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ABSTRACT
The need for and the increasing use of statistical techniques in the
analysis of climatological data are amply illustrated in the literature.
Some known techniques relating to meteorological problems such as weather
modification experiments and objective weather forecasting are briefly
reviewed here. Also, selection and ranking approach to multiple decision

theory is discussed with emphasis on potential applications.
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1. Introduction.

The need for statistical methodology in analyzing meteorological data
has long been recognized. For example, weather modification provides, as
noted by Braham (1979), a "fertile field of interaction and collaboration
between meteorologists and statisticians." Satisfactory models have been

found to describe meteorological data (see Section 2). Time series data occur
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commonly in climatological studies. Some of the important and interesting
problems arise in connection with weather modification experiments, objective
weather forecasting and classification of meteorological patterns. Studies in
meteorology in general and rain simulation in particular have inspired novel
developments 1in probability and statistics. The concept of characteristic
functional first developed by Kolmogorov was later reintroduced by Le Cam
(1947) motivated by meteorological studies [see Neyman (1979a)]. The concepts
of outlier-prone and outlier-resistant distributions developed in Neyman and
Scott (1971) were motivated by cloud seeding experiments.

The objectives of the present paper are to briefly review some important
known applications of statistical techniques to meteorological data and to
indicate the potential applications of selection and ranking procedures to
these problems. No attempt will be made to be comprehensive in the treatment
of either objective. Some important distributions that have been satisfactorily
Qsed as models in meteorological problems are described in Section 2. The
next section deals with weather modification experiments and some related
asymptotic optimal tests and nonparametric tests. Section 4 discusses
techniques used in a variety of situations other than weather modification
experiments. The topics include Markov chain models, the biplot technique,
selection of the best predictors in forecasting, and classification of weather
patterns. The last section describes some subset selection procedures and’

discusses the selection of the best regression model under this formulation.

2. Statistical Models.

In this section, we briefly discuss several distributions that have
been found useful as models for meteorological data. Any discussion of the

techniques for inference will be deferred until later sections.



The gamma distribution has been extensively used as a model for precipi-
tation data. Rain simulation experiments indicate [see Neyman and Scott (1971)]
that the distribution of nonzero rainfall per experimental unit (an experimental
day or storm) is J-shaped with a long tail and frequent outliers. The gamma
distribution answering the above description [Neyman and Scott (1971)] has been
found a satisfactory model in practice. The distribution of nonzero rainfall

per experimental unit is assumed to have the density

o
(2.1) £(x) = f%aj-xu—1 e %% x>0, 650, a>0.

Here, 8 is the reciprocal of the scale parameter and o is the shape parameter.
It is generally assumed [Neyman (1979a)] that the seeding of the clouds can
change the value of the scale parameter but has no effect on the shape
parameter. The gamma distribution has been used or verified as a model by
Barger and Thom (1949), Mooley and Crutcher (1968), Neyman and Scott (1967a),
Schickedanz (1967), Schickedanz and Decker (1969), Simpson (1972), and Thom
and Vestal (1968).

Mielke (1973) considered for describing precipitation data the two-

parameter Kappa distribution with distribution function

[(x/8)%1a + (x/8)*317%, x>0

0 s x <0

where o > 0 and g > 0 denote the shape and scale parameters, respectively.

Wong (1977) made goodness-of-fit comparisons among the gamma, lognormal,
three-parameter kappa (a8 in the place of a in (2.2)), and Weibull distributions
using five sets of Alberta hailfall data. He found the Weibull distribution a

reasonable alternative to the lognormal and three-parameter kappa distributions
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for describing precipitation and streamflow data. It should be noted that
the lognormal distribution is outlier resistant [Neyman (1979a)] and that
Weibull and gamma distributions can be subsumed under the generalized gamma

distribution with density

-1
(2.3) f(x) = 1513——~‘e_(x/8)Y, x > 0,
871 (o)

where a, B, and y are all positive parameters.
The three-parameter Weibull distribution was used by Stewart and
Essenwanger (1978) as a model for wind speed near the surface. Tackle and

Brown (1978) have used the distribution function

F(0) + (1-F(0)) (1-exp{-(x/8)f}), x>0
0 , x<20

(2.4) F(x) =

where F(0) is the probability of observing zero wind speed.

Luna and Church (1974) have found the lognormal distribution as a
satisfactory model for wind speed at many sites. Yao (1974) found the beta
distribution as a satisfactory model for frequency distributions of relative
humidity observations. The beta distribution has also been used by Mielke
(1975).

Bivariate normal distribution is used by Wu, Williams and Mielke (]97?)
in the analysis of continued-covariate and cross-over designs that arise in
cloud seeding experiments. For some other distributions that have been
considered in connection with meteorological data, see Mielke (1979).

Associated with all these distributions are the obvious problems of
estimation. The several methods of estimation applied to these distributions

are of general interest and not restricted to meteorological problems; as such,



relevant references can be amply found in the statistical literature. It
suffices here to mention a few recent papers motivated by meteorological
applications, namely, Crow (1977, 1978), Flueck and Holland (1976), Mielke
(1973, 1976), Mielke and Johnson (1973), and Wong (1977). Other problems

of inference are discussed in subsequent sections.

3. Weather Modification Experiments.

Early scientific weather modification experiments are attributed to
Vincent Schaefer (1946) and Barnard Vonnegut (1947) who showed that pellets
of Dry Ice and minute particles of silver iodide would nucleate ice crystals
in supercooled clouds. Early days of weather modification are discussed by
Byers (1974) and E11iot (1974). One of the important experiments, known as
Project Whitetop, was carried out by Professor Braham and his colleagues at
the University of Chicago during the summers of 1960 through 1964. The data
of this experiment have been reanalyzed by Professor Neyman and his associates
at Berkeley. The details of Project Whitetop, controversies regarding its
conclusions, and relevant references can be found in the paper by Braham (1979)
and the comments by Dawkins and Scott (1979) and Neyman (1979b). A categorized
bibliography of weather modification experiments is given by Hanson et al (1979).
Weather modification experiments are getting increasing attention of
statisticians as evidenced by the papers in Volume V of the Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability
(University of California Press, 1967) devoted entirely to this subject and
two special issues of Communications in Statistics - Theory and Methods
(Volume A8, Numbers 10 and 11, 1979). In the rest of this section, we briefly

describe some of the problems and techniques.



A class of asymptotic tests that is routinely used in testing hypotheses
regarding the effect of seeding the clouds is called the optimal C{a) tests.
These tests were developed by Neyman (1959) and are applicable to testing
composite hypotheses that are frequently encountered in practice. These tests
are applied by Neyman and Scott (1967b) for evaluating single rain simulation
experiments. The basic assumption is that, whether or not seeded, there
corresponds to each experimental unit (a fixed duration like 24 hours) a
| positive probability, say 1-p, of the rainfall being zero. Two mechanisms
are introduced, one governing the change in p due to seeding and the other
governing the effects of seeding per wet day. The effect of each mechanism
is a change in the value of p in either direction. On each experimental day
(a day considered 'suitable' for seeding), a randomized decision is made
whether or not to proceed with seeding. As a measure of the effect of seeding,
Neyman and Scott (1967b) use £ = (pS - pc)/pc, where the subscripts s and c
denote "seeded" and "control", respectively. Neyman and Scott (1967b)
provide three test criteria, labeled Z], 22,‘and 23, of which the first two
are optimal C(a) tests of hypotheses H] and H2’ that cloud seeding does not
affect the frequency of wet days, and that it does not affect the rainfall
per wet day, respectively. The criterion 23 is not a C{a) test; it is a
Tinear combination of Z1 and 22 so chosen as to be sensitive to departures
from H3 that the seeding does not affect the target precipitation averaged
per experimental unit, whether wet or dry. The specialization of the
conditional density of the target precipitation given that it is not zero,
joint with the predictors if such are available, determines several different

cases. For some recent work on the detection of variable response to cloud

seeding, see Neyman (1979a).



Efficient methods for summary evaluations of several independent
experiments are important in view of "the notorious frequency with which
rain simulation experiments fail to yield statistically significant results.”
Davies and Puri (1967) discuss two related but distinct problems specializing
certain earlier results concerning C{o) tests.

Suppose that the distribution of the nonzero precipitation is gamma with
density given in (2.1). It is assumed that the effect of seeding is to change
o to o (i.e. effect is multiplicative). The interest is to test H: & > 1
against A: ¢ < 1. Note that g <1 corresponds to increased average nonzero
rainfall. The results of several cloud seeding experiments indicate [Neyman
and Scott (1967c)] a value of « in the interval (0.45, 0.75). One can use
likelihood ratio tests or C(o) tests. However, it is a simplistic assumption
that the changes induced by cloud seeding can be adequately represented by a
simple scale or location parameter shift. Thus, nonparametric techniques are
useful in testing for a change due to seeding in the distribution of precipita-
tion amount. Commonly used nonparametric tests are Wilcoxon, Kolmogorov-Smirnov,
and median tests. Another test which is applicable is due to Taha (1964) and
is based on the statistic L = %—_E] s?, where the s; are the ranks of the
"seeded" observations in the com;;ned sample of 2n observations. In the sense
of asymptotic efficiency, this L test is found superior to Wilcoxon test.

James (1967) has made some numerical comparisons of the Pitman efficiency of
Wilcoxon, gamma scores, exponential scores and L tests for small values of a
coming out in favor of the exponential scores test.

Tamura (1963) proposed a class of tests based on the statistic Ar =
_E1 erj, where v > 0, and Zj =1 or 0 if the jth ordered observation in the
%goled sample of size N is a seeded or a non-seeded observation. A similar

class of two-sample nonparametric tests is considered by Mielke (1972, 1974)

to treat the same problem but with the cross-over design.



Multivariate nonparametric and permutation procedures are useful when
a number of measured responses are obtained from each experimental unit.
Mielke, Berry and Johnson (1976) have considered multi-response permutation
procedures, special cases of which have been earlier suggested by Mantel and
Valand (1970). For some further discussion of these procedures, see Mielke
(1979).

Weather modification experiments are carried out in a natural environment
subject to much variability. Covariates are used in analysis in order to
reduce the experimental error. Bradley, Srivastava and Lanzdorf (1979) have
discussed covariance analyses effected through the use of multiple regression
methods. They have also reviewed the original results of an experiment conducted
by North American Weather Consultants and discussed a multivariate analysis

without use of covariates or transforms.

4. Statistical Techniques for Other Meteorological Problems.

In this section, we briefly discuss applications of certain statistical
techniques to meteorological problems other than the weather modification.
The examples are chosen to indicate the scope and the nature of applications.

In several situations we need more sophisticated models than those
discussed in Section 2. An important problem in meteorology is the determina-
tion of the characteristics of hourly temperatures. Hansen and Driscoll (1977)
developed a stochastic model for hourly temperatures for Big Spring, Texas.
These temperatures are produced by harmonics representing both diurnal and
annual variations, and a Markov chain expression incorporating adjustments for
several variations such as seasonal variation of the serial correlation

coefficient.



Markov chain models have been used to describe the daily occurrence of
precipitation. Gabriel and Neumann (1962) considered a model for daily rain-
fall occurrence at Tel Aviv. Another model was introduced by Todorovic and
Woolhiser (1975). Recently, Katz (1977) proposed a more general model and
discussed the distribution of the maximum amount of daily precipitation and
the distribution of the total precipitation.

The biplot is a graphical display of a two-dimensional approximation to
a matrix obtained by least squares using the first and second singular value
components of the matrix. It is related to principal component analysis and
multivariate analysis of variance (MANOVA). Its usefulness in the display
and analysis of meteorological data is demonstrated by Gabriel (1972) with
two sets of data. In one of the examples, the biplot is an approximation to
simultaneous tests of different subhypotheses in the one-way Tayout MANOVA.
For mathematical and computational details of the technique, see Gabriel
(1971).

In forecasting the state of atmosphere at grid points, we have the
problem of obtaining vector-valued estimates of meteorological parameters
at a grid point based on multivariate information from several sources. In
other words, our estimator Z, a vector of n components, is given by Z =
Alx] +...t Ame, where the Xi are information vectors (each of n components)
and the Ai are nxn matrices. Here the Xi have some joint distribution. -The
problem is to find the "best" linear combination of the information vectors.
Thiebaux (1974a) has considered the criterion of minimizing the variances of
the components of Z. An example of this situation is given in Thiebaux (1973).
In another paper, Thiebaux (1974b) has discussed a related problem regarding

the estimation of covariances of meteorological parameters using local-time

averages.
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McCutchan and Schroeder (1973) have used stepwise discriminant analysis
of eight meteorological variables to classify the days during their study
period at a southern California location into one of five types.

Many examples of statistical prediction schemes in climatology are
available. The prediction is based on a number of predictor variables.

While the prediction can be made more accurate by bringing in as many relevant
predictor variables as possible, some of them may be highly correlated among
themselves and the contribution of some may be very marginal. The problem

of selecting the best set of predictor variables arise in various situations.
Stringer (1972, pp. 132-133) has cited some examples from literature regarding
prediction of precipitation and visibility. Martin et al (1963) have considered
an example dealing with forecasting of the 24-hour movement and change of central
pressures of North American winter antincyclones. Lund (1971) has discussed a
problem of estimation of precipitation involving almost 4500 potential
predictors.

Several criteria for defining the best set of predictor variables and
various technigues for selecting the best set have been discussed in a nice
expository paper by Hocking (1976). Also, a brief review and evaluation of
significant methods have been given by Thompson (1978). Martin et al (1963)
applied forward type stepwise procedure. Lund (1971) has illustrated a method
of blending stagewise and stepwise procedures.

It should be noted that these techniques for selecting the best set of
predictor variables are not designed to produce a best set with a guaranteed

probability. We will come back to this point in the next section.

5. Ranking and Selection Procedures.

In dealing with weather data, one may want to compare different sites

(weather stations) on the basis of appropriate characteristics of the
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meteorological variables involved. For example, we may want to compare these
Tocations on the basis of mean temperature, or mean nonzero precipitation amount,
or variability of temperature for a fixed duration. One may be interested in
ranking the sites in terms of the values of the characteristic or just in
selecting the site with the largest (smallest) value of the characteristic.
Formally speaking, we have k independent populations (sites) TyseeesTys
where T is characterized by the distribution function F(x;e]) and 0 is an
unknown parameter which represents the "worth" of the population. For example,
F(x;ei) may be the distribution function of the 24-hour nonzero precipitation
amount at the ith site and 0, may be the mean of the distribution. Let
9[1] <28 denote the ordered 6,. To be specific, let us say that s
is "preferable" to m if 6, > ej so that the best population is the one
associated with the largest 8- Ranking and selection problems have been

generally formulated using either the indifference zone approach or the

subset selection approach.

Let us consider the simple problem of selecting the best population.
Under the indifference zone formulation of Bechhofer (1954), we want a
procedure R which will select the best population with a minimum guaranteed
probability P* (1/k < P* < 1) whenever d(e[k], e[k—1]) > 8%, where
6(e[k],e[k_]]) is an appropriate measure of the distance between the popula-
tions associated with Ok and Ork-1]° and the quantities e* and P* are-
specified in advance. In the cases of location and scale parameters, the
natural choices for G(G[k]’e[k-l]) are ory 170 17 and e[k]/e[k_]], respectively.
Consequently, 6* > 0 in the first case and o* > 1 in the second. Suppose we
want a procedure R based on samples of equal sizes. The problem is to

determine the minimum sample size needed to meet the probability requirement.
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In the subset selection approach, our goal is to select a non-empty
subset of the k populations so that the best population is included in the
selected subset with a minimum guaranteed probability P*. Selection of
any subset which includes the best population is called a correct selection
(CS). The general approach is to evaluate the infimum of P(CS|R), the
probability of a correct selection using the procedure R, over the parameter
space 2 = {6: 6 = (61,...,ek)} and obtain the constants involved in defining

R so that
(5.1) inf P(CSIR) > P*,
Q

The condition (5.1) is referred to as the P*-condition or the basic probability
requirement. In order to meet this requirement, one determines the parametric
configuration QO’the Least Favorable Configuration (LFC), for which the infimum in
(5.1) is attained. In general, there may not be a unique LFC. The expected size
of the subset selected is one of the measures generally used as performance
characteristics of a procedure.

For an extensive survey and bibliography of ranking and selection theory
and related topics the reader is referred to the recent book of the authors
(1979). Other books in this area are Bechhofer, Kiefer and Sobel (1968),
and Gibbons, 0lkin and Sobel (1977).

In the rest of this section, we describe briefly subset selection
procedures for normal populations in terms of means, for gamma populations
in terms of the scale parameter, for multivariate normal populations in terms

of multiple correlations coefficients and discuss selection of best predictor

variables.
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5.1 Normal Populations. Let Mys oees M be k independent normal populations

with unknown means Hpo sees Mo respectively, and a common variance 02.

Let
X}, i=1, ..., k, be the sample means based on samples of size n. The best
population is the one associated with the largest Wi When 02 is known,

the procedure R, proposed by Gupta (1956) selects the population s if and

1
only if

(5.2) X, Z_max(Y}, vees X

where d] = d](k, P*) > 0 is the smallest constant such that the condition
(5.1) is satisfied. The LFC is given by T This implies that
d] is given by

o

(5.3) / @k"](x+d]) o(x) dx = P*,

where ¢(x) and ¢(x) are the standard normal cdf and density, respectively.
The values of d] are tabulated for several values of k and P* by Gupta
(1963a)and Gupta, Nagel and Panchapakesan (1973).

2

When ¢~ is not known, the procedure R2 of Gupta (1956) is the same as

R] with ¢ replaced by s, where 52 is the usual pooled estimator of 02 based
on v = k(n-1) degrees of freedom. Here again, the LFC is given by
HY T eee T e The values of the constant d2 (used in the place of d])
are tabulated by Gupta and Sobel (1957) for selected values of k, v, and
P*.

The procedures R.l and R2 can be modified in the case of the population

with the smallest My being defined the best. For procedures involving

unequal sample sizes, see Gupta and Huang (1976), and Gupta and Wong (1976).
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5.2 Gamma Populations. Let s have the associated density

r-1
(5.4) fx, ei) = —5—~—~; exp (- x/ei), x>0, 6> 0
: r(r)ei

0 otherwise.

As we can see, it is assumed that the populations have the same shape
parameter r(> 0). Further, r is assumed to be known. Our interest is
selecting the population associated with the largest (smallest) 0, The
gamma distribution not only serves as a model for certain types of
measurement, but also includes the case where the observations come from
normal populations and the interest is in selecting the population
associated with the smallest variance.

For selecting the population associated with the largest 6> Gupta

(1963b)investigated the procedure R, which selects w, if and only if

(5.5) X; > b max(Xys ««-s X,)

where Xi’ ones Xk are means based on samples of equal size n, and the
constant b (0 < b < 1) is chosen so that the P*-condition is met. Gupta
(1963b) has shown that P(CS{R3) is minimized when 8 = «-- = 8 and that

the constant b is given by

(5.6) £ 6K /by g, (x) dx = P,

0
where Gv(x) is the cdf of a standardized gamma random variable (i.e. with
o = 1) with parameter v/2 where v = 2nr. Thus the constant b depends on

n and r only through v and its values are tabulated by Gupta (1963b) for

selected values of k, P*, and v.
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For selecting the normal population with the smallest variance, an
analogous procedure is given by Gupta and Sobel (1962a) and the appropriate

constant can be obtained from the tables in their companion paper (1962b).

5.3 Multivariate Normal Populations. Let Mys wees T be k independent

p-variate normal population where m, 1s N(Ei’ Zi)' Let 5& = (Xil’ X12’ cees xip)

be a random observation vector from LY i=1, ..., p. The populations are
ranked in terms of the P where P is the multiple correlation coefficient

of Xi] with respect to the set (X12’ cees Xip)‘ We are interested in

selecting a subset containing the population associated with the largest
o5 Let Ri denote the sample multiple correlation coefficient between Xi]

and (X ., X. ). Two cases arise: (i) The case in which X12’ veesy X

i2® ip ip
are fixed, called the conditional case; (ii) The case in which Kigs «ovs X,

are random, called the unconditional case. In either case, Gupta and

Panchapakesan (1969) proposed and studied the rule g which selects ms if

and only if

(5.7) R’;;'zic max  R%

1<d<k

2

where R?Z = Rf/(]-Riz), and 0 < ¢ = c(k, P*, p, n) < 1 is chosen to satisfy

the P*-requirement. In this case, the infimum of PCS is attained when

oy = Py = .. Topp T 0 and the appropriate constant ¢ is given by
(5.8) = Rl (k) (x) dx = P*
) 0 2q,2m 2q,2m i
where q = %-(p—]), m = %—(n-p), Fr s denotes the cdf of an F random variable

with r and s degrees of freedom, and fr s denotes the corresponding density.

b

The values of c are tabulated by Gupta and Panchapakesan (1969) for selected

values of k, m, g, and P*.
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5.4. Selection of Best Set of Predictor Variables. 1In Section 4, we referred

to the techniques that have been commonly used for selecting the best predictor
variables. We pointed out that these procedures are not designed to guarantee
a minimum probability of obtaining the best set. Recently fhis problem has been
investigated by Arvesen and McCabe (1973, 1975), McCabe and Arvesen (1974),

and Gupta and Huang (1977) under the subset selection formulation described
earlier in this section. Investigations along these lines continue to be of

interest in view of their practical importance.

5.5. Other Procedures and Related Problems. There are several parametric

and nonparametric procedures available in the literature to suit many contexts
that commonly arise. There are single-stage, double-stage, and sequential
procedures. There are several modifications of the basic problem. Also impor-
tant are the related problems of estimating the ordered parameters. Many of
these are areas of current research. For an extensive survey and bibliography,

see Gupta and Panchapakesan (1979).
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