = b

J J r..j

J

ry¥rs
} | where Bis = Wi - pi]pjz. We see that

Further let A = { j i

n COV(qi]squ) = Bijt/(t]tZ)'
The asymptotic distribution of /ﬁt("lq]’"2q2)'("]p1’"2p2)] can now

be stated:

LEMMA 2. Assume (3.1) holds. Then
/ﬁ[(“]q] :ﬂzqz)'("r"lp] ,"szz)] 'l)"* N(O’Z)

where
W]Z1 TA rxr

Proof. Assume first =>0. Consider first the trials from M.
Define Mj = (Mlj""’Mrj,j)’ j=1,2, M= (M1, 2). Here Mij is the
frequency cell i of sequence j from the set M. Using the muiti-

variate central 1imit theorem we find that

mM/m - p) -2 n(0,1)

where
L oA
A 22
t now . = Sseaas . . =N, - M., j=1,2.
Let no NJ (N]J NPj,J) and LJ ; SO 1
Assume now " >7 for j=1,2. Let nj = "j - m. Then

n _ 1 i o __1_7__* -
Xj = /ns/n /ﬁ}XLj/nj pj) N(O,(nj n)zj).
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Let Yg = Jﬁtjmng](Mj/m - pj). Xq and Xg are independent and

(X?, XS) and (Y?, Yg) are independent. Now

N n
Ml(tay,t50,) - (typstyp,)] = 27 + 7,

where Z? = (X?,Xg), Zg = (Y?,Yg). The result now follows from (3.1).
If one or both of the s are equal to m, then_one or both of

xg P, 0 and the result follows. If = =0 then Z) 2, 0 and the

result follows. Q.E.D.

Remark. The condition in Lemma 2 is always satisfied if we consider
tj as constants as n > =, or more precisely nj = n.i.(nnj) for all
n.

Suppose now that f is a function in r variables with continuous
partial derivatives. We are interested in the asymptotic distribution
of f(q). Let M$j be the number of observations from M that falls
in cell i of sequence 1 and cell j of sequence 2 and let m,. = M$j/m.

1J
We need the following quantities.

- of s = 8f 1 £ =
fil(p) = 5] for i < fiz(p) o for i < ry, fij fij(q)’
i|x=p i+r X=p

Y‘-' Y‘2 r Y‘z

_ 4 _ ] 1
foy = LPinfyn(P)s 15 = L pipfip(p)s oy = Lanfi fap = Tafip

P

The main result is as follows.
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THEOREM 2. Assume (3.1) hotds. Let

r] rz
o = 7! L (Fi(e)Top)® 53T 1 pyp(Fip(p)-iy)”
1:
Y‘ Y‘2 )
(21r/1r-l 2 Z z 813 1](P)f Z(P)-

Let furthen 8% be the following estimator of 0%.
r r
A2 2 -1 P = 2
Of = Z q. ](f fq]) + tz -Z]q12(f12-fq2)
1:

Y‘

Zt/t 12 Z 13 11q32)f11 j2°

14 0? > 0 then
(a) A(F(a)-F(p)) 2> N(0,05)
(b) A(F(a)-F(p)) /6. 2> 8(0,1)

Proof. The results are proved by applying the §-method to Lemma 2.

Let g(x],...,xr) = f(x]/w],...,xr]/w],vxr1+]/w2,...,xr/w2). Let

ale) = (29 Ixr. o ,
9(6) (axi =9) i 8 (W]p]aﬂzpz)- Then

Alg(nya5myp,) - a(8)) 2> N(0,6°) if oF > 0

[+

where 02 = g(e)zg'(e). Now g(n]q],nzqz) = f(q), g(e) = f(p) and it

is readily seen that o = o2. (b) follows from the fact that 8? is

a consistent estimator of o Q.E.D.

’hl\) ~h N
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Let u* =z When the two sequences of trials correspond
i

: i3 i1

to faces from a three-or four-way table then

4. Pairwise Multiple Comparison of Measures of Association

4.1 The General Situation

The situation with K two-way tables from a set of generalized
multi-dimensional tables can be formulated as follows. Let the
number of row- and column-classes in table number k be respectively

I, and Jk for k=1,...,K. Let ' T Ik-Jk. let pijk denote

k
the cell-probabilities in table k. We assume pijk > 0 and we have

F o1
Pisy, = 1 s k=T1,...,K
j=1 j=1 1k

Let N be the number of observations in table k and let qijk

denote the relative frequency in cell (i,j) of table k. Put

K
n= kglnk’ t, = n/n. For each pair (k,2) of tables we Tet My,

be the set of trials that give observations in both table k and 1.

rt
kz)’ rt® Mijhe

is the probability of falling in cell (i,j) of table r and cell

Further Mg = #(M ty, = nkz/n. For the trials in M

(h,2) of table t. Throughout we will assume there exists constants

T > 0, L > 0 such that

ﬁT(tk-wk) +~0, k=1,...,K and t, =~ T, as N> e (4.1)

k%



-13-

rt
Let Mijhz

(i,j) of table r and cell (h,2) of table t. The relative

be the total frequency from set Mrt that falls in cell

frequencies are denoted by

rt
Mishe =

We use the following notation:

pk = (p-”k,-..,pIka,k) ; k = ],...,K
%~ (q11k""’quJk,k) k= Tk

p = (p"l""’pK)

q = (Q],---aqK)

rt _ rt rt
m- = (m""1""’m1rdr’1tdt)

m = {mrt|r=1,...,K, t=1,...,K r <t}
urt=(urt um )

| 11,11 1,10,
wo= W e, K = 1. LK e < t)

Let d be the chosen measure of association with continuous partial
derivatives as function of the cell-probabilities; dk is the measure

d 1in table k. Then d, 1is a function of P variables with con-

k
tinuous partial derivatives, i.e. d, = dk(pk). Let ak = dk(qk).

The asymptotic variance of /ﬁ; ak is from (2.7).

I, J

ko k _d4*\8 . - |
gi = Z z p1Jk(d1Jk dk) 3k 1,...,K
i=1 j=1
where d;., = i d¥ =} p.. dis A consistent estimator of &2

~

is a) = Gi(qk). Let
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19 I, J
r r "t 't rt
= - d*e
L jE] L L ¥ighe%gethee - 4

*

Prt t

It will be seen that (ﬂrt//wr'wt)prt can be considered as the asymptotic

covariance of (/ﬁ;'dr,/ﬁg dt)‘ A consistent estimator of o s

) ;r ;r It ; rt A A
p., = m,:, d.., d - d* d*.
rt 21 321 he1 251 ijhe ijr hat r -t

We will first consider the case K = 2; i.e. comparison of the two
measures d] and d2’ under assumption (1.1), so that the inter-

action terms in the two tables are meaningful.

4.2 Comparison of Two Tables

12

To simplify notation, let o = P12 o = 5]2, Mishe = Mijhe
_ 12 _ 12 _ 12 - - -
M= Myghy = ijhge M T > M= Mg, 7= mp,, =t

We see that the situation is exactly as described in Section 3. From
Theorem 2, letting f = d1 - d2 we immediately get the following result,

assuming (4.1) holds.

A

THEOREM 3. vn(d, - d, - (d -d,)) s asymptotically normal with

1 2 1
asympiotic variance

02 = G?/ﬂ] + og/wz - p2ﬂ/(ﬂ]ﬂ2).

A consistent estimaton of o2 A5

~ ~2 ~ N
2 = 55/t, + og/tz - p2t/(tyt,).

We define the two tables to be independent if q4 and q, are
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stochastically independent. Hence, if Nip = 0 then obviously the

two tables are independent. For Nyp > 0 we have the following result.

LEMMA 3. 14 nip > 0, then table& 1 and 2 are independent if and
only Aif

Mishe = Pij1Phee B0 att (i,3), (he).
Proof. We have that

cov(ay47:0pgp) = (M12/MN2) (gny Pig1 Phs)-
Assume qq, q, are independent. Then cov(qij1,qh22) =0 for all

(i,3), (h,2), and the "only if" -part follows.

The observations in M can be described as follows. Let

{ 1 if observation falls in cell (i,j) of table 1
X.. =
W 0 otherwise

{ 1 if observation falls in cell (h,2) of table 2
Y =
h 0 otherwise.

X = (XT]""’XI]JT)’ Y = (Y]1,...,YIZJ2). In M we have ny,

independent observations (Xt,Yt) of (X,Y). Gy» Gy are independent
if X, Y are independent. Assume now Miihe = pij]'phZZ’ for all
(i,3), (h,e). This implies that (Xij’ th) are independent for all
(i,j), (h,2). Hence X, Y are independent, and the result follows.

Q.E.D.

Remarks. 1) If tables 1 and 2 are independent then the estimated

asymptotic variance of /ﬁ(a]-az) is Gﬁ/t] + Sg/tz.
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2) If Ny = Ny < Nys that is all the observations in one table come
from the set M, then the estimated asymptotic variance is

8%/t] + Gg/tz - 25/t2, so in particular if M consists of all the
trials then the estimated asymbtotic variance of /ﬁ;}'(a]~32) is equal
to &8+ 35 - 2.

3) From Theorem 3 we can now construct confidence intervals and test
hypotheses about d1-d2.

Let us consider the case Ny =N, = Ny, and suppose the two tables
are from a 3-way table. For example, let table 1 consist of variables
1 and 2 and let table 2 consist of variables 1 and 3. Usually this
means that variable 1 is the primary factor and variables 2 and 3 are

considered as explaining factors. Since in this case u; =0 and

ijha
piﬂph£2 >0 for i # h, the tables cannot be independent, but they

can still be permissible as we shall see. Let bp;

ije - Miie The

saturated log-linear model 1is:

10g Pyje = U+ Upeqy FUpsy ¥ Us(e) T Ur2(35) T M3(in)

*Usse) F Mi23(i4e)°

where

%U](.') = EUZ(J) = ZU3(Q/) = §U-‘2(1J) = etc. = 0.
From Bishop et al. (1975, Theorem 2.4-1) and Goodman (1972, formulas
(55)-(56)) we find that the two tables are permissible if U,5 = Uypg = 0.
That is, if Upg = Ujpg = 0 then Uy remains unchanged when we sum
over variable 3 to get table 1 and Uq3 remains unchanged when we sum

over variab]é 2 to get table 2.



-17-

As an example, consider the 2 x 2 x 2 table. If we take as the
measure of association a 1-1 function of the ;ross—product ratio, as
suggested by Edwards (1963), then it is readily seen that p = O.
However if we use other types of measures p will not necessarﬁ]y
vanish. This is quite naturail since the log-linear terms are func-
tions of cross-product-ratios. | |

If the two tables are from a regular -4-way table and the tables
consist of different variables, then the tables may be independent.
If so, it is seen by applying Theorem 2.5-1 in Bishop gg_él. (1975)
or results from Goodman (1972) that the tables also are permissible.
However, also in this case, independence is not necessary for as-

sumption (1.1) to be true.

4.3 Multiple Comparisons of K Tables

The asymptotic variance of /ﬁ(di—dj) is given by

2 _ 2 2 . . ~2 A2

o5 = 01/“i + oj/wj -2 Pij 1J/w .m. with estimator 055 = os/ts +

~2 2 . .
cj/tj - 1Jt13/t .t From now on we assume Uij > 0 for all 1 < j.

let oy = a/K(K-1). Using the Bonferroni inequality we see that con-
servative simultaneous confidence intervals for all differences di"dj

are given by

d. - d. + SCRENVIT) (4.2)

Here x(e) = (1-¢)100-percentile of the N(0,1) - distribution. There-
fore the multiple comparison procedure consists in stating di > dj
when Tij = VEKdi-dj)/cij > x(ak)._ let d = (d1,...,dK). For a given

d of values of the measures we define o(d) to be the probability
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of at least one false statement "di > dj“. We shall consider a(d)
generally. For this purpose we use the same approach as Spjgtvoll (1971)

and Tet V. for i =1,...,t be disjoint index sets with UV, = {1,...,K}.
i
p2---»V;) is the set of all d such that d; = d

and di # dj if (i,j) belongs to different Vh's. The

Let v, = #(Vi)' w(V

if i,J €V

.V

h
following result about a(d) holds.

THEOREM 4. 1§ d € m(V],...,Vt) then
' t
a) for t < K: lim sup a(d) = 1im sup P( U max Ti' > x(aK))
n n h=1 i,jévh J
(4.3)
b) Tim sup o(d) < (1 - EH(1 - Eha. (4.4)

n

Proof.

TimP( U U U (false statement "di >d.")) = 0. (4.5)

. . N
g#h 1€Vg JEVh
(4.4) is therefore proved for t = K.
Assume now t < K. From (4.5):
t
Tim sup a{(d) = Tim sup P( U max Ti' > x(aK)). (4.6)
n n h=11,jev, '
Hence (4.3) is proved. From (4.6):
‘ t
lim sup a(d) < ) Y Tim P(|T,.] > x(ay,))
e L ij K
n h=1 Cd<3 o
1,J€Vh
t t 2
= ) Y (20)/K(K-1) = (o/K(K-1))( ] v} - K).
h=1 i<j h=1

i€,
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t
Y vﬁ takes its maximum value when one Vi equals K-t + 1 and
h=1

the rest is 1. 'Hence

vg 5_(K-t+1)2 + (t-1).

I ~1c0t

h=1
This implies:

)2

Tim sup a(d) < (a/K(K-1))1(K-t+1
n

- (K-t+1)]

-1 -Xha - %}%)a. Q.E.D.

The upper bound in (4.4) increases as t decreases and has maximum

for t =1, such that 71im sup a(d) <o for all d. Some values of

n
(1 - Eil-)(l - %{%) are listed in the table below.
TABLE 4.1. Values of (1 - £1)(1 - =
tl 2
K 3 4 5 9 19
2 (1 0

311 0.333 ©
4 {1 0.5 0.167 O
511 0.6 0.3 0.1
10 |1 0.8 0.622 0.467 0.333 0.022
20 |1 0.9 0.805 0.716 0.623 0.347 0.005

THe result in (4.4) is not only of theoretical interest but can also
be used in practice if we have some prior knowledge of the tables. For
instance if we know the measures can be separated at least in two groups,

we can use this to get a higher significance-level on each test and get
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more powerful tests. In this case t > 2 and 1im sup a(d)<(1-1/K)(1-1/(K-1))e.
Now we determine o' such that (1-1/K)(1-1/(K-1))a" = a, i.e.
a' = a/{1-1/K)(1-1/(K-1)) and use level o'/K(K-1) on each comparison.

For example if K=5 and a = .05 then o' = .083.

5. Muitiple Comparisons of Independent Two-way Tables

Typically the two-way tables are from independent samples, but also
the slightly more general case that Gys-+-5q, are independent is included.
We shall now allow for both sampling method (i) and sampling method
(i1). For those tables using sampling method (ii), independent multinomial
sampling in the rows, we will assume for simplicity that Pik = Wik is
known for all 1. Then, from (2.3) the asymptotic variance of /ﬁ'ak is

given by
Yk Yk

2 | 2

ne(P) = I 1Py (digdh)s
=1 j=1

Wi

: 2 _ 2 o L -1 , )
estimated by i rk(qk). Here d¥ = p, jZ]pijkdijk’ Pk §pijk'

The estimated asymptotic variance can then be written as

if sampling method (i) is used in table k
if sampling method (ii) is used in table k.

Throughout this section we will assume that the asymptotic variances
corresponding to si are positive. Moreover (4.1) is assumed to hold
and if sampling method (ii) is used in table k we will assume that
/ﬁk(ni-k/nk'pi-k) — 0. Here ni. are the row-marginals in table k.

- . . 2 _ 2 2
Then /ﬁ(dk-dk)/sk is asymptotically N(0,1). Let Sij = Si/ti + sj/tj.

Simultaneous confidence intervals are given by (4.2) replacing aij with
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Sij‘ Theorem 4 is of course still valid for the corresponding pairwise

comparisons procedure, and in addition, since max T.. for h=1,...,t

i,jevy,
are independent, we have
t
Tim sup a(d) = 1 - 1 1im sup P[ max Ti.gx(aK)]
n h=1 n ijev,
where now
Tij = Vﬁ(di—dj)/sij. (5.1)

Next we consider the problem of testing the homogenity-hypothesis

H: d] = = dK (5.2)
The usual test—statistic is
K
- “om\2, 2
U= Z nk(dk-d) /sk
k=1
where d = (J /sz)']Zn d /s2 so that U = min ; n, (d —d)2/52
_ L Ni/8) 4NgG4/8. 0 PR S k*

Under H, U 1is asymptotically chi-square distributed with K-1 degrees
of freedom. (A proof can be found for example in Rao (1965, Ch. 6a 2(v))).

It fo]]ows'that H 1is rejected if

U> z(K-1,a) (5.3)

where z(v,a) is the 100(1-o) percentile in the chi-square distribution
with v degrees of freedom.

Goodman (1963) considers some hypotheses of the form (5.2) for
comparison of 2 x 2-tables. The tests developed there are special cases
of (5.3). Goodman (1964b) analyzes three-factor interaction in a three-
way table. For the case of fixed layer marginals in the 2 x 2 x K-table

the hypothesis of zero three-factor interaction is a hypothesis of the
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form (5.2) for K 2 x 2-tables. The tests proposed in Goodman (1964b)
for this situation also follow from (5.3). Zelen (1971) considers also
comparison of several 2 x 2-tables, by cross-product ratios, and presents
an exact conditional test.

We shall now consider simultaneous confidence intervals for all
Tinear functions ) ¢ d, - Let
2 K 2.2
c

g = k§1cksk/nk.

g

By applying the well-known algebraic result that if y is a (K x 1)-vector
then y'y <z if and only if |h'y| <VZ/h"h for atl h = (hysevvshy)!
(see e.g. Miller (1966, Lemma 2)), we find that

Iy (d-d,)%/5% < 2(K,a) = ]gck(&k-dk)l RN ZCIENPT S
Koo
{as in the proof of Theorem 1 in Miller (1966)). Hence [ ¢ dy * /zZK,a58C.a]
k=1

are simultaneous confidence intervals for all linear functions J dek'
We decide [ cd, >0 if Jcd > 2(K,a)o, 15 It s readily

seen that

1o
H
(e

o if
Tim sup P(at least one false statement: ) ckdk >0) = {

n <o if # 0.

1Q.

Next, we consider linear contrasts defined as cpd, with ¢, = 0.
k k .
Let d¥ = (2“1/S§)-] Znidi/s§. Then it follows exactly as for Scheffe's
i i
simultaneous confidence intervals in analysis of variance (see Scheffé (1959))

that
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~ -

Uy = I 0 (d,--(d -d%)?/s] < 2(k-1,0)

8

) ck(ak-dk) E_VZIK—T,aiéc.a Ve, } ¢, =0 (5.4)

Since U] is asymptotically chi-square distributed with K-1 degrees
of freedom, it follows that simultaneous confidence-intervals for all

linear contrasts are given by
)) ¢ dp * JziK—],a}&c.a (5.5)

Also, we decide c;d > 0 if ) ckak-> /le-],aiac,a. Hence, from
(5.4) we get as in analysis of variance that the hypothesis (5.2) is
accepted if and only if no contrasts are found to be different from

zero. It is also easily seen that

1im sup P(at least one false statement: } ckdk > 0) =

{ o under H
n

< o otherwise.

Marascuilo (1966) stated the above results for linear contrasts without
proofs.

The simultaneous confidence intervals in Goodman.(1964b), Chapter 3.1
for the 2 x 2 x K-table in the case ofkfixed layer marginals follow from
(5.5). For K > 2, an alternative procedure for pairwise comparison is
if Tij > Vz(K-T,a) ; where Tij is
2(aK) < z(K-1,0) such that

to use (5.5), i.e. state di > dj
given by (5.1). For the usual choices of a,x
using the Tinear contrast procedure will typically be less powerful.

Similar remarks have been made by Goodman (1964a, 1964b).
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To illustrate the procedures in this section, let us consider the -
comparison of 2 x 2-tables. The natural measure of association is es-
sentially the cross product ratio (see Edwards (1963)). Let
Ak = p]]kp22k/p12kp21k' Ak is the cross product ratio in table k.

Let &k = Ak(qk). To simplify the presentation we assume that sampling
ey s . S ) -1 -1 -1
method (i) is used in every table. Let Up q‘”k * oo *Ayp * qZ]k‘

1 2—A2—A2 = A= A
In this case S = O = Akuk’ Let further P In Ak, ok In Ak'
Then the estimated variance for vn Ek is uk{ The simultaneous con-

fidence intervals for pi-pj are given by:

pj =Pyt (o) (us/n; + uj/nJ.)]/2 - (5:6)

For k =2, (5.6) is the same as in Goodman (1964a), p. 97. For general
K, (5.6) also follows from Goodman (1964b), Chapter 3.1. Simultaneous

cqnfidence intervals for linear contrasts in Ak are given by

Doy * (21D V20 /n )12
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