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ABSTRACT.  This paper considers a semi-infinite storage model, of the type
studied by Senturia and Puri [13] and Balagopal [2], defined on a Markov
renewal process, {(Xn, Tn), n=20, 1,...}, with 0 = TO < T1 <..., a.s.,
where Xn takes values in the set {1, 2,...}. If at Tn’ Xn = j, then there
is a random 'input' Vn(j) (a negative input implying a demand) of 'type' j,
having distribution function Fj(-). We assume that {Vn(j)} is an i.i.d.
scquence of random variables, taken to be .independent of {(Xn, Tn)} and of
{Vn(k)}, for k # j, and that Vn(j) has first and second moments. Here the
random variables Vn(j) represent instantaneous 'inputs' (a negative value
implying a demand) of type j for our storage model. Under these assumptions,
we cstablish certain limit distributions for the joint process (Z({t), L(t)),
where Z(t) (defined in (2)) is the level of storage at time t and L(t) (de-
fined in (3)) is the demand lost due to shortage of supply during [0,t]:
Different limit distributions are obtained for the cases when the 'average
stationary input' p, as defined in (5), is positive, zero or negative.
KEY WORNDS: MARKOV RENEWAL PROCESS; STORAGE MODELS; LIMIT DISTRIBUTIONS;
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TOTAL DEMAND LOST; AVERAGE STATIONARY INPUT; STORAGE LEVEL; SUPERCRITICAL,

CRITTCAL AND SUBCRITICAL CASES.
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ON A GENERALIZED STORAGE MODEL
WITH MOMENT ASSUMPTIONS

By
Prem S. Puri*, Purdue University
Samuel W. Woolford, Worcester Polytechnic Institute
i ANTROPUCTION. In literature, one finds a large number of models which
have been proposed to approximate the mechanism associated with a semi-
infinite storage facility. Typically, these models allow for a single type
of random input and a deterministic output. Examples of such storage models
can be found, along with further references, in papers by Ali Khan and Gani
[1], Kendall [7], and Lloyd and Odoom [8] among others, as well as in books
by Moran [9] and Prabhu [10]. 1In this paper, we consider a generalized storage
model which was inspired by a model proposed by Senturia and Puri ({13}, [14]).
Their model, which allows both random inputs and random demands, arosc in the
context of certain biological situations. The interested rcader may find a
discussion of these specific situations as well as references to other areas
of applicability in [12]. The model we propose to study here is described
below.
Let {(Xn, Tn), n=20,1,...} be a Markov renewal process (M.R.P) with

state space J x {0,«), J < {1, 2,...}, defined on a complete probability

il

space (2, G, P), such that T, = 0, a.s., P(XO = i) a(i), for i € J with

0
) a(i) = 1 and
i€J

(1) PO,y =3, T 4 - T <t|T., Xopeouh T, X_ = i) = A(i,j,t),

n+1 n+1

for i, j € J and t € [0,»). We assume that A(i,j,0) = 0 and that X pliy,j)=1
jal

*The research of this author was supported in part by U.S. National Science
Foundation Grant No. MCS77-04075, at Purdue University.



for cach i € J, where 0 < p(i,j) = A(i,j, ). 1In addition, it is assumed
that the embedded Markov chain (M.C) {Xn} is aperiodic, irreducible, and
positive recurrent with the associated stationary distribution given by
ro= (w(1y, w(2),...).

For cach 1 € .J, let {Vn(i), n=20,1,...} be a sequence of i.i.d. random
variables (r.v.'s), defined on (Q, G, P), which is assumed to be independent
of ((Xn, Tn), n=20, 1,...} and of {Vn(j), n=20,1,...}, for j # 1. .Further-
more, we denote the common distribution function (d.f.) of Vn(i) by Fi(-).
lere, the r.v.'s Vn(i) represent instantaneous 'inputs' of type i for our
storage model. The reader may note our preference to call the Vn(i)'s as
"inputs' even though for negative values, strictly speaking, they are demands.

We consider a semi-infinite storage facility and let Z(t) and L(t) rep-
resent the level of storage at time t and the total demand lost or not met
due to nonavailability of supply during [O,t]’respectively. More exactly,

the process {Z(t), L(t)} is defined constructively by

max[0, V. (X1, 0 <t<T
0-0 - 1
(2) Z(t) =
max |0, Z(Tn_l) + Vn(Xn)J, Tn <t < Tn+1’ n>1,
and
max [0, - V_ (X.}], 0<t«<T
) 00 - 1
5 e =f

n>-1,

L(T ;) + max[0, - (Z(T ;) + VXD T o<t < T g

where Vn(Xn) = Vn(]), whenever X = j. Let M(t) = sup {n >0 : T, < t}.

We assume that the sample paths of X are almost surely right continuous.

M(t)
Conscquently, the process {Z(t), L(t)}, as defined by (2) and (3), is almost

surcly right continuous and separable.



Throughout the following, in order to eliminate certain trivial cases,
we assume that there exist states i and j in J, not necessarily distinct,

such that Fi(O) < 1 and Fj(O—) > 0. We also assume that

) L) BV ()] < =,
i€
so that
(5) o= L w(3) E(Vy(3))
hASY)

exists, which evidently represents here the 'average stationary input' to the

storage facility. We follow the terminology of Senturia and Puri [13] in

(p=0), and subcritical (p<0), and study each case separately.

In [13] and [14], Senturia and Puri have considered a special casc of the
above model with J = {1,2}, where State 1 represents an input with Vo(l) > 0,
a.s., and State 2 represents a demand with V0(2) < 0, a.s. For their speccial
case, they obtained limit distribution for Z(t), as t - «, in the supercritical
and critical cases. More recently, with the same restrictions on .J, VO(I),
and VO(Z), Balagopal [2] introduced and studied the r.v. L(t) and obtained
its limit distribution only for the subcritical case (p<0). The purpose of

the present paper is to study the joint asymptotic behavior of {Z(t), L{t)}

in all three cases, namely the supercritical case, the critical case, and the
subcritical case. This is accomplished for our generalized model, which have
two distinct features. First, it allows a countable number of possibly dif-

ferent 'types' of 'inputs'. Second, it generalizes the old model further by

ignoring the specific distinction between an input or a demand; instead any-

time an input takes a negative value it is treated as a demand. Sections 3,

4, and 5 deal with the supercritical, critical, and subcritical cases rc-

spectively, but first we need the following few preliminaries.



2. PRELAMINARIES. Following Balagopal [2], let 2 = Z(T ) and L = L(T ),

for n > 0, so that {(Zn, Ln), n=20,1,...} is an embedded discrete time

n
process. By defining S_ = ) Vi(Xi), we can expand Zn recursively to yield

the relationships

{6) Z =S + L
n n n
and
7 = - - -
(7 Ln max (0, SO, Sl""’ Sn).

The following definitions will be needed in the sequel. For i € J, arbitrary

hut fixed, let 2(0) = 2(0,i) = 0, a.s.,

(8) ¢(n) = ¢(n,i) = inf {m : m > 2(n-1), Xm =1il, n > 1,
(9) Y(n) = Y(n,i) = SMH)_1 - Sl(n—l)-l’ n>1,
where S =0, and N(t) = sup {n > 0 : Tz(n) < th

We conclude with the following proposition which is a direct consequence
of the fact (see (inlar [5]) that
o -1

(1) lim M)/t =81t=1[7 n() [ t d(Z,¢; AGLL,t))]
oo 13 0

PROPOSITION 1. If (4) holds, then, as toe,
(11)  L(t)/t » 3"1 max (0,-p), a.s.,
(12) Z(t)/t ~ B_l max (0,p), a.s.

PROOF. From (6) and (7), it follows that (see Puri [11] and Chung [4])

Ln/n + max (0,-p) and Zn/n +» max (0,p) almost surely as n -+ », The result

follows from the law of large numbers and (10). O



%. ZQEm%HREEgﬁ£XEQkaQé§E‘ We consider here the case with p > 0. Tor this

since L(t) is a nondecreasing function of t, the law of large numbers implics
that L(t) converges to a proper r.v. L almost surely, as t - «. llowever, in
order to study the limit behavior of {Z(t), L(t)}, we first establish thc

following limit result for the marginal distribution of Z(t).

LEMMA 1. If o > 0, B < =, and

(13) o2 = B{IY(1) - T 087117 X, = i) < =,
then
B 4 172
(14) lim P(Z(t) - tpB ~ < xo = (tw(i)B ) ) = o(x),
-0

where ¢{+) is the standard normal d.f.

PROOF. Using (6), we write

15 Z{t) = [S - 8 + S + L .
(%) () = Byeey ~ Seveen-1! ¥ Seeveen-1 ™ fueo
The finiteness of L implies that LM(t) t_l/z E 0,while the key rencwal theorem
can be used to show that (S - S ) t—1/2 E 0 In addition, we note
M(t) L(N(t))-1 ' ’
that
-1 Nﬁt) -1

- = - - OB R,

where Rt—l/z E 0, as t»». Furthermore {Y(m) - (T - T ) pﬂ_l} is a
’ ’ 2 (m) 2 (m-1) a

.. . . . 2 o )
sequence of i.i.d. r.v.'s having mean zero and variance o . Conscquently,

following Chung ([4], page 100), we can show that



(7 Tim P(Z(t) - th—1 < Xo e (t'n(i)B—l)l/z

T >0

)

N(t)

. -1 . -1.1/2
= lim P( ) [Y(m) - (T - T JeB 7] < xo e+ (ETW(E)B 7))
oo me? 2 (m) 2 (m-1)
= & (x) O

Using the above lemma, we now establish a limit distribution for the

process {Z(t), L(t)}.

THEOREM 1. If y is a continuity point for P(L < y), p>0, B<x, and 02<w,

(18) lim P(z(t) - tps"1 < X0 ¢ (tﬂ(i)B_l)l/2

t -0

, L(t) < y) = e(x) - P(L <y).

PROOF. As in the proof of Lemma 1, it suffices to prove that

N(t)
(19) lim P( ) D (m)
o m=2

o - (en(i)plyY/?

| A

, L(t) =)

¢(x) + P(L <),

D(m)}
2

where D(m) = Y(m) -(

n
1/2)—1 z

. -1
Fz(m) - Tz(m—l))pg . However, {(on i

is a strongly mixing sequence with limit d.f. ®(-) (see Puri [11]). Since
N(t)t~1 > ﬂ(i)Bnl, a.s., as t » =, there exists a sequence of positive real

numbers {e(t) }, with e(t) decreasing to zero as t - «, such that

(20)  P(IN(t) - "(1)8 Tt z_TWi)B'le(t)t) j_e(t)7wi)8_1,

for all t > 0. For t > 0, let



1) ACt) = {w€0 @ INC(E) - ()8 Tt] < m(i)e te(e)tl,
(22) a = a(t) =[{-e(t)) ﬂ(i)Bﬁlt]
and
(23) b = b(t) = [(1+e(t)) n(i)g ‘t] +1,
where [a] is the largest integer < o. Equations (21) - (23) lead us to
the decomposition
N(t) a N(t)

(24) ) Dm) = ] D(m) I(A(t)) + ] D(m) T(A(t))

m=2 m=2 m=a+1

N(t) o
) D(m) T(A(t)"),
m=2

where I(A) is the indicator function of the set A and AS is the complement

of the set A. An application of Kolmogorov inequality shows that

s172 (N P
t D(m) I(A(t)) =+ 0, while (20) implies that
m=a+l :
N({t)
-1/2 c. P . . _ - ,
t Z D(m) I(A(t)") -~ 0. Hence, using the strongly mixing property
m=2"
1/2 -1 n
of {(on™" ™) Z D(m}} and the nondecreasing nature of L(t), we can find a

m=2
K = K(e, x, y) > 0, where ¢>0 is arbitrary but fixed, x € (-», =), and y

is a continuity point for P(L < y), such that t > K implies that

a 1/2
25 [PCT pm) 2 xo « (en(i)BTD) L, L(t) <y) - a(x) - P(L < y)] <.
m=2
But € was arbitrary and so we obtain (19). )



4. WWW CRITICAL CASE. Tn order to find a limit distribution for {Z(t), L(t)}
AV VAV AV VA A VAV AV AV A VAV AV A VA VAVAVAY)

when p=0, we first investigate the structure of the discrete time embedded
process, {72 . L}, Again we take 1 € J to be arbitrary but fixed. Using (7),

we can write the demand lost up to, but not including, the epoch of the nth

return to state i, as

oy _ B _ _
(26) Lﬁ(n)—l = max (0, SO’ Sl""’ Sl(n)—l)
= max (0, Ul" ,Un),
where
" = - 3 - —
(27) Up = =Sy py-1 * max(0s Sy gy 1 = Spy-20 00 Saqy-1 50 Sec1y-1?

and, for 2 < m < n,

(28) U =

m _SQ(m)—l + max (0,

Semy-1 ~Samy-22777 Semy-1 " Sem-1y?

Similarly, the level of storage at the instant before the nth return to state

iis
2¢ = * *
(29) Zl(n)—l max (0, Ul’ U2,...,U;),
where
30 5= - S8 -
GO U =Sy Sean-1 TGy Seay-1 S0 Sean-1 7 Seqny-2)

while, for 2 < m < n,

*

GO 0= Somy1 " Seme1)-1

+ max (0, _(Sl(m-l)'_SZ(m—l)—l)""’

“Semy-2 “Sem-1y-177"



Thus, if we define o(n) =

I~

Y(m), for n > 2 and zero for n = 0 and 1, and
m=2 .
L(m)-1
let r(m) = Z ]V.(X.)|, for 1 < m < n, then, after some manipulation,
j=2(m-1) ’

we obtain

- max(0, —a(2),...,-—a(n))‘ <r{l)y + R(n), a.s.,

o]

52 Ity mya

and
(33) !ZMn%l—Imxm,aﬁﬂ,am)—am—ﬂ,”.ﬁﬁﬂ—aﬁ)ﬂ < R(n),
a.s., where R(n) = max (r(1),...,r(n)). After defining o° = E[Y(1)7[X, = i

L(1)-1
and <° = E{[ }

V(X )|]2[x = i}, we obtain the following limit result
=0 m-m 0

for {Zn, Ln}.

LEMMA 2. If p=0 and T2<m, then

2 /2y

(34) lin P(Z_ < x0 - (n(i)n)? L < yo (r(i)n)

n>e

Xy
= [ [ g(s,t)dsdt,
0 0

where

(Z/W)l/2~(5+t) exp {—(s+t)2/2}, s, t >0
(35) g(s,t) = g

, otherwisc.

PROQF. For i € J as above, let M(i,n) = sup{m > 0 : &(m) < nl. TIn ([4],

Section 14), Chung shows that



10

P

p —1/2‘ >0,

o -1/2 ! _
(56) L Tt LR Zo = Loquci ) -1]

45 n > w. Consider now the space D[0,1] of right continuous functions

having left hand limits, defined on [0,1], and define Gn(-) € p{0,1] by
. . . _ . 1/2.-1 .
(371 (.n(t) = (,n(t,w) z (o« (v(i)n) / ) « a([M(i,n)t]),

where [a] is the integer part of a. Since M(i,n)rf1 + m(i), a.s., as
n > o, for W(t), the standard Brownian motion defined on pfo,1], Gn(°)
converges in law to W(+) (see Billingsley ([3], page 146)). We also note

1/2 /

that r(1)n~ and R(n)n_1 2 both converge to zero in probability, as

n o> w. This, together with (32), (33) and (36), implies that

(38) lim P(Z < xo - (ﬂ(i)n)l/z, L <yo - (n(i)n)l/z)
e n n
= P(W(1) + sup [-W(t)] < x, sup [-W(t)] <)
0<t<1 0<t<1
Xy
= [ [ g(s,t)dsdt,
0 0
where o(s,t) is as given in (35). ]

Using Lemma 2, we can now establish the following limit theorem for

{2(t), L(t)}.

2
THEOREM 2. If p=0, B<e EHQ‘TH<W, then

1 1/2 -1 1/2
(39) lim P(Z(t) xo « (t7(i)R 7) , L(t) <yo « (tw(i)B8 ) )

e

i A

r

Xy
[ [ g(s,t)dsdt,
0 0

1}
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where g(s,t) is given by (35).

PROQF. We first note the decompositions

C.
o ney)-1 7 Faga)-1D) T+ 2o ey TAE)
and
(41) L(t) = (LM(t) - LQ/(N(t))“l) + L!L(a)—ll(/\(t))
. LAY,

- L (A .,
Ty onee))-1 ~ Pecay-1 T+ By ey -
where A(t), a and b are given by (21), (22) and (23) respectivcly. Again,
the key renewal theorem can be used to show that, as t»,

-1/2 P
bycey = Feoven -1l 0

~1/2 p
a2y Y?|z Dot

M)~ Zaone))-1)

The increasing nature of Ln allows us to write, for each w € A(t),

-1/2 -1/2
@3ty g1 T Baayorl ST Iy - YO
e T IO I IR TE
-1/2 P ) .
where v(n) = max(0, -a{2),..., ~a(n)). However, R(n)n -+ 0, and so,

from (32), the first and last terms on the right side of (43) converge

to zero in probability on A(t). In addition, since y(b) - y(a) <

m
sup ! Z Y(n)[, Kolmogorov inequality can be used to show that the
a<m<h n=a+l

second term on the right side of (43) also converges to zcro in probability

on A(t). 1In a similar fashion, for w € A(t), we use the inequality



] < R(b) + sup |a(m) - a(a)|

a<m<b

(41) 12, nceyr-1  Fogay-n

+ Iy - v@| * R(@)

to show that t_l/Z‘Z - Z fI(A(t)) E 0
e e L(N(t))-1 g(a)-1 '

p
Conscquently, making use of the fact that I(A(t)c) + 0, Lemma 2 and the

above, we obtain that

-1,1/2 /2
(45)  lim P(Z(t) < xo « (ta(i)g )77, L(t) <yo - (tw(i)B ) )
Ty
ER% BRY%:
= lim P(Zz(a)-l < xo + (tn(i)B8 ) s Ll(a)—l < yo - (£w(i)B ) )
t o0
%
= [ [ g(s,t)dsdt. 0
0 0
H.oo THE SUBCRITICAL CASE Before proving the existence of a limit distribu-

ARSI, T

tion for the process {Zn,Ln)-when p<0, we require the following definition.

DEFINITION. Let {in, n=0,1...} be a M.C with state space J, defined on
(¢, (, P) and independent of all other variables previously defined on
(4, G, P). In addition, let the initial distribution be = = (n(1), =(2),...)

and lct entries of the associated transition matrix be defined by

(40) Pij = (7WJ)/7W1))pji, i, j €J.
We refer to {i } as the dual M.C for {Xn}, also sometimes called as the 'reversed'
n

M.C.

The next lemma follows immediately from the above definition and equations

(6) and (7).
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LEMMA 3. If a(i) = w(i) for all i € J, then, for n > 0,

é ) < x,

(47 P(Zn < X, Ln < y) = P(max(0, SO""’ n

- Sn + max (0, SO,...,Sn) <y,

R n
where Sn = z

V. (X.).
j 33

0

Lemma 4, below, gives a limit distribution for {Zn, Ln} when a(i) = »({1i),

for all i € J. This restriction will be subsequently removed in Theorem 3.

LEMMA 4. If a(i) = 7(i) for all i €J, p<0, and

(48) 52 2 BIIY(D) - 2(D)p]? Xy =i} <o
then
; - . -1/2 2
(49) lim P(Z_ < x, L_+1np < yo « [nn(i)] ) = P(Z <x) - d(y),
Ioseo n — n _
where 2 = sup(0, éO’ él,...) < o, a.s. and X is a continuity point for

P(i < x).

PROOF. Let i € J be arbitrary but fixed and define

¢(n) = inf{m : m > 2(n-1), Xm =1}, n > 1, with 2(0) = 0. It is casy to

. - ~ ~2

show that E(Y(l){XO = i) = E(Sg(l)_llxo = i) and that o =
2 ~ 2.2 . . 5L
Ecsﬁ(l)-l - 2(1)p) [XO = i}. Furthermore, since p<0, Z =

max (0, SO’ Sl,...,Sn) increases almost surely to a proper random variable

: - 1/2 P

Z, as n > o, so that Zn/n 0. Consequently, because of Lemma 3, it

1/2]-1}.

suffices to consider the limit distribution of {Zn, - (Sn - np)fo(nn(i))

Using the central limit theorem for functionals defined on a M.C (sce Chung ([4],



14
~ ~ 1/2 -1
Section 16)), we can show that {- (Sn -~ np) o« (nn(i)) ] } is a strongly
mixing sequence with limit d.f. ¢(-). Hence, for each >0, K = K(&x,y) > 0

such that for n > K

(50) P(Z_<x) - P(Z<X) <e

G 0@ <x, =S+ <yo - ar@NYA - Pz <00 0] <.

But this implies that for n > K,

(52) [Pz <x, -5+ mp <yo - (rANYA - PEZ <) - s < 2.
Since & was arbitrary, the monotonicity of Zn implies the result. []

In order to remove the restriction that a(i) = n(i) for all i € J,
following loel, et al [6] we define another irreducible, aperiodic, and
positive recurrent M.C, {Xn, n=20,1,...}, on (Q, G, P), which is in-
dependent of any variables previously defined on (2, G, P). Furthermore,
we take its state space to be J, the transition matrix to be P, and the

initial distribution to be m. Define T = min{n > 0 : Xn = Xn}.

. .. . - ~2
THEOREM 3. If p<0, x is a continuity point for P(Z < x) and ¢ <», where

5
o 1s defined in (48), then

smp <yo - an@NY? =Pz <x) - o).

(53) lim P(Zn <x, L

T -rco

n

PROOF. Hoel, et. al. [6] have shown that T < », a.s. Hence, for any
¢ > 0, fixed, we can choose finite constants B = B(e)}, C = C(B,e)} and

D = D(B,e) such that
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(54) P(T < B) > 1-¢, P(ZB <C) > 1-¢g, P(LB <D) > l-e.

For n > B, noting that

55 = ] =
(55) P(Xn Jor *nel J1 *Mem T I’ T<n)
- P(Xn = Jg Xn+1 Ty Xn+m T e I<mn,
for any m > 0 and j2 €J, 0 < & <m, we obtain the inequality
. : " e 1/2
(56) P(Zn < X, Ln +np <yo » (nr{i)) )

.S -8 < X,

> P(max (0, Sn-Sn_l,... n B+1)-

= - \ . 172
nax {0, - (SB+1' SB),...,- (Sn— SB)] + D+ np <yo - (nn(i)) / )

- 3¢ - P[én-gB + C > x),

n
where Sn = Z Vm(Xm), Similariy,

m=0
(57 P(Zn < X, Ln + np < yo (nw(i))l/z)

< P(max(0, Sn-Sn_l,...,Sn-SB) < X,

max [0, - (§ -58.) -8 -58.)]-D + 1np < ‘5 . (nn(i))l/z)
] B+1 B"": ‘-n B D__Y -

+ 2g.

However, since {Kn} is a stationary M.C, Lemma 4 and the fact that ¢ 1is

arbitrary, can be used to arrive at the desired result. .
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O. A TEW CONCLUDING REMARKS (a) For the supercritical case (Section 3)
A A ATV YAy AV AV AV VAV A VA VAV AVAVAVO VAV VA VAVAVAY

1t is also true that Ln converges a.s. to L, as n - ». Moreover from
Chung ([4], Section 16), we see that when o > 0,

o . - . 4 1/2

(58) lim P(Zn - np < xo + (nn(i)) ) = o(x),

n->co

whenever

(59) o2 = B(Y() - Q(l)p]ZIXO - i),

is finite. Consequently, an argument similar to the proof of theorem 1,

implics that

. " ... 1/2
(60) tim P(Z - np < xo - (nn(i)) / s Ln <y) =o(x) « P(L <y),
n = = =
-0

. .. . ~2 .

for all continuity points y of P(L < Y), whenever ¢ < «, where L is as
defined in theorem 1.

thy) For the subcritical case (Section 5), a limit distribution for L(t),

similar to the one given in [2], can also be established for our model. 1In
particular, we have the following proposition whose proof is left to the in-

terested reader.
L(1)-1

2 .
PROPOSITION. If p < 0, B < «», and T2 = E [{] |vm(xm) ] [XO =i}
m=0

is finite, then

(61) lim P(L(t) + pN(t)[n(i)]“l < X0 - [N(t)]l/z) = o(x),

t oo

3
where ¢° is the variance of Y(m).

Again, in the continuous time case, the limit behavior of Z(t), for the
subcritical case, was left out as it involves rather delicate analysis. The

work pertaining to this is still in progress and will be reported elsewhere.
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(c) Finally, the results reported in this paper are subject to the assumption
of the finiteness of the first two moments of the random variables Vo(j)'s.
Analagous results have been obtained without any such assumption (scc Woolford

[15]). These will appear in a forthcoming paper.
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