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SUMMARY
ESTIMATING A QUANTILE OF AN EXPONENTIAL DISTRIBUTION

The estimation of a quantile ¢ +-bg of an expohential distribution
on the basis of a random sample of size n > 2 is considered. Here £
and o are unknown location and scale parameters and b is a given con-
stant. For quadratic loss, it is éétablished that the best equivari-
1

. _ -1, .- .. .. . -
ant estimator 60 =Xt (b-n )(x—xmin) is inadmissible if 0 <b <n

orb>1+ n_l. For b > 1 +'n_1 the estimator
§ =08 - 2D b-1-H Gex . ) -bn-Dx_, ]
o ' ' min min-’

0 < x

-1 i .
nin < {(b-1-n )(bn-l? (x—xmin), 6'=,60 elsewhere, provides a

noticeable improvement over 60.

Key words: Quantile of the exponential distribution, location-scale
parameter, best equivariant estimator, inadmissibility, minimaxness,

quadratic loss.



1. INTRODUCTION

Let x = (xl,...,xn)(n > 2) be a random sample from a two-parameter
‘exponential distribution. Thus all x's have a density 0_1p((u—€)0_1),
where p(u) = e %, u > 0; p(u) =0, u<0, and £ and ¢ are unknown loca-
tion and scale parameters. In this paper wé consider the problem of es-
fimating the paramgtric function 6 = £+ bo, where b is a given nonnegative
constant. Clearly if p = e-b, 0 <p<1, then ¢ is a p-quéntile of -the
exponential distribution. We assume that the loss function is squared
error scaled by 02, so as to make the loss invariant under location and
scale transformations.

Quantile estimation, in particular for the exponentialrdistribution,
is important for reliability theory, life testing, etc. (cf. David
(1970) p.121). Many papers have been dedicated to this sﬁbject (see,
for instance, Epstein and Sobel (1%54), Epétein (1962)). Also, for
statistical decision theory it is of interest to find out if the best
equivariant estimator or the maximum likelihood estimator of 6 is admiss-
ible. In the case of a normal sample thebproblem of estimating ¢ was
considered by Zidek (1971) who established inadmissibility of the best
equivariant estimator for b# 0.

The usual (best equivariant) estimator of o when £ is a nuisance para-
meter is known to be inadmissible (see Arnold (1970), Zidek (1973),
Brewster (1974)). This fact suggests inadmissiblity of the best equivari-
ant estimator of £+ bo and can be used to prove it if b is sufficiently
large. |

Indeed let 60(5) = %(§)+-b;(§) be the best equivarignt estimator of
E+ bo, so that % can be interpreted as aﬁ estimator of £ and ; as an es-

~

timator of o. It is easy to see that o is the best equivariant estimator



of o for the quadratic loss. Also
E, (8()-£-bo)” = E_ (£(x)-£)°
&g~ = &0
+ 2bE_ (£(x)-£) (6(x)-0) + b’E__ (o (x)-0)>.
Eo - - Eo -

Therefore for large values of b the main impact in the risk of & is
‘the risk corresponding to o. Because of the mentioned inadmissibility re-
sult one can impmové upon 60 for large b by using an estimator g(x)4-b;(x)
where ;‘is an improvement over ;.

In this paper we show that the region of "large values of b" for
which GQ is ina&missiﬁle is the interval b > 1+-n_1. More precisely we
prove inadmissibility of the traditional estimator 60 for 0 < b < n_l
and b > I+-n-1, and in the latter case, for small sample siies n, offer
nbticeable improvements upon 60. Thus, in particular, the natural-esti—
mator of the lacation parameter & is inadmissible. This estimator is al-
so inadmissible when b is negative,ubut this case needs -special methods
and is mot of much statistical interest.

Our technique is a slight modification of tﬂe method originally pro-
posed by Stein {1964), which was later formalized by Brewster and Zidek
(1973) and used by Sharma (1977) in the estimation problem of 0-1.

Note that the quantile estimation problem is also closely related to

the estimation of the location parameter ¢ with unknown scale parameter o.

Indeed if'pl{u) = p(u+b) is the density of the shifted exponential
distribution, then the best equivariant estimator of the location parameter
£ in the family'uflpl((u- g)o-l) coincides with the best equivariant esti-

mator of a quantile £+ bo in the family c_lp((u- g)c-l).



2. A CLASS OF MINIMAX ESTIMATORS

n
Let x= X = min X,, y = X-X = n-1 X.-X. Then (x,y) is a
min  1<j<n 17

version of the minimal sufficient statistic and has density

n-2 (2.1)

(no;l)n[(n-2)!]-1¢xp{-n(x+ y - g)o-l}y
if y >0, x > £, and 0 otherwise.
The problem of estimating 6 = £+ bo is invariant under the affine
group, and if S(x,y) is an equivariant estimator then
8§(cx+d,cy) = cS(x,y) +d
for all ¢ > 0 and d. This implies that § has the form &§(x,y) = x+ Ay
for some constant A. If the loss is measured by (§- 6)20-2,an examina-

tion of the risk of § reveals that the best choice of ) is

- 2,-1 _ -1
A= EOlyEOI(x"b)[EOIY 1- = b-n .

This (best equivariant) estimator So(x,y) = X+ )y has a constant risk
s N3 " " - .
and is known to be minimax. ( EO1 E£=0,o=1)'
For A>1orx<0 we seek an improvement upon GO(X,y) in the class
of estimators
§(x,y) = x+ Ay - Ayf((x+y)/x), (2.2)

- where f is a (measurable) function of (x+ y)/x.

THEOREM 1. The estimator 8§, is inadmissible if 0 < b < n!or
b > 1+n L, For b > 1+n ! the estimator
-1 -1 -1
8(x,y) = x+ (b-n T)y-2{(b-1-n y- (bn-1)x](n+1)
for 0 < x < (bn- 1)-1(b- 1- n-l)y, and §(x,y) = do(x,y) otherwise, improves
upon 60.
Proof. Since the risk of any estimator of the form (2.2) depends

only on £/0 we can take 0 = 1. One has



BE) = Bgy (8, (x,y)-£-0) B (6x,y)-5-b)?

Ep [8,(x:¥)-8(x,¥) 1 [8, (x,y)+8(x,y) -2¢-2b]

20E 3 (£(L+y/3) (ay sy Ay £ (Ley/x) [2- (£b)y) [x>01P ) (x50)

+ 2xﬁgl{f(1+y/X)(xy+ky2-ky2f(1+y/X)/2-(£+b)y)IX<0}Pg1(X<0)

A (E)+4, (E)", | @

For ) > 1 we construct an estimator § of the form (2.2) with f(1+y/x) =0
for x < 0 and £(1+y/x) > 0 for x > 0, such that Ao(g) > 0 for ¢ > 0.

Clearly for all ¢ Al(g) = 0 and if £ < 0, then
ag) = 4, (&) = AO(O)legﬁgl{f(1+y/x)y/x>0}Pg1{x>O} .

Thus inequalities Ao(O) > 0 and f 370 imply that Ao(g) Z,O for £ < 0,
and the estimator § with these properties will improve over §,. We con-
struct the function f not being identically zero, so that § is different
from 60 with positivé probability and is minimax;

Combining (2.1) and 2.4) one obtains withn =ng, n> 0, z = 1+y/x

Bo(m = 20" [(-2) 117072 [ £2) [14A(z-1) -A(z-1)£(2) /2] (2-1) " L2 Pz
-1

x f un+1e-udu-(n+kn_}) f f(z)(z-l)n-lz_n—ldz f une_udu].
nz 1 nz

(2.5)
By using formulas

@ . © A
[ h2) [ WPeVaudz = 0™ [ e"? [ h(t)dedz
1 nz 1 1

and

n f k(z)e-nzdz = f k'(z)e-nzdz
1 1



(the latter assumes k is differentiable and ktl) = 0) we deduce that

-2 -1 % -
s (n) = 226" 1y [(n-2)1] ! [ g(z2)e "z ,
1

where
g(2) = A(1-£(2}/2)£(2) (z-1)"z" 1

v

Z
+ 2" f(t)(t-l)n_lt-n_z[(x-l)(t-n-l)-A(n+1)(t-1)f(t)/2-nt/z]dt.
1 :

: (2.6)
Thus if * > 1 and for z > 1

£(z) = 2 max{0,(A- DA -nz- D@+ 7L,
then g(z} is positive and the corresponding estimator impfoves upon 60.

In the case when 0 < b < n_l, i.e. when -n" ! < X < 0 we construct an
improvement over 60 such that f(1+ y/x) = 0 for x > 0 and f(i+ y/x) > 0
for x < 0. Then Ao(g) = 0 for all g, so that to prove inadmissibility of
8o it suffices to consider negative valugs of £ and find f such that
8,(8) > 0. We take £(1+y/x) = 0 for x+y > 0. Then with n = n|g|,

z=1- y[xl-l, 0 < z < 1 one obtains

L}

8, (n) 2‘])\le""n'z[(n-Z)!]-1

o 1 -
(] 2" e @ a0 T - £ /2142 k0 e )] T

k=0 0

%

m 1
enb) ¥ ot 1 K™ e(zydz ki (eke) TN
) 0 '

-Z|A[efnnn+1n-2[(n—2)!]_1'

b

- ‘ -1 L n-1
£1-Am) (n+1)"" [ (1-2)  T£(z)dz
o

L] 1
7 2 lan ! [ Xa-n™ e
k=0 0 - _

+

x [(1-2) [(1-2) "2+ |A] [A[£(2) /2] (noke2) 2o (moka1) 7

+ (lflx|n)z(k+1)_1(n+k+2)_1]dz} . | ‘ (2.8)



If we put for 0 < z < 1

£(2) = max{0,2-2|>\l_1(1-z)—1 sup[(n+k+l)—1-(1-lAIn)z(k+1)_1]},
k>0

then every term of the series in (2.8) will be nonnegative. Straight
forward calculation shows that if (n+ i+ l)i1< [A] < (n#—i)-l, then for z

taking values in the interval (di,ei), where

dj = (- A1) [eieD) )], e = (241) (neinn) ]
the following inequality holds

iug[(n+k+1)-1-(1—llln)z(k+l)-1] = (n+i+1)-1—(1—lx|n)z(i+1)-1<lll(l-z).
> L

Therefore if the nonnegative integer i is defined by inequalities

(11.+i+1)_1 < IAI < (n+i)-1 and

-1 - . - -
£(z) = 2- 2|7 A- D M+ ie DT - Azt e 7Y
for z‘_E(di,ei),rf(z) = 0 elsewhere, then the corresponding estimator &
improves upon 8o If || = (n+i)_1 then the function f can be defined so

that the only negative term in (2.8), say, a, corresponds to nl. However,

2

a; < 4ai_1ai+1 so that the whole sum is positive.

Remark 1. For b > l*l-n-1 the improvement over 60 can be achieved
. by replacing y by its improvement suggested, for instance, by Zidek (1973).

This estimator has the form
Gl(x,y) = x+ y-b max{0,(y-nx)(n+ 1)_1}, x>0

GI(X,Y) = Go(x,y), X < 0. This estimator also improves upon 60, but'only
for b > 2(1*-n-1). Moreover the numerical evaluation of its risk shows
that 61 exhibits poorer performance than the estimator obtained in
Theorem 1.

Remark 2. TFor b = n"1 the estimator 8  is admissible. Indeed if
b = n_1 then the Pitman's estimator of the location parameter f for a

fixed value of ¢ is’xmin’ which is independent of ¢ and coincides with



Go(x,y). Thus inadmissibility of 60 in this case would imply inadmissibil-
ity of the Pitman's estimator %nin'for fixed 0. The latter is known to be
‘false (Stein (1959)).
The same method of admissibility proof (for one-dimensional case)
can be used to show that for b = 1+'n_1 the estimator 60 is admissible
within the class (2.2). In fact if A =1 60 is .a generalized Bayes es-
timator within thi; class with the generalized pribr density proportional
to n-l for n > 0. It is not known, however, if it is absolutely admissible.
Analysis of the proof of the Theorem 1 shows that the following re-

sult is true.

THEOREM 2. For A > 0 given any estimator § of the form (2.2), the

estimator

§(x,y) - 20y max{0,1 - f(z)-:bnz(n+ 1)-1A-1(z- i);l} x >0
s(x,y) = ' "
§(x,y) x<0,
where z = (x+¥yj/x;whas a risk funcfion which is at least as small as
that of 6(x,y) and which is strictly smaller if fhe two estimators are
not equal almost everywhere.

For -n-lli A < 0 the result remains true if
- ‘ -1 OIS | |
§(x,y) = &6(x,y)-2xy max{0,1-£(z)-|A| " (1+2) " [(n+i+1) " -(1-|A|n)z(i+1) "],

if x+y <0, z = 1- ylx|_1; §(x,y) = 8(x,y) otherwise. Here i is the non-

negative integer defined by inequalities

m+i+ 17T < fA] < (n+ )71,



3. DISCUSSION.AND NUMERICAL RESULTS
To compare the performance of So and the estimator obtained in

the Theorem 1 we consider the relative improvement

R(GO;E)-‘R(S,E)
D(E) = R(GO,E) s

*

where R(§,8) = EE(G— £- b)2 is the risk function. Note that

R(8,,8) =0 2+ (b-n"H)’(m+ 17}

so that for the estimator (2.3) one obtains (in percents)

p(n) = 400 5~ [n( Annz (A+n-1)q
(n 2)'(n+1)(n+1+(nx) ) n-1

+ (n+1) (A-1) 1 (n, t)

1 _
;i: (ﬁzz_i%n)P(an,t)

-n (n+An+1)Anr(n 1 t) (A

_(An+k+n-1 - (An2+x+n—19n
n-1 n(n-1)

)nF(n+1?t)

n n(An+A -1 AN (An+x-1)n

+( T nel n(n-l) )F(n+2,t+n)], (3~1)

xn+x 1)

7 where t = nap/(x-1), n = gh and r(n,t) = 7 e 5 Lax = e_t(n-l)!niltm/m!
t =

is the inC9mp1ete,gamma function. The formula (3.1) was used for numer-

ical evaluation of the maximal improvement over 60. Instead of ) or

b the probability p = e_b was employed for p = 0.2,0.1,0.05,0.01,0.601,

0.00001, so that. p-percentile estimation is considered.

Note that as +» or p-0,

4007, ? o2

p(n) » CEARCICTSY (u-m) e Ydu.

The maximal improvement for large A occurs when n = 3, n = /2/e = .47
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and equals 100(2v2 + 2)e "“/3 = 13.04%. When n = 8 the maximal improve-
ment upon the traditional estimator is about 6% if p is smaller than 0.01.
Since in application expenses due to tests and lengthy testing procedures
often dictate small sample sizes for quantile estimation, these results
seem to be relevant to practical use in the fatigue life determination.
‘"In fact, the Federal Aviation Administration (FAA) allows for the quali-
fication of’componehts based on samples of size six or less for fatigue
tests" (Dyer, Keating and Hensley (1977) p. 270).

A peculiar feature of the Table is that the maximal improvement is
the largest when n = 3. Typical values of the parameter n =‘gn where the
maximal improvement is achieved, belong to tﬁe interval (0.05, 0.5). Thus
the maximal improvement of the estimator §(x- c,y) + c (which is miﬁimax if
8§ is) occurs when n is in the interval (c+ 0.05, c+ 0.5). Thus if prior
information about /o is available, one should choose a consfant ¢ such

that the prior mean of ng/c is in the interval specified above and use

the corresponding estimator.

Maximal improvement (in percents) over the estimator of the p-procentile

- n 0.2 0.1 0.0g 0.01 0.001 0.00001
2 0.109 - 2.591 4.825 7.644 9.332 - 10.587
3 0.621 3.407 5.532 8.205 9.878 - 11.183
4 0.879 3.442 5.327 7.702 9.223 10.443
5 0.959 3.265 4.238 7.048 8.423 -~ 9.536
6 0.961 3.040 4.539 6.429 7.673 8.690
7 0.931 2.816 4.176 5.883 7.014 7.947

‘8 0.889 2.661 3.853 5.410 6.446 - 7.304
9 0.848 2.424 3.571 4.999 5.955 6.749
10 0.817 2.261 3.323 4.643 5.529 6.268
20 0.552 1.345 1.935 | 2.681 3.189 3.620
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