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Summary. In this paper we seek designs and estimators which are optimal

in some sense for multivariate Tinear regression on cubes and simplexes-
when the true regression function is unknown. More precisely, we assume

the unknown true regression function is the sum of av1inear part plus some
contamination orthogonal to the set of all linear functions in the L2 norm
with respect to Lebesgue measure. The contamination is assumed bounded

in absolute value and it is shown that the usual designs for multivariate
linear regression on cubes and simplices and the usual least squares
estimators minimize the supremum over all possible contaminations of the
expected mean square error. Additional results for extrapolation and inter-

polation, among other things, are discussed. For suitable loss functions

optimal designs are found to have support on the extreme points of our

design space.
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1. Introduction.

Consider the regression design problem given by

Y(x.i)zf(x.i)+e.i, 1=],2,...,n

where the {ei} are uncorrelated random variables with mean 0 and variance

02. The X; are elements of a compact subset X of a Euclidean space, and

f is a real-valued function on X from a class FO' Fo,is typically composed |
of Tinear combinations of specified functions fo, f],...,fk.} The regression
problem is concerned with making some inference about the unknown coefficients
of these specified fj and the associated design problem is to choose the

X5 in an optimal manner for this inference. Many papers have been addressed
to this problem. Box and Draper (1959) have discussed some of the dangers
inherent in a strict formulation of FO which ignores the possibility that
the true f may only be approximated by an element of FO’ e.g., in estimation
there may result a large bias term. A careful description of some problems
in this context is given by Kiefer (1973) in the case where the class of
possible functions f, F, is a finite dimensional space containing FO‘ |

In a related direction Huber (1975) formulated a problem where

X = [-2, +2]1, Fo = {1inear functions on X}, and F = {f(x) = atbx+g(x);
L , 4

inf fJ (g(x)-a-x)"dx = flg (x)dx < c}. ¢ > 0 is a given constant.

0P ~z -2

Notice that if f €F then at+bx is the best linear approximation to f in
the L_2 norm with respect to Lebesgue measure on [-z, +3]. Huber confines
himself to the use of the standard least squares estimates based on the model

F0 and finds the design which minimizes the maximum risk

+3 . »
sup Ef (& + bx-f(x))"dx.
fe&F -3



Unfortunately this formulation leads to the restriction that'the designs
must be absolutely continuous with respect to Lebesgue measure, otherwise
the maximum risk above is infinite. This means no implementable design
can have finite maximum risk.

In a similar spirit is some work by Marcus and Sacks (1976). They

i

take X = [-1,+17, FO = {Tinear functions on X}, and F = {f(x) = a+tbx+g(x):
1g(x)] < ¢(x)r. ¢(x) is a given function on X with ¢(0) = 0. For f € F

the contamination g(x) may te thought of as the remainder term in a first
order Taylor expansion of f. Marcus and Sacks restrict the estimators of

a and b to be linear but not necessarily the standard least squares estimates

based on the model FO’ and restrict designs to have finite support. They

Took for estimates and designs to minimize the mean square error

sup E(é-a)2 + ez(g_b)Z)

feF
where a and 6 denote the estimates of a and b, and 6 is a specified constant.

They are able to solve this problem for a number of, but not all, choices
of ¢. If ¢(x) > mx then the unique optimal design is on the points {-1,0,+1}.
If ¢ is convex there is a wide range of cases for which a design can be found

on two points {-z, +z} where z depends on ¢ and s.

It should be noted that the condition ¢(0) 0 in this formulation
forces the contamination g(x) to be zero at x = 0. This fact gives special
value to the point 0 and is the reason that 0 is in the support of the unique
optimal design in the case ¢(x) > mx.

In this paper some of the clever ideas of Marcus and Sacks and of Huber

are modified and combined to get results in some multivariate settings.

More specifically we take X < Rk to be our design space, FO = {linear functions



on Xt, F = {f(x) =85+8'x* g(x)} where 8, € R, B € RK, x €X, g: X>R
is a measurable function with respect to lebesgue measure on X, lgl <c, c>0

is some constant, and inf [(g(g)—bo-g'g)zdg = fgz(g)dg. In this last equation
X X

==

the inf is over all by €R and b € R". Notice for f €F, By + g'x is the

best Tlinear approximation to f in the L2 norm with respect to lebesgue measure
on X. If estimates éO and é of 8 and g are restricted to be Tinear (but not
necessarily the standard least squares estimates) and designs are restricted
to have finite support, we shbw that the designs which minimize the mean

square error

2

E((B-.)° + 'f 62(5.-8,)%)
sup E({8g=Bg) " * L. O31F57y

feF i=1
have support on the extreme points of X. Using this result we then show thaﬁ
the usual least squares estimates and optimal designs for multivariate linear
regression on the cube or simplex minimize the mean square error.
In addition some results on extrapolition and interpolation, among other
things, are noted}in Section 5. For suitable loss functions, optimal designs
in these settings are found to have support on the extreme points of the

design space.

2. General results.

The following notation will be used in this paper. Lines underneath
variables will denote column vectors and primes on vectors or matrices will
denote transposes. The size of a given vector or matrix will be made clear
from the context. We shall use the symbol R to denote the real line and Rk
to denote k-dimensional Euclidean space.

Consider the muTtivariate regression problem
(2.1)  Y(x,) =8+ 8'x, * 9lx,) ey

where m = 1,2,...,n (n is fixed), the e, are uncorrelated random variables



with mean 0 and finite variance AN 0, By €R, B = (81""’8k)| € Rk, X C:Rk,

X €X form=1,2,...,n, and for some fixed constant ¢ > O,

g6 = {g: X - R; |g(x)] < ¢, fo(x)dx = fx;9(x)dx = 0 for i = Tooeosks,

X = <X1""’Xk) € X}.

In the definition of G dx is lebesgue measure on X and all integrals are
over X. In fact, all integrals that appear in this section will be assumed
to be over X unless otherwise noted.

The conditions [g(x)dx = fxig(g)dg = 0 are equivalent to requiring

((x)dx = inf [(g(x)-byb'x) dx
by R, beR"
which says the best Tinear approximation to g in the L2 norm with respeét
to lebesque measure dx on X is the function 0. This condition insures the
uniqueness of the B, in our model (2.1).
A discrete probability measure & On X will be called a p-exact design
for p observations if £(x) = i(x)/p, where p > 0 and j(x) are integers, and

x € X. We shall denote by Ep the class of all such designs.

We also define
Dp = {probability measures £ on X; card (suppg) < p}

D= D .
g] p

=]

For ¢ € B> let the linear estimators of the B be defined by
(2.2) 8y = [Y(0by(x)de(x), T = 0,..0k

where the bi are real valued functions on X. In the discrete case where
there may be more than one observation Y at a point x, we interpret Y{x) to

be the average of the observations at X.



We shall consider the weighted expected mean square error due to the

design ¢ and the estimators éi’ namely

2042 2 .
(2.3) eiE(Bi'Bi) , 6,>0, i=0,...,k

0 1

Il o~ %

.i
This mean square error can be rewritten as the sum of a "variance" term
k
20,0 02
I o3E(;-EB;)
i=0
and a "bias" term

k
~ 2

) e?(ei—Esi) :

i=0

Using (2.2) we can write the variance term as

2000 542
eiE(Bi_EBi)

I~ )

k
(2.4) - (ef/m) ] 03 bi(x)d(x)
',:

i=0

and the bias term is determined by the equations
R k

(2~5) EBj - Bj = iZO,i#j Bifxibj(é)dg(ﬁ)

+ Bj[ijbj(§)d£(§)-1]
+ jb g(x)de(x)

for j = 0,...,k. Let,x0 = 1.
Define B (x) = ejbj(g). Then if the 8, are unbounded, in order for the _

weighted mean square error to be bounded we must have jxibj(§)dg(§) =85 00

(2.6) [x;B5(x)de(x) = 0565, 02, 3 < k

where 61j is the Kronecker delta. This is equivalent to saying that the

linear estimators are unbiased if 3 = 0.



Let p = o°/n, B = (Bys---»B,)'» and define

(2.7 L@eg) = L (B (x)9ldz(x +ofz BS(x))de(x).

II’\/J7¢'

Notice that L(@,g,g) is equal to (2.3) with condition (2.6) imposed.
Condition (2.6) and L(B,z,g) are well defined for ¢ €D and from now on
we shall not restrict £ to be an exact design for a particular p, but rather
allow £ to be a design in D.

For any ¢ € D define R(5) = {B satisfying (2.6) w.r.t. E}.

Our ob3ect1ve is to find & ¢ D and B € R(g) which minimize sup L(B,&,9).
g&G

A key result is the followirg.

THEOREM 2.1. Suppose £ € D. For all x* € X, if £(x*) # 0 and there exist

m
XysXgs+ oo sX € X such that x* = 221 a,X, > where 0 < o, <1 for all ¢ and
m
) a, = 1, then there exists g* €D such that
2=1

(1) supp &% = supp £ U {Xq>...o%} - {x*}

(i1) min max L(B,£*,g) < min max L(B,&,9).

BER(E*) g&&  ~ - BER(g) 9%

Proof. Let

m
= {g€G; glx*) = ] o 9(x,)}
2=1
-
Since for any g € G we have | L aglx )] < Z a lg(x )] < E]u( c-c,.
£=1 £=

it is easy to see that for al] g € G there ex1sts g* € G* such that

g(x) = g*(x) if x # x*.



Hence for all £* such that £*(x*) = 0 we have for all B € R(g*),
(2.8)  max L(B,&*,g) = max L(B,£*,g).
9<G g &G

Also for all & such that g(x*) # 0 we have max L(B,£,g) > max L(B,&,9),

since G* < G, and hence

(2.9)  min max L(B,£,9) > min max L(B,E,q).
BER(g) g<G BER(g) gea*
Thus is suffices to show that for any £ € D with &(x*) # 0 there exists
£* €D satisfying (i) of the theorem such that
(2.10) min max L(B,g*,g) < min max L(B,£,q).
BE&R(g*) g&G* BER(g) g&6*
Indeed the following result is stronger and its proof yields (2.10) and hence

the theorem.

LEMMA 2.1. Suppose £ €D is such that g(g*) # 0 and there exist Xqo+esXp €X
m m
such that x* = } a x,, where 0 < a, <1 for all g and }J o, = 1. Then there
- 027 AT 2 PRI

exists g* € D satisfying (i) of Theorem 2.1 and for any B € R(£) there exists

B* € R(e*) such that for all g € G*

L(B,&,9) = L(B*, £*,g) + d

where d is a nonnegative constaht that does not depend on g.

Proof. Define



For B € R(¢) define B* = (BT,...,BE)' satisfying

B*(x) = B(x) for x 7 Xpse.onXy

Cix

Bj(xl)e*(zg) = Bj(§2)£(§2) + uQBj(§*)£(§*)

for 2. =1,...,m, j = 0,...,k.
We must show

(2.11)  B* € R(g*)

(2.12)  [o(x)BY(x)de*(x) = [g(x)B;(x)de(x) for j = 0,....k and ¢ © G

e

(2.13) [85(x)de(x) = [BE(x)dex(x) For § = 0,k

(2.11) and (2.12) follow from the following. For g € G*

0o~

m m
(2.14) lzig(gg)Bg(zz)a*(zg) Xlg(gl)Bj(zz)E(ﬁg) +

4= e=1

i 4
2219(52)Bj(§2)€(§2) + g(x*)B; (x*)e(x*)

(2.12) follows from (2.14). Use 9(52) = i-th coordinate of X, in (2.14)

to get (2.11).
For (2.13) it suffices to show

2 2 2 . |
(2.15)  BY"(x,)e*(x,) < B(x )e(x,)) + a, By (x*)e(x*) for j = 0,....k, ¢

Now from the definitions of &* and B* we have

(2.16)  g*(x,) = £(x)) + o £(x*)

= * *
(2.17) Bg(zz)a*(zz) Bj(gl)a(xz) + asz(z Je(x*).
Divide (2.15), (2.16), and (2.17) by E*(gz) separately. Then (2.15) is

simply saying (EZ)2 g_EZ2

an(§2)Bj(§*)€(§*)

where Z is a random variable taking value Bj(fg)

R (1



with probability E(gz)/E*(gz) and value Bj(§*) with probability a2£(§*)/€*(§£).
Hence (2.15) holds and the proof of the lemma (and thus Theorem 2.1) is complete.
Theorem 2.1 implies that for finding designsvg €D to minimize

min  max L(B,£,g) it suffices to only consider designs & whose support contains
BER(¢) g&G ' :

only extreme points of X. We apply this to some specific situations in the

next few sections.

3. Results for simplices.

In this section we apply the results of Section 2 to the case where

P Cepk. 8o ,
X = Sk = {(x],...,xk) €R"; X. =1, Xs >0 for all i}.

1 1

it o~ 7

;
Sk is the k-1 dimensional simplex. We also assume that in the notation of
Section 2, By = 0, b

=0, By, = 0, 0y = 0, and e] =0, =...= 0 = 1. Equation

0 0

(2.6) becomes

(3.1)  Jx;Bi(x)de(x) = 6,5, 1.3 <k

and if we define for any ¢ €D
R(g) = {B = (B],...,Bk)' satisfying (3.1) w.r.t £}

then we seek £ €D and B € R(g) which minimize sup L(B,£,9) where now §
9<G

k
](fBi(g)g(g)ds(g))z ol L BZ(x))dE(x).
'|=

I~ =

(3.2)  L(B.E,g) =
1

The following Temmas will be useful.
k- 2
LEMMA 3.1. Suppose ¢ € D and B € R(g). If ) Bi is not constant on supp &

i=1 _
then there exists g* € D with supp &* = suppg and there exists B* € R(g*)
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k
with § B?Z constant on supp £* and inf [L(B,£,q) - L(B*,£*,9)] > 0.
i=1 g&G
Proof. Let £*(x) = af z B ( ))]/2 £(x), where o is the constant making &£*

i=1
k
a probability measure. Let B*(x) = Bi(x)/ o Z B\](x))]/2 for i = 1,...,k unless
- - =]

the denominator of z B} 2(x ))]/2 is 0 in wh1ch case define B¥(x) = 0. Notice

B?(g)g*(g) = Bi(—) (5) for all x and i so that B* € R(g*). Also notice
k
..Z]Bﬁz(g) = 1/a2 is constant on supp £*. Since
i=
k 2 2
f(.Z]B$ (x))de*(x) = (1/a7)fde*(x)
'I:
= [(1/a)fde*(x)]°
k
- [f<,z]B§(g)>1’2da<;>32
'I:

)
< [{ _Z]Bi(z))da(g)
'I:

with strict inequality unless B?(g) is constant on supp £, the lemma

follows.

LEMMA 3.2. Suppose 1 < r < s < k, where r and s are integers. If r < s-]

let

LS ORI CSPRPRIS SR TS SPT NI FRRRPT SUR TS S S0 PERRES 1))

and if r = s-]

(%) = (X]"“’Xr 15XgoX ,xs+1,...,xk).
In other words, Teg interchanges the r-th and s-th coordinates of a point in
Rk |

Define m . 0g=gom.. For any ¢ € D and B € R(%) there exist

p € D and A € R(y) such that



1T

(3.3) Ai(g) = Ai(“rs<5)) ifigr,i#s
ALx) = A(n ()
A(x) = A(r (X))
p(x) = vlm  (x))
supp v = T = {x € supp & or "rs(f) € supp &}
and
sup L(A,y,9) < sup L(B,&,9).
9€G 9¢G
k _
Proof. By Lemma 3.1 if ) B? is not constant on supp & we may replace B
i=1
and ¢ by £* &€ D, B* € R(g*) satisfying L(B*, &%, g) < L(B,£,9) and such that
K k' 2
) B? is constant on supp £* = supp £. So we shall assume ) Bi is constant
i=1 i=1

on supp £. Then

T Bde(x) - [f(1§1B§(5))%dg<§>]2
Let
£2(x) = g(mg(x))
BO(x) = B.(n (X)) if ifvr, i#s
Bp(x) = By (. (X))
B2(x) = 8, (m,(x)

For each g € G we have L(B,£,9) = L(§°,£° LI g) and so

(3.4)  sup L(B,&,g) = sup L(§°,£°,wrs g)
9¢<G - g&G

= sup L(8%,£%.9)

since g € G if and only if =_.0g €G.
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Let ui(g) = 81(5)5(2)’ u?(g) = B?(g)go(g) for i = 1,...,k. The u, and

u? are defined on T (defined in statement of the lemma). Let u = (u],...;uk)',
0 _ (O 0y, '

u = (sl Using (3.2) we get
L(B,£,9) = L%(u,g)
L(8°,£%9) = L%u’,9)
where
0 k 2 K 2 3.2
120,g) = T (T a(xv ()P + o0 T (T E(x0)%)
i=1 x€T X€T =1
Lo(y,g) is convex in v and clearly sup Lo(y,g) is convex in v also. let .
. g&G
Wy = (ui+u?)/2 for i = 1,...,k. Notice

w.(x) =w.(m _(x)) ifigr,i#s

=
~—
it
=
)

where o makes y a probability measure. Let A;(x) = w, (x)/e(x) if p(x) > 0
and A%(g) =0 if y(x) = 0, for i = 1,...,k. One can check A € R(y) and A; P

are as stated in the Temma.

LEMMA 3.3. Suppose we are given design & € D and functions (B],...,Bk)' = B

)| = con

1

such that B € R(g). For any g € G there exists g* € G with |g*(

supp € and such that L(B,£,g*) : L(B,&,9 ).
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Proof. L(B,£,9) is a convex quadratic function of g(x) for any x € supp &.
Thus it can be maximized by assigning g(x) its extreme values, namely * c.
Let g* be a function derived from g by redefining g at each point x in
supp £ so as to maximize L(B,£,g) as a function of g and so that lg*| = ¢
on supp-£. Clearly the values of g* off supp £ can be chosen so that g* € G
(juét take g*(x) = g(x) for x € supp £).

Armed with these Temmas and the results of Section 2 we can proceed to

determine which ¢ € D and B € R(g) minimize max L(B,£,9).
g€G
Recall that Section 2 showed that we could restrict ourselves to designs

£ €D whose support was only on the extreme points of Sk, i.e. the k points
(1,0,...,0)", (0,1,0,...,0)', (0,0,1,0,...,0)",..., (0,...,0,1)'; Restricting
ourselves to such designs, applying lemma 3.2 and the construction in its
proof for all 1 <vr, s ﬁ_k, we see that we can further restrict ourselves to |
designs £ € D having support on the extreme points of Sk and satisfying £(x) =

£(r (x)) for all extreme points x of S, and all 1 <r, s < k. The only design

rs
£* €D satisfying these restrictions is the design g* taking value 1/k at
each of the k extreme points of Sk. Thus applicat-on of the results of
Section 2 and Lemma 3.2 yield that there exists B* € R(g*) satisfying (3.3)
for all 1 < r, s < k such that

max L(B*,£*,g) < min max L(B,&,g)

g&6 T BER(g) g6
for all ¢ € D.

To find B* notice that Since B* must satisfy (3.3) and also the conditions

for what it means to be an element of R(£*) (see equation (3.1)), we must have
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—~
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=

—~
—

~—

~
1]
=

B.(x(3)) = a for i #j

for all 1 < 1, j < k, where 5(1) is the extreme point of Sk whose i-th coordinate
is 1 and whose other coordinates are all 0. Here A is some constant real number.

For any B € R(g*) satisfying (3.6) for some A we have by Lemma 3.3 that

(3.7) max L(B,e*,g) = max[ Z (fB x)de*(x +pf Z 5 ))de*{x) ]
g&a g&G i=1
= K[(k-1)]2]c/k + c12 + p(k2+(k 18)/k.

The B € R(g*) satisfying (3.6) for some A which minimizes (3.6) is easw]y
seen to be the one with » = 0, call it B*. We therefore have proved the

following theorem.

THEOREM 3.1. Let £* € D be the design putting mass 1/k on each of the k
extreme points of Sk’ i.e. the points x(1) = (1,0,...,0)", x(2) = (0,1,0,...,0)",

cees Xy = (0,...,0,1)". Let B* = (B¥ 3. Bﬁ)' € R(g*) be such that B?(f(j)) =

k6ij’ where 51j is the Kronecker delta. Then we have

max L(B*,£*,9) = min min max L(B,&,9).
96 £€D BER(z) g6

By Theorem 3.1 it follows that the design &£* above and the function

* = *
B (B],..
max L(B,£,9). Notice g* and the B? are the "usual" optimal design and least
g€G
squares estimates for multivariate linear regression on Sk‘

.,B*)' wherekB$(§) = kxi (Xi is the i-th coordinate of x) minimize

4, Resu1ts for cubes.

In this section we apply the results of Section 2 to the case where

k k

X = I = k-fold Cartesian product of the closed interval I = [-1,+1]. 1" is
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the k-dimensional cube centered at the origin with sides of length 2. ATl
other notation is as in Section 2. We seek & € D and B € R(t) which will

minimize max L(B,£,9). The following lemmas will prove useful.

g&G
. k .
LEMMA 4.1. Suppose & € D and B € R(g). If ) B? is not constant on supp &
: i=0
then there exists £* € D with supp gﬁ = supp £ and there exists'g* € R(g*)
k
with .X B?Z constant on supp £* and inf [L(@,g,g)-L(@*,g*,g)] > 0.

i=0 g&G

Proof. The proof is similar to Lemma 3.1 and is therefore omitted.
LEMMA 4.2. Suppose q is an integer satisfying 1 < q < k. Let
Aq(é) = (X],...,Xq_],-Xq,Xq+],...,Xk) .

Define Aq 0g=go Aq' For any £ € D and B € R(£) there exists ¢ €D and

A € R(y) such that

(4.1)  A(x) = A1(xq(>_<)) if i#q

Aq(x) = -Ag (g (X))

(%) = v (3 (X))

supp ¥ = T = {x € I%; x € supp & or Ag(x) € supp &)
and

sup L(A,p,g) < sup L(B,£,9).
g6 g€&G

[ A

Proof. The proof is similar to Lemma 3.2 with obvious modifications and

is therefore omitted.

LEMMA 4.3. Suppose we are given design & €D and B € R(¢). For any g €G
there exists g* € G with |g*(x)| = c on supp & and such that L(B,&,9%) >

L(B,£,9).
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Proof. The proof is similar to Lemma 3.3 and is therefore omitted.

Equipped with these lemmas and the results of Section 2 we can proceed
to find the £ €D and B € R(g) which minimize max L(B,&,9).

Recall that the results of Section 2 al]ogeﬁs to restrict ourselves to
designs £ € D whose support is only on the extreme points of Ik, i.e. on the
Zk corners of the cube. Restricting ourselves to such design, applying
Lemma 4.2 and the construction involved in its proof for all 1 < q < Kk,
we find that we can restrict ourselves to designs & € D having support on
the 2k corners of Ik and satisfying £(x) = g(xq(g)) for all 1 < q < k and
all x which are extreme points of Ik. The only design satisfyingvthese |
restrictions is easily seen to be the design &* € D taking value 1/2k at
each corner of Ik. Thus application of the results of Section 2 and Lemma
4.2 yield that there exists B* € R(g*) satisfying (4.1) for all 1 < q < k
such that

max L{B*,£*,g) < min max L(B,£,9)
g&6 BR(g) g&&
for all £ €D.
To find B* notice B* must satisfy (4.1) and the conditions for what it

means to be in R(z*) (see equation (2.6)). It is not difficult to verify

that this means

(4.2) B?(g) =0, if the i-th coordinate of x is +1
B?(g) = -0 if the i-th coordinate of x is -1.
Bg(g) = 05

Therefore we have the following result.
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THEOREM 4.1. Let £* € D be the design putting mass 1/2k on each of the 2k
corners of the cube Ik. Let B* = (Bg,B?,...,BE)' € R(g*), where the B? are

as in equation (4.2). Then we have

max L(B*,£*,g) = min min max L(B,£,9).

g6~ £€D BER(g) 9&G -
As in section 3 g¢* and B* (or more precisely the estimates b? érising from the
B?) in Theorem 4.1 are just the "usual" optimal design and Teast squares
estimates for multivariate linear regression on X,

Let £x €D, B* € R(¢*) be as in Theorem 4.1. D, B* € R(g*) be as in
Theorem 4.1. Define

k

6(c) = 1g: IX > Ry |g(x)] = ¢ for all x € I¥}.

It is easy to verify, using Lemma 4.3, that

max L(B,£,9) = max L(B,&,g)

q<G g&6(c)
for any £ €D, B € R(g).

Now we restrict to the case 60 =1> e] =,..= ek =9 > 0. The minimax

mean square error sup L(B*,£*,g) can be written as
& -

g
k
sup L(B*, £%, 9) = sup [(Ja(x)dex(x))? + o° ] (fxig(z)da*(z))zJ
96 g&G(c) i=1 |
ok
¢ of(1+6” ] x)dex(x).

i=1

- ' k
Let X = (X"""’ij) €1

for j = 1,...,m be any set of m distinct
points in Ik. Let £ be the probability measure putting mass 1/m on each

of these m points. Define
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1 .
(4.3) X(z,) =
Xp - .. Xp
g(e,) = (g(xq)s.-0s9(x))".

Notice X(go) is a (k+1) x m matrix and g(go) is amx 1 column vector. If

we use Jm to denote the m x m matrix all of whose entries are 1, we get

k
* - 2 2 2
;%g L(B*,£ >9) = gzg?c)[(fg(z)dao(z)) + 0 1_Z](f x;9(x)de (x))"]
k
+of(1 + GZ.Z]X§)dEO(§)
j=
- [(1-02)(f g(x)de, (x))% + 82(f g(x)deg(x))°
k
+ eZ.Z](fxig(§)d£0(§))2] + 0(1-0%)
1:

k
+ 0% f(1+.21 x?)dao(z)
'I:

2
- 1-6%)g" (2,3,
962?2)[( 67)g' (g,)d,9(c.)
+ 08" (£ )X (£, )X(5, )a(g,) Unm”
+ (1-6%)p + (6% tr X(g)X'(£)))/m

> sup L(B*,g*,g)
g&(c)

= sup L(B*,£*,9)
g&G

= C2 +p t k@zp.

If k+1 is such that a (k+1) x (k+1) Hadamard matrix X exists (in standard

form so that the first row and column are all +1) then any exact design y
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on k+1 points whose support is such that X(v) = X, where X{(y) is as in
(4.3), satisfies

sup L(B*,y, g) = sup [(c-ez)g'(w)dk+19(w)
g¢6 g<G(c) -

) :

+ 029" (u)X (w)X()g(¥) 1/ (k+1)?

& (1-69)0+(6% tr X(9)X' (9))/(k#1).

Recalling that since X(y) is a Hadamard matrix X(w)X'(w) = X' (y)X(y) =
(k+1) diag(1,...,1) = the diagonal matrix all of whose diagonal entries

are k+1, we have that

sup L(Bwn0) = sy [(1-62)g" (#)3,.4,8(9) + 62(kF1)g" (9)g(0) 1/ (k))?
+ (1-0%)p + 0% (k¥ %/ (k#1)
- 1(1-6A)c2 (k)2 + 02 (k1) %P/ (k1)
+ (1-0%)0 + 6% (k+1)

C2 +p + kezp

where we have used the fact that if g € G(c) then |g(x)| = c for all
X € Ik.
We see that ¢ gives the same minimax value as 5*3 Since B* € R(v)

we have:

THEOREM 4.2. Suppose 6, = 1 > 8y =...F 0y = 6 > 0. Suppose k+1 is such

that a (k+1) x (k+1) Hadamard matrix exists. Let B* = (B;,Bf,...,BE)' where
Bg(g) =1, B?(g) = 8X; for i = 1,...,k. Let y be an exact design supported

on k+1 points in'Ik such that X(y), as defined in (4.3), s a Hadamard matrix

in standard form. Then we have
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max L(B*,p,9) = min min  max L(B,&,9)
g&G £€D BER(E) g€G

where M is as in Theorem 3.1.

Theorem 4.2 allows one to reduce the support of a minimax design in

special cases.

REMARK. Suppose A is a Lebesgue measurable set in Ik, A is dnvariant
under coordinate reflections, and (1,...,1)" € A. Then the above arguments

work when we restrict x € A and Theorems 3.1 and 3.2 again hold.

5. Additiona] results.

The results of Section 2 can be applied to other situations also. Using

the notation of Section 2 we get the following when Bg = 847---70) = 1.

Case 1. Global performance; interpolation (integrated error).
Let w be a nonnegative measure on X. With the same model as in equation

(2.1) Tet

(x) = B+ B'X

-l

be an estimate of EY(x). éo and é = (é],...,ék)' are as in (2.2). Assume our

lToss function is

_ k
L, (B.E9) = o(8(x) + ] 2;8,(x)) de(x)
k

J(x) + iz]ziBi(z))g(z)dE(z))z-

Then the corresponding risk will be
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JL,(B.£,g)w(dz).

The following is analogous to Theorem 2.1.

THEOREM 5.1. Suppose £ € D. For all x* € X if g(x*) # 0, w(x*) = 0, and

, m
. * =
there ex1st; X12Xps- -+ sX, € X such that x QZ] a,X,» where 0 <« <1 for
all 2 and } o, =1, then there exists &* € D such that
971

(1) &*(x*) =0
(i1) supp &% = supp & U {Xy5...>X } - {x*}

(ii1) min  max jL (B,£*,g)w(dz) < min max fL (B,&,9)w(dz).
BER(£*) g6 BER(g) g&G

Proof. Following the proof givén for theorem 2.1 it is straightforward to
show that the following counterparts to equations (2.8), (2.9), and (2.10) are
true.
First, for all £* such that £*(x*) = 0 we have for all B € R(2),
since w(x*) = 0,
(5.1) max fL (B,g*,g)w(dz) = max fL (B,£*,9)w(dz)
g6 = geer’ 2
where G* here is the counterpart of the G* defined in the proof of Theorem
2.1. ‘
Second, for all & such that £(x*) # 0 we have
(5.2) min  max fL B,£,g)w(dz) > min  max fL (B,£,9)w(dz)
BER(g) g&6 = BER(g) g&6* =
Finally, it suffices to show that for any ¢ € D with g(x*) # 0 there
exists £* € D satisfying (i) and (ii) of the theorem such that

(5.3) min  max fL (B,e*,q)w(dz) < min max fL (B,g,g)w(dz).
BER(£*) g&G* % BER(r) g&G* 27
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The following lemma, analogous to Lemma 2.1, proves (5.3) and hence the theorem.

LEMMA 5.1. Suppose £ € D is such that g(x*) # 0 and there exist XpseoeaX €X
m
such that x* = } «a

X
e=1

m
, where o, > 0 for all 2 and ) o, = 1. Then there
) 21 L

exists ¢* € D satisfying (i) and (ii) of Theorem 5.1 and for any B € R(g) there

-2

exists B* € R(g*) such that for all g € G*

L (B.£,9) = L (B*,g*,g) + d(z)

for all z € X. Here d(z) is a nonnegative real number that does not depend on

g but does depend on z.

Proof. Analogous to Lemma 2.1.
Notice that when supp(w) is just a simle point we are dealing with
interpolation to a point.

Case 2. Global performance (maximal error).

Using the same notation as in Case 1 we get the following.

THEOREM 5.2. Suppose £ € D. For all x* if g(x*) # 0 and there exists
m m
X1s- 5%, € X such that x* = 221 o X, where o, > 0 for all 2 and QZ]

then there exists £* € D such that

o, = 1,

(i) &g*(x*) =0

(1) supp £* = supp £ U {51""’§m} - {x*}

(iii) min max max L_(B,£*,g) < min  max max LZ(E,g*,g).
BER(£*) g6 z€&x £ BER(£) g6 z&X 2

Proof. The proof is almost the same as for Theorem 5.1, but we must take

care of the point x* carefully. The following steps are easily proved.

Step 1: For all g* €D such that £*(x*) = O we have
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max max Lz(g,g*,g) = max max LZ(§,£*,g).
g6 z#x* = g&G* z#x* =

Step 2: For all & €D such that g(x*) # O we have

min  max max Lz(g,g,g) > min  max max Lz(g,g,g).
BER(t) g&6 z&X = BER(g) g&G* z#x* =

Step 3: There exists £* € D satisfying (i) and (ii) such that

min max max L_(B,£*,g) < min max max L (B,£,9).
BER(e*) g€a* z#x* 2 BER(£) geG* z#x* 2

In order to complete the proof we have to show
max max L_(B,£*,g) = max max L (B,£*.,9)
gEG* zZ#x* Z geG* z€X £
which follows from a straightforward continuity argument sinceg* is a

"discrete measure so we can assume ¢ to be continuous without loss of generality.

Case 3. Extrapolation.
Let w be a nonnegative measure on X* - X where X* C:Rk and our model is
"nearly" linear, in the sense of equation (2.1), on X*. A result analogous

to Theorem 5.1 holds in this case (here "w(x*) = 0" holds always).
Case 4. For a loss function of the form

6 (8 -8 )% + (8-g)'A(3-8)

0'"0 "o == ==

where the notation is similar to Section 2 with é' = (é],...,ék) being
linear estimates of B' = (B]""’Bk)’ and A in nonnegative definite, we can
prove a result analogous to Théorem 2.1. In fact, after a suitable linear
transformation (which preserves extreme points) we can reduce to the case

of Section 2.
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Case 5. For a bilinear model

By tIB4X; + ZB"Xixj + g(x)

N

the method of Section 2 also works after necessary modifications (e.qg.
the analogue of Theorem 2.1 can be proved with the restriction that xy,....X.,
x* all 1ie on a line parallel to one of the coordinate lines. We can thus

conclude the optimal design will have support on the boundary of X only).
Case 6. If X © R and the set of contaminations G is

G = {g: |g(x)]| <clx]|}

where ¢ > 0 is a constant, then the method of Section 2 can be applied to
give an alternative proof to some of the results in Marcus and Sacks (1976).
Moreover, analogous results for X C:Rk can be casily established (an optimal

design will have support belonging to the set {0} U {extreme points of X}.

6. General Remark. Although we have used the approximate design approach

to our probiems the results should not be interpreted as an asymptotical

conclusion. In fact, if the sample size is very large we should use a more
restrictive contamination model (e.g. all g in G uniformly satisfy a certain
degree of smoothness). The results would be different and could be expected
to be close to those of Huber. If the sample size is not large, though, we

can feel comfortable with our model.

7. Acknowledgements. Both authors wish to express their sincere thanks to

Professor Jack Kiefer for his helpful suggestions and discussions.



25

REFERENCES

[1] Box, G.E.P. and Draper, N. R. (1959). A basis for the selection of
a response surface design. J. Amen. Statist. Assoc. 54, 622-654.

[2] Huber, P. (1975). Robustness and designs. A Suwey of Statistical
Design and Linear Models, North Holland, Amsterdam, 287-303.

[3] Kiefer, J. (1973).. Optimal designs for fitting biased multiresponse
surfaces. Multivariate Analysis 111, Academic Press, New York, 245-268.

[4] Marcus, M. B. and Sacks, J. (1976). Robust designs for regression J
problems. Statistical Decision Theony and Refated Topics 11, Academic

Press, New York, 245-268.





