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Summary

Let X=(X,, ..., X )t be an observation from a p-variate normal
~ 1 -

T . t . .
distribution with unknown mean 6 = (61, cees 8) and identity co-

variance matrix. We consider a control problem which, in canonical

form, is the problem of estimating 6 under the loss

where &(x) = (6l(x), .;., (Sp(x))t is the estimate of 6 for a given

X . A general theorem is given for establishing inadmissibility of

estimators in this problem. As an application, it is shown that esti-

mators of the form
8x) = (xl®re) ™ o |x ™ x5

where w(|x|) is o(1) as |x| > =, are insdmissible if ¢ > 5 - P .

1
.
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1. Introduction

The control probiem basically deals with a situation in which it
is desired to choose the ievels of certain faétofs in a system so that
the "output" of the sYstem_is at the desired control level. The system
could be an economic system, a production system, or a biological system.
(As an example of the latter, if might be desired>to achieve and main-
tain certain hormonal‘levels or certain chemical concentrations in a
patient. )

Zeman (1980) considers a standard normal model of the control

problem, in which the output, z , occurs as

where 9 is a p-vector of uﬁknown coefficients of the system, € is

a pormally distributed error, and y is a p-vector of nonstochastic
control variablies to be chosen so as to achieve some.desired output z*.‘
Suppose that the loss in achieving output =z is (z—z*)2 » and that an
estimate §(§} = (61(§), cees GP(E))t of 9 is available, from, say,
past data, x , on fhe system. Zaman (1980) (see aléo Basu (197h) fbr

a very general development) then shows.that the problem can be reduced
(with suitable redefinitions of variables) to the folléwing problem.
Suppose X = (Xl’ Xps oees Xp)t is a p-variate normal random variable

with unknown mean 9 = (61, vees Gp)t and identity covariance matrix,

and that it is desired to estimate 8 wunder loss

1(0,8) = (8% 85-1)2 .
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The estimator ¢ is allo%ed to assume any value in RP R buf the
paramétér space is restricted to be O = rP - {0} . Zero is excluded
from the parameter space, because 9 = 9 would correspond to a céntrol
system in which the inputs have no effect; (From a deéision theoretic
viewpéint, it is necessary fo exclude zero, to prevent every estimator .
from being a Bayesvestimator with respect to the.prior distribution
which puts mass onerat zero. ) |

As usﬁa;, an estimator will be evaluated in terms of its risk

function R(6,8) , which is simply the expected loss EG[L(B, S(x))1 .

A decision rule 6 is inadmissible if there exists another decision

~

% %
rule § with R(9,8 ) < R(8,8) with strict inequality for some 6 .

-~

Otherwise, § is admissible.

In this paper, attention will be resfricted to nonrandomized.
spherically symmetric estimators. It wiil be shown iﬁ Section 2 that
thé nonrandomized estimators form é complete élass (i.e., any rando-
mized estimator can be improved upon by some nonrandomizéd estimator),
so the restriction to nonrandomiged estimators is without loss of
generality. The restriction to spherically symmetric estimatprs is
gquite natural for this problem. Results for nonéymmetric estimators
appear to be very difficult to obtain. Note that, since the problem
is invariant under.the orthogonal group (which is compact), admissi-
bility within thelélass of invariant (i.e., spherically symmetric)
estimators implies overall admissibility.

It will prove convenient to write a spherically symmetric esti--

mator & as



(1.1) N s = ollx) x| ™%,

Wheré licl2 = Z§=l xi ."For rules of this form, we develop, in Section
2, a very useful representation for the Bayes risk of an estimator.

Using this representation, and the technigue fof proving inadmissibility '
developed in Berger (1979), We-derivevin Section 3 conditions under
which an estimator bf the form (1.1) is inadmissible. TFor example,.

it is shown that an estimator of the form
' \ L ' 2 -1 =L
(1.2) . 8(x) = ({x|%e)™x + x| w(]x])x ,

where W(lf})=—o(l) (as |§| > ®), is inadmissiblé.if ‘c >5~-p.

his class of estimators contains virtuzlly all estimafors that have
been proposed for the control problem. Previous inadmissibility results
have dealt only with the case .w(lfl) = 0 , and have established in-
admissibility only for ¢ > 0 and p > 6 (Kei Takeuchi) and for c=1
and p = 5- (Stein and Zaman (1980)). It is also shown that for a
generalized prior of the form w(d8) = [Bl(c_l)de , the generalized
Bayes rule is §f the forﬁ.(l.2). (This was.shown for e=1, i.e.,
the uniform prior, in Zellner (1971).) . This suggests that generalized

o} 2

priors with tails flattér than have inadmissible generalized

Bayes rules.

2. Preliminaries.-

We first estabiish, as promised, that the nonrandomized estimators

form a completé class.
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Theorem 1. If & (x,-) is a randomized estimator (i.e., & (x,A)
"~ is the probability of choosing an estimate in Ac g = Rp), then the

estimator

. _ .
S8(x) = J a § (x,da)
63

* . n .
- dominates 6_ in terms of risk, unless § is degenerate (i.e.,
equivalent to a nonrandomized estimator).

Proof: It is easy to check that the loss function, L(0,a) , is
convex in & , so that, by Jensen's inequality,

(2.1) R0, 87 = [ Ble,a) 6" (xse) 2 18, 8(x))

s

r(g,5") = 25 (e, 6°(x,-) > B 1(6, 8(x)) = R(o, s(x) .

~ ~

For a given 6 , equality. holds above only if, for a set of x which
, . .
has probasbility one, & (x,*) gives probability one to a hyperplane

of the form
(2.2) H(x) = {a : 8% a = e(x)} .

(Jensen's inequality gives strict inequality in (2.1) unless, with

probability one, L(6,a) is a linear function of a . This can occur



. ' .
, and hence H(x) ,

only if 6% a is a constant.) Of course, .§
cannot depend upon 6 . Choosing 6 along each coordinate axis in
turn allows one to conclude, from (2.2), that = H(x) must be a point

. : . ‘ *
for x in a set of probability one. This means that & (x,-) is

degenerate with probability one, completing the proof.”
In Zaman (1980) it is shown that, if an estimator of the form (1.1)

is admissible, then, for some probability measure | on T = [0,2) ,

J Y1 sinh(yv) nlay) -
0

(2.3) . o) =

)

0 ) E)
f cosh(yv) u(ay)
. o
where [y-l sink(yv)] is defined to be v when Y = 0 . Since
[y sinh(y)] < cosh(y) , lim cosh(yv) =1 , and l:i.m[Y”1 sinh(yv)l/v = 1,

0 | 0
it is easy to see from (2.3) that, if & is admissible, then

(2.1) 0 < ¢(v)/v <1 and lim[¢(v)/v] =1 .
. _ >0 . :

Let © be the class of spherically symmetric O-finite measures
R -
on €. (Thus if "m€0 ,Ac©O©,and 6 isa p X p orthogonal

matrix, then 7(A) = m(GA).) Define

When 7 1is a probability measure (or more generally a finite measure)
this is called the Bayes risk of & . A very useful formula for the

Bayes risk of a spherically symmetric estimator is given in the



following theorem. For use in this theorem, define the measure 7 on

(0,») by

25  w&w =] s ept- Lol? ),
' A Rp—l .

vhere Sp is the surface area of the unit p-sphere. (Thus # is the

marginal distribution of the first component of the measure:

5,(2m™%/2 expl- 118]%) m(a0).)

% ' :
Theorem 2. Suppose 7 € © is a finite measure, and & is an

estimator of the form (1.1) with ¢(r) being continuous and piecewise

differentiable on [O;w) and satisfying

(1) o < o(r)/r < KO.< © s and

(i1) 1im,{r(P"l) o(r)°1 = 0 .

>0
Then
(2.6) r(1,8) = 1(0) + 2 j j g(r) v simn(yr)ar #(ay) ,
8 oo
where

(2.1) g(r) = 2P apt- 223} 4r) [-2 + {r= (p-1)r™F o(r) -2 41 (2)]

Proof: Clearly



~—

(2.8) x(m,8)

(8% 8(x)-1)2(2m) /2 exp{= L]x-0/2}ax n(ae)

-

@l
O R

(oClx)) |x]™ 6° x-1)2(2m /2 expi- L|x-0|2In(a0)ax .

X

‘Defining y = @71 x and n = @71 08, where é is a p X p orthogonal

-~

matrix, the spherical symmetry of T 1implies that

T(x)

~

f(¢(|§1)l§|_l Qt 5—1)2(2W)_P/2 exp{-~ %1§—§l2} w(ag)

= f(¢(lzi)[z{_l Qt~y4l)2(2ﬂ)_P/2 exp{- %1X-g|2} m(an) = T(y) .

Since this is:true for all orthogonal & , it is clear that T(x) is

itself spherically symmetric. Hence
. t
2(x) = ((|x], 0, ..., 0,
which, when used in (2.8), gives that

(2.9) =(m) = [ 2z, 0, ..., 0P
| -

= I f (o x| ) x|~ 91|§|—l)2(EW)"p/2 exp{- %1§|2}

X exp{lg!el} exp{- %JQIE} ﬂ(dg)d§

= J_J(¢(r)91—l)2 r(p—l) SP(QW)—p/Q exp{- %—rg} exp{rel}
006

x exp{- %19[2} m(ddlar ,



the last step following from the change of variables r = |x| . Using

(2.5) in this last expression, it can be concluded that

(2.10) r(ﬂ,§) =_[Jnf0 r(p_l){cb(r)él—l}2 exp{- %r2} exﬁ{r él}dr ﬁ(dél) .

We now need the following lemma.

Lemma 1. Suppose h(r) is a continuous_and plecewise differentiable

function on (0,*) , which satisfies, for all 91 € Rl 5
,-co

(1) J [h(r)l-exp{r 6,}ar < = ;

lim k{r) = 0 ; and
0 '

’—h
[l
~—

(iii) lim‘fh(r)_exp{r 61}] =0 .
>0

Then

(2.11) ' J h{r) Gl expl{r Bl}dr = —I h'(r} exp{r el}dr R
0- 2 0 :

where h' denotes the first derivative of h .

The proof of this lemma is a simple integration by parts, and will
be omitted. Setting
Vo (p-1 2 2
h(r) = r(P ) ¢(r)° exp{- %—r 1,
it is easy to check that the conditions of Theorem 2 imply that h(r)

satisfies the conditions of Lemma 1. Hence, letting o' (r) = é%-¢(r) .

(2.11) implies that



f: r_(P—l) #(r)? expl- £ r*}o, explr 0 }ar
=f:r(P-1) 8(r) expl- % =%} [-(p—i)r*l ¢(f)_2¢'(r)+'r¢(r)] explr 0, Jar .
Expanding {¢(r')el-1}2 in (2.10), and ﬁ;ing the above result;.shows-that.
(2.12) r(m,8) = Ji;‘J:.r(P-l) éxp{;-% P H1 -2 61v¢(r) * 8 3(x)
% =D a) - 200 (1) +10(x)1} exple 0, Yar (a él) .

Now, if ¢(r)

0 ,-theﬁ clearly
r(m8) = [ (1) w(a0) = m(o) .
| | |

0 in (2.12), this gives that

in

Setting ¢(r)

j j r(p~l) exp{- %-rz} exp{r el}dr #(a Gl) = w(0) .
-0 40 .

Using this and (2.7) in (2.12) shows that

O

(2.13) ' r(w,§) = n(e) + J

-0

jo 0, &(r) explr 0,}ar F(a 0)) .

Now, since zero was excluded from the parameter space and 7 is symme-
tric, T cannot give positive mass to Bl =0 . Also, W is symmetric,

so that (2.13) can be written



0 e

r(ﬂ,§):=w(@)r+J;w J061 g(r):exp{rel}dr ﬁ(del)4-Io Ioel g(r) exp{rﬁl}dr ﬁ(d&l)
o ' o .
= n(0) + [ [ g()ly explryd - ¥ explrviar #ay)
4070

mm+2j0[gu>YﬂmWﬂaﬁmw,
, o s six |

completing the proof. |

3. - Inadmissibility.

To prove. that an estimator §0 is inédmissible, we will maké use
of the.technique developed in Berger (1979). (The heuristic basis of
this technique was given in Brown (1979). Brown (1980) is also closely
related.) The technique is basically to find an estimator §* which has
smaller risk than §O_ for large |9| » and then to argue that this leads
to a violation of Stein's necessary condition for admissibility (Stein
(1955)) |

For use in the analysis; define,'for‘any estimator . § which satis-

fies the conditions of Theorem 2, the function, on T = [O,ﬁ) .

R*(y,a) =2 I g(r) y sinh(yr)dr ,
~ 0

: ‘ %
where g(r) is defined in (2.7). Furthermore, if 8% ana § both

satisfy the conditions of Theorem 2, define

(3.1) Aly)

R (v,8%) - R (y,6")

2 f r(p_l) exp{- %-rg}-A*(r) Y sinh(yr)dr ,
0 .

10



where
(3.2)  A%(x) = -2[¢%(x) = ¢"(2)] + [r - (p-1)r™1116%()% - ¢" (x)?]
209 (r) ¢ () - 2 6%(x) %" ()]

Note that, for any finite measure 7 € © for which either r(ﬂ,&o)

~

* : , .
or r(w,8§ ) is finite, it follows from Theorem 2 that

(3.3) -r(_ﬂ,§o) - r(ﬂ,§*)

f Aly) #(ay)

11

0 o0 7 : ’
— * ~
2 J J 2P opi- 242} 4%(e) v simn(yrar #lay) .
070 ,
Theorem 3. Suppose that s is of the form (1.1), with ¢°(r)
*
being continuous and piecewise differentiable, and that & is another

*

estimator of the form (1.1) with ¢ satisfying
. .
(1) ¢ (r) 4is continuous and piecewise differentiable;

. * -
(ii) there exists a constant K, > 0 such that ¢ (r) = d)o(r)

for riKl;

(iii) 0 < cb*(r)/r L Ky<® forall r¢ (0,°) ;

(iv) +there exist € >0, o > 0, and 0 < K, < ® such that

* - '
A(r) >er® for r>K, ; and

(v) J r(P_l) exp{—- 12'- r2} A*(‘r) exp{P(r)}dr > 0 ,
K ,
1

where

11



r .
¥(r) = j Oyt
Kl/2 :

Then §q is inadmissible.

Eggg;ﬁ The proof will be by cohtradiétion. Thus assume that §0
is admissible, and is hence of the form (2.3),_with ¢O satisfying (2.4).
Tt is then clear that the conditions of Theorem 2‘are satisfied by §0 -
Furthermore, conditions (i), (ii), and (iii) of this theorem show that
§*  satisfies the conditions of Theorem 2.

Now let® :ﬂ be the class of all sphérically symmetric-estimators
such that 0 < ¢(|x|)/|x| <1 . From Zaman (1980), it follows that g
is a complete class of estimators (i.e., any esfimator not in this class
is dominated, in terms of risk, by an estimator in this class). The
problem has now been put in the framework of Berger (1979), and so, to
prove inadmissibility of § . 1t is only necessary to verlfy that the
conditions of the theorem in Berger (1979) are satisfied. These condi-
tions are that there exists a‘sequence -{ﬂn} of finite measures in G*,
with éorresponding Bayes rules §n such that r(nn,én) <« , and a

nonnegative function h(y) , which is strictly positive on the interior

of T , such that

(2) ﬁn(C)_z 1 (n-= 1, 2, ... ), for some compact set C in the

interior of T ;

(6) im f [R(6,67) - R(6,8™)1 7 _(a9) =

n>e

(c) the measures un(dY)'= h(y) ﬁn(dY)/f h{y) ﬁn(dy) converge
I

weakly to a probability measure Y on T ; and

(d) the function g(y) = [h(y)1™* A(y) (see (3.1)) is continuous on

2

I' and is positive outside some compact set Bc T

12



The theorem in Berger (1979) states that, if these conditions hold, then
(3.%) , . J gly) ulay) <o .
- . o ,

The existence of finite measures Wﬁ € 6* ﬁhich_satisfy cqndifions
(a) and (b) follows from Stein's necessary condition for admissibility
(Stein (1955)). The verification that this necessary condition applies,
and that the T can be chosen to be in @* . is given in the Appendix.
(That the T, have finite Bayes risks is obvious for this problem.)

Zaman (1980) shows that if h(y) = Y2 , then the measures

v ﬁn(dv)
p (dy) = :

los]

2 -~
o 7, (ay)

are probability measures on [' , and that a subsequence of these méasures
convérges weakly to a probability measure Y on T . Since this sub- -
sequence still satisfies conditions (a) and (b), we can assume that (a),
(), ;nd (c) all hoid.

Verification of condition (d).

- It is clear from (3.1) that .A(Y) , and hence g{y) = Y—2

Aly)
is continuous on (0,®) . Also, the function Y—l sinh(yr) is, for all
r > 0 , monotonically increasing in vy . (This can be checked by differ—

entiating with respect to Y , and using the inequality 7y cosh(y) > sinh(y),

for y > 0). Hence, defining

f(r) = 2r(p_l) exp{— %‘rgi A*(r)

-13



and
B =’f f(r)r ar
0 )

‘ %
(which is easily seen to be finite for 60 and ¢ satisfying the
conditions of Theorem 2), it follows, from (3.1), the monotone conver— -

gence theorem, and the fact that sinh(y) >y for y >0, that

lim |Y—2 Aly) - B8] < 1im I l£(e) | (vt sinh(Yr) - r)dr
y>0 Y0

{ee]
=J | £(r)| 1im (vt sinh(yr) - r)ar =0 .
0 " y0 ‘
Hence g(Yy) 1is continuous at Y = 0 if we define g(0) = B .
The remaining part of condition (4) is verified in the following

lemma,.

Lemma 2. There exists a Ky < © such that gly) >0 for vy > Ky -

(Thus g(y) 1is positive outside the compact set B = [O,K3).)

Proof: From (3.1), it clearly suffices to prove that, for vy > K

3’
(3.5) I EJ PPl expl- 5T } A (r) v sinh(yr)dar > 0 .
, 0 _
Note first that, from condition (iv) of the theorem,
" (1) 1.2 ¥ ® (p-l-a) -
I. = p\PL expl- L% A (r)ysinh(yr)ar >e| r P % axp{- 1.4

2 2

x Y sinh(yr)dr .

1k



Hence, for large enough Y , say Yy > Ky, ;

(3.6) 1, >% j (220 o 122 v explyrlar
| :, |
=Sy e P [ 2P ant LepPar
K

2

€ 1.2 -1-0 € 1.2 -0
> £y iz v Y < £ il Py

the last inequality following from a standard Taylors series argument.

- An integration by parts, as in the proof of Theorem 2, shows that

(3.7) I, = J r(Pfl) exp{~ %-r2} A*(r) Y sinh{yr)dr
0 .

AV - )71 et 31y sty 1y

2 | "0, 2
+ [ 2P epte 228 100902 - 6" (121 12 cosnlyrlar
; o

K . : .
2 . .

- I 2{¢O(r) - ¢*(r)]r(P—l) exp{- %-rz} Y sinh(yr)dr .
O .

Applying condition (iii) of the theorem, and recalling that

0< 0%(x) /r <1, it follows that

2 (p+1) 1.2 : .
|12| < (K, +-1)K2P exp{- 5 K} ¥ exp{K, v}

K

2
+ (Kg + 1) J r(p+l) expl- %-re} Yg exp{yr}dr
' 0
K2 1 2 ‘
+ (KO + 1) J P exp{- 3T } v exp{yr}ar
0

15



< (kg + 2)(k, + P exptd y""}y[exp{- L(x,1)%

K

2 1 2.
*(y+1) | expl- H(z-y)Yar| .
‘ 0
Since, for vy > K2 s
K, | |
J exp{- %(r—Y)z}dr < K, exp{- %(KE—Y)Z} ,

it can be concluded that, for vy > Ké s

(3.8)  |1,] < (5 +2) (5, + )72 exptF v°} y(y+1) expl- 3 (k,-1)%) .

Choosing ,K3(> max{Kg,Kh}) so that,

expl- 506, -15)%) < £y POV ()2 1 2) L, 4 1) (072)

it follows from (3.5), (3.6), and (3.8) that, for y > K3 »

‘ 1.2 -0, '
I= Il + 12»2'%-exp{§.Y } Y(P ) >0,

completing the proof of the lemma. ||

We have thus verified all the conditions of the theorem in Berger
(1979), and so can conclude that (3.l4) must be satisfied. Note, however, -

from (3.1), that

16



[ g(y) ulay) j v2 Aly) ulay)
T 0

> [ J_ rP ) el L v2) 4%(e) ¥ simlyr)ar au(y) .
0Jo 2

%
Since ¢ (r) = ¢O(r) for r < Kl (condition (ii) of the theorem), it -

is clear from (3.2) that

fr'gﬁy> u(ay) = 2 j J rP) el 222 2"(x) ¥7L simn(yr)ar auly)
0 ‘ : '

K

. .
Because A (r) is positive for r > K, , orders of integration can be

interchanged above to give

r(p—l) exp{- %-rz} A*(r) J y—l sinh(yr)dp(y)ar .

g(y) ulay) =2 f
0

&

(3.9) fr

'Since we are assuming that 60 is admissible, ¢O must satisfy (2.3),

which can be rewritten
R 00 -1
¢O(V) = {é% log [ v~ sinh(yv)a UOYﬂ
O .
Hence, for r > Kl/2 .
r o .
¥(r) = 3j. [6%(v) 1 av = 1og[] v~ simn(yr)a u(Y?] -0,

0
Kl/2

where

o= J Y“l sinh(Ki y/2)d uly) .
0 _

17



Tt follows that
?J v'! sinh(yr)d u(y) = explu(x) + o}
0 . - _ .
which, when used in (3.9), gives

'fr s ula) =2 [ 20V i 122 40 eptpieer .
<] !
1

By condition {v) of the theorem, this is positive, contradicting (3.h4).
‘The conclusion is that 60 cannot be admissible, completing the proof

of the theorem. ||

4. Applications.

As mentioned in the Introduction, virtually all estimators stﬁdied
have been of the form (1.2). We can obtain the following inadmissibility

result for estimators of this form.

Theorem 4. Assume that 60 is of the form (1.1) with

(1) () = E )
: r2-Fc r3

where w(r) = o(1l) (as r = ®). Then 8% is inadmissible if ¢ > 5 - p .

¢ - (5-p) and B = —82/8‘.

Proof: TFor convenience, define ¢

Assume that ¢ > 5 - p , so that € > 0 . Define, for K, >0 (K to

be chosen later),

18



7

¢O(r) if r <K
r _w(r)( _. € ., 8B ) i > 2K :
r2+5—P 3 rPre’ r2(r2+c) ’ _r__ o ‘,
(78 e+ (- ey e

Assuming O_§.¢o(r)/r;§ 1 (which if not satisfied makes G&° trivially

~

inadmissible), it is easy to see that conditions (i), (i1), and (iii) of

Theorem 3 are satisfied. (Note, from (2.3), that w(r) must be con-

tinuously differemtiable if ¢ is to be admissible.)

'Clearly,

and

Thus, for r > 2K

2

0’ 1 2r w'(r) | 3 w(xr)
¢ (r) = - ~ +
r2+c (r2+c)2 r3 rh
( ¢O'(r) if r<K

éi—[¢*(2Kl) - ¢O(Kh)] if K <r <‘2Kl

< 1 _ or® _w'(r)

ge—
rP45p  (rP45p)° o3 r’rc  r2(rPic)

;1;-'8(5r2+3c) . B(7r°+5¢c)
L7 4, 2.2
T ‘v (rS+e)

+ wir)

) if r > 2K
.

r6(r2+c)2, 1

l b

3



A () =-200°()=9" (1) 1 Lr=(p-1)5 11162 (r) 20" ()2 14200 " (29" (1)-0%(2)6°" ()]

v=—2‘<'r-——».r. +w(r){—vg B )
{r2+c _ r2+5_p r3 \r2+c- r2(r2+c) .

+[I‘f(P¥l)r—l] ; - == +ﬁr){'€- + g )}

rT+e r2+5-p r3 \r2+c : rg(r2+c)

y r . T ;_w(r)fe__ e, B )
| {r2+c 1_'2+5—p ’_173 \ r2+c - r2(r2+c) |

. : , o
r w{r) £ 8 - 1 2r
*2[2 - 3(1‘2 Y53 )][2 P IRER
r 4+5-p 1 rY+e  r7(rT+e)/)r+5-p  (r“+5-p)°.

_[ r W(I‘)][ 1 ‘2;_'2. - w'(r) + 3W(f)] )
r2+c r3 ] r2+c (I‘2+C)2 r3 ru :

Ignoring terms which are o(r-s) (recall w = o(1)), this becomes

. . 3
(h.2) A%(r) = ——EE )5y (p . RLyl2r” ¢ (S-pro)rll  8e
' ’ (r%+c) (r%+5-p) { R (rZ+e) (r2+5-p) 20

+2W'(I‘)_l ir e . r (8_. 8 )

o (I'2+C)(r2+5—P) (r2+5¥§) rl+e r?(rfrc)

v _ , .
L ¥(r) [( _ & ,__ B ) _ ] + o(r™?)
> » r+e r2(r2+c) | o

r : 2 (722
S R B )+w(r)(i— elor7+3c) , B(Tr +5c)
\ ) rl_L rh (r2+c)? r® (rPee)?

2(p-1)

- -I € -2 .4 D M-{, 2(]__—(:—-)(1_5—‘.9)—
(r2+c)(r2+5—9){ TeT I'2 r? r2
8 ,2w'(x)) B . -5\ . , -5
_;-5-+—;—3———-{_ r5+ of{r )}+O(I‘ )
D . 2
= % + ¥ ér) (%— + o(l)) rolr?) .
r r .
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Solving for w in (L.1) gives

w(r) = - r3 ¢0(r) .
r +e
so that
- - s :
(%.3) W (r) = ”ér -2 32 %) - 3 %)
, r“+c¢  (r+e) '
Defining -

hh)=J v* simn(ye)a uly) ,
0 .

it follows from (2.3) that, if ¢O is admissible, then ¢O(r)==h(r)/h'(r) .

This implies that
(4.3) 6% (r) = 1 - n(e) w"(=)/n' ()12 .

Observing that h and h" are positive, it follows from (4.3) and (k.%)

that
w'(r) > —3r2 ¢O(r) -3 .
From (4.1), it is clear that if K, is chosen large enough, then

¢O(r)_§ 2/r for r > 2K, . Thus

w'(r) > -6r - r

for r > 2K, . From this and (k.2), it can be concluded that, for large

enough K. and r > 2K

1 1°
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2

: 2 ' 2
(k.5) A*(I‘) > %" - & /4 + o(r—s) > £
; . r

r5 o 2r
Thus condition (iv) of Theorem 3 is satisfied.

To verify condition (v) of Theorem 3, note that for large enough Ky

and r > Kl/2 .

°(x)7t = ( . w(r))fl crr s n(r)

>

where }h(r)]_ﬁ €/2 . Hence, for r > K1/2

r 2

¢0(r)—l 2.1_ + C - €£2
so that

r 2
K .
b = J ¢ ey 2 %(lﬁ B Tl) + (e - 3) log (Kr/e) o
K. /2 - 1

q
-

.

It follows that, for =r Z_Ki/2 .

r2}rc—€/2

exp{yY(r)} > K, exp{%' s
where the constant K2 depends on Kl and is positive. Together

with (4.5), this implies that

2Kl | _ | | 2Kl

f I‘(P—.l) exp{- %_ I‘2} A*(I‘) ex_p{l,b(r)}‘dr > 22'- K2 32 J r(P—l—5+C—?/2)dr

22



It is easy to check that
2Kl | ' ‘ -
- * .
J r(p_l) exp{--% ) A (r) exp{y(r)}dr

Ky

is finite, so that condition (v) of the theorem is clearly satisfied.

Hence §0 is inadmissiblg.”

The above theorem: suggests that the dividing line between admissi-
bility and inadmissibility for an estimator, in terms of the large r

behavior of ¢(r) , is‘
(5.6) | | o(r) = r/(x° + 5-p) .

An estimator with,a,flatter ¢ should be inadmissible, whiie an esfimator
with a sharpef ¢ (and which satisfies (2.3)) should be'édmissible.
(It is shown in Stein and Zaman (1980), for example, that o(r) = r/(r2+l)
corresponds to an admissible estimator.when p = h4.) It is interesting
thet an estimator which behaves as in (4.6) for large r is "asymptoti-
cally efficient”, as discussed in Zaman (1977).

A natural class of (generaligzed) prior'distributions, for the con-
~trol problem, is the class of priors of the.form ﬂ(dg) = ngc_ldg .
This includes the uniform prior (c = 1) , which has been extensively
studied by Zellner (1971) and others. For c # 1 , the generalized
Bayes rule is hard to explicitly calculate for this prior. The follow;.
ing theorem'sﬁows that the generalized Bayes rule for this prior is of

the form (L.1).
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Theorem 5. Consider the (generalized) prior density: m(ab) = |e|°'1de
where ¢ > 1 - p (so that the generaiized Bayes rule 6ﬂ » with respect
to T , exists). Then §ﬂr is of the form (8.1), and, hence, is inad-

missible if ¢ > 5 - p .

Proof: In Zaman (1980), it is shown that

8=} = ¢"(Jx x| ™ x

where
' 2

' : ’ E'(|x|<)
(.7) D = Jxlfl v 2 —= 1x)?)

| ” F'(]x]%)
where
(:.8)  F(|x|?) =[ exp(6, |x]} F(ao,)

- . .

(20 P2 exoix|®) [ expl- Lx-s]2han)
& |

(See (2.5) for the definition of # .) Clearly,

1/2

Fr{v) -é% J exp{6l v

Yi(asy)
-1/2 .

_1 | 1/2,. -
=57V I 6, exp{el v }'n(del) ,

and

2k



F'(v) = - 132 f 0, explo, v'/2)i(as)) + % v J 62 exple, v/?}i(as,) .

Hence

J Gi égp{ﬁl vl/?} ﬁ(dgi)

(h.9) L ST Tk J 173

Bllexp{el v ﬁ(del)

As in (L4.8),

H
I

T S;; (2n)p/2 J el,eXp{ellfl} ﬁ(del) '

% ¢ip%j'i§'lg} fel'e@{- %(el- |§|)2} exp{- %Ig*l?}lglc'l a ,
e .

. * ) ‘ . ) "
where 0 = (82,-..., Gp)JC - Making the change of variables y==(91—|x|),

-and then replacing the dummy variable -y by 61 ,» results in the ex-

pression
(h10) I, = ey.p-{%i;fl"‘}j (03+1x]) exol- 210123 ([0] 228, |x|+|x|%)(®1)/2q0 |
By a standard Chebyshev argument, it can be shown that, as |x| > o

(n11) 1= [ (opelx]) el Ho1?Hlal%e20, fxl+[x|?) ()2 ag
Jo]>|x|*/* o

= o([;flc_-g) .

1/4

For |e|_§ |§] » it is clear that, as [EI > o

>
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. 2 2
a/2 1 16‘ “/
(h.12) (16]%+20, x| + [x])*2 = |x|H1 + —L & -
| IRt
ad Ol.lel } 20
= x|+ — + ——+ 2&)E-1) ek o(|§|~2)
x| 2|x] : |x|
ae '
= |x|% r — ¢ 2 [|e|2 (a-2)0°1 + of|x|™2)}
|| e|x|2 - * -

the -o(|§|_2) term being uniform in |8 < lelﬂL . Hence

-
w -

1
rm————

(91+'|§|-). exp{- %'9[2}(l§l2+2ell§l+licl2)(c_;l)/2 dg
Hel<lxM .

, v : ) (c-1)0
=l (8, + |x|) exp{- %IQIZ} 1+ .

1/h x|

"
L3

~

l8]<]xl

(c—l)

2]x|?

[|6| -f(c—3)6 dg + o(|§lc-2)

A second Chebyshev argument allows one tdlreplace the region of inte-
gration in the last integral above by © . Calculating the indicated
moments (involving 6, and la]) of a normal distribution, it follows

that

—=——[p + (e-3)] + ===~ le=d)
2|x X

(4.13) T

3 l}flc_l (QTT)P/2 I].El (C l) + o(l}flc—z

1x]® (2m)P/2 {1 + (T_T) (pre-1)p + o(]x]*” ~2)
- 2%

It can be concluded from (L4.10), (4.11), and (L4.13) that
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I, = (2m)®/2 |x|° exp{ 31l }{l+ (T :IL) (p+e-1) + o(|x] 2}
- N 2lx _

A similar argument, uéing (4.12) and Chebyshev arguments, shows that

s;l (21T)P/2j exp{e |x |} #(a8,)

I

expl2] x|} [ (0, + |x1)* expt- S{1%3(]6]%+ 20, [x] + |x|?)(e=1) /240
Bt . |

exp{%izclg}l{clc‘l{f exp{- 51017165 + 20, [x] + |x|?)
r o !
§ 11 . c Lcr:l) [lel + (c_3)ei]}dg + o(l)]

'-1?35] 2|x|?

= (om)P/2 acp{%[§|2}|§|c+l {1+ ]gl_2 (c-l)(p+c+l) + 1] + o(| 172}

f Siiexp{ellgl}.ﬁ(del)

1
- 7
I 9, explo, ||} #(a0;)

|21+ x| PLER (pre + 1) + 11 + of]x|™2))

(e PR o+ o - 11+ o]x| ™))

= Jxl€1+ x| 2re  prern) 41 (1) (pec-1)]40( x| 203

= Jxl12 + Jx[2(e) + ol|x]D)1
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Together with (4.7) and (4.9) this gives

¢ﬂ(l§l) —2 1

x| /(1 + 20~ $lx| ™2+ S x| x| 11+ x| B + o<|xr2>mx|2

l§|/(|§|2 + ¢ + o(1))

__ = e

x|% e x|

2

which is the desired result.”

It appears,thaﬁ the‘dividing>line between admissibility and inad-
missibility, in ‘terms of the tail of the (generalized) prior, is Iglh_p .
A flatter-tailed prior should be inadmissible, and a sharper tailed pfior
shoqu be admissible. The generalized Bayes estimator with respect to .
the generallzed,prlor ﬂ(de) = |e| h‘P)de , thus, seems like itvmight be
reasonable for the control problem, This estimator is discﬁssed in Zaman

(1977).
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