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Summary

A technique is presented for proving that a decision rule is in-
admissible. - The technique is baséd on finding a better decision rule
for large values of the parameter, and is hénce similar to that dis-
cussed in Brown (1980). (See also Brown (1979).) The method can be
useful when the parameter space is not closed, a situation in which

it can be difficult to apply Brown (1980).
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1. Introduction

We adopt the usual decision theoretic framework in which a random
variable X € X , with assoclated probability measure Fe s 1s observed.
It is desired to make some decision concerning the unknown parameterl
0 € 0. Letting (G denote the available set of actions, the loss
incurred in taking action a € G when 8 is the true value of the
parameter will be denoted L(6,a) . (This and all other functions we
consider will be assumed to be approﬁriately measurablé.) For sim-
plicity; we éssume that L(e,a).z_-K > == ., A nonrandomized decision
rule, 5(Xj . is a fﬁnction from Y into G , with &8(x) being the
action taken when x 1s observed. Let 8 be a set of nonrandomized
decision ruies under consideration. (The theory defeioped below applieé
also to randomized decision rules, but, since the only applications we
know of are td_situations in which the nonrandomized decision rules
form a complete class, we will, for simplicity, restrict attention to
nonrandomized decision rules.) The risk function of a decision rule
§ is the expected loss, to be denoted R(8,8) = Ee[L(G, §(x))] . A

decision rule § is said to be inadmissible (with respect to 8) if

there exists a decision rule 6* such that R(G,S*) E_R(G,G)b for
all © , with strict inequality for some 6 . Otherwise, 6 is said
to be a2dmissible (with respect to ). A decision rule &" is said
to be Bayes with respect to a finite measure w on O if it mini-
mizés the Bayes risk r(m,8) = E'[R(0,68)] among all decision rules
in Q9. The finite measure T will be called a prior distribution,
and assume that attention is to be restricted to a class O* of

prior distributions.



The standard method of showing that a decision ritle is inadmissible
is simply to construct a better decision rule. This is often difficult,
however, and so Brown (1979) developed a heuristic method with which
one can verify whether or not a decision rule is heuristicallyuinad—
missible. - A technique_for implementing the heuristics is given in
Brown-(l980)'(see>also Brotne (1979));>and requires only the construc-
tion of a better decision rule for "large 6".

A technique similar to that in Brown (1980) can be derived from
anoﬁher viewpoint, namely as a consequence of Stein's necessary and |
sufficient condition for admissibility (Stein.(l955)). This technique
also.allows one to conclude that a decision rule is inadmissible by
finding a better decision rule for "large 8". The advantage‘of this
alterﬁate technique is that it can sometimes deal with parameter
spaces that are not closed, a situation which causes difficulties in -
the use of Brown (1980). On the other hand, the auxiliary conditions

rin Brown (1980) tend to be much easier to deal with than ﬁhose needed
here. Further discussion of this difference will be given after the

presentation of the technique.

2. Proving Inadmissibility

In some decision problems it is possible to represent the Baves
Y

%
risk of certain decision rules, with respect to any prior T € © , by

r(m,8) = [ R(6,8) m(ag) = I R*(Y,G) ﬁ(dj{) + K(Tr) s
0 r

vhere K(m) is a constant (independent of §), Yy corresponds to



some transformation of © , ' contains the image of © wunder this
fransformatién, and T is related to ﬁhe meésure induced on I by
T . There are two reasons for intréducing such a reformulation.
First, the Y ‘formulation maylbe much easier to work with, such as
in Berger and Zaman:(l980), where 0O is p-dimensional wﬁile T is
one-dimensional. Second, it can be possible to work with a closed
'space I' when the original © 1is open. This can'gréatly simplify
the analysis. For many problems, of course, no such reduction is
needed (or possible). If-is probably easiest to interpret the basic.
result which follows by ignoring the reduction and thinking in terms
of the original 6 problem (i.e., identify“Y with 8 , T with

™, etc.).

Theoreﬁ. Let 60 €9 be aﬁ admissible decision rule for which
(2.1) holds. . Assume that there exists a sequence {ﬂn} of finite
measures in @* s with correspénding Bayes rﬁles 8%  such that
r(wn, §") < = , and a nonnegative function h(y) , which is strictly
positive on the interior of I , such that

(i) %n(C) >1 (n=1,2, ...), for some compact set C in

the interior of T

(ii) 1lim [ [R(e,ao) - r(8,8M)] ﬂn(de) = 0.;
n—>00
X

(i1i) the measures

w (ay) = h(y) ﬁn(dv)/f h(y) ﬁn(dv)‘
I" .

are probabllity measures and converge weakly to a probability measure

g on T .



. » _
Let § Dbe a decision rule such that (2.1) holds and the function
- * * ¥
g(y) = (T [’ (v,6%) = R (v,8)]

is continuous on I and is positive outside some compact set Bc T .

Then it must be true that

(2.2) ' f g(y) nu(ay) <o .
T
Proof. Assume the contrary, namely that
(2.3) , ' J g{y) u(ay) >o.
' T
Since ™ is a finite measure and RrR(8,6) z_;K', it is elear that

r(m,8) = E'[R(0,8)] exists for all & € 8 (though it is possibly

infinite). From the definition of & ,» it follows that
n %
R(6,67) w (a8) < | R(8,68) m (d6) .
Also, condition (ii) of the theorem and the assumption that

r(wn,Gn) < imply that r(ﬂn,éo) < for, say, n >N . Combining

this with the above result and defining

e = | m00) Hyan)
]

it follows that, for n >N,



J [(R(6,6%) - R(6,6™)1 m_(a8) > | [R(0,6%) - R(8,67)] RCON
0 0

(2.4) - = [ B*0n6%) - B (v,6M1 7 _(ay)

r

=c, I gly) n (ay) .
r

Define (for k > 0)

g(y) ir gly) <k
g (y) =4 | .
k. ir gly) >k

Since g is continuocus, 8y is continucus. Also,

sup |gk(y)|.§ max{sup lg(Y)l, Kk} < o
Y YEB -

since B is a compact set and g is continuous. Hence is a

By

continuous bounded function on I , so that

(2.5) im [ g, (1) wylan) = [ et wtar) .
. D T , ' T .

Defining K = sup g(y) , it is also clear that gk(Y) < gly) for
YEB
k > XK , which together with (2.5), gives that (for k > K)

(2.6) lim f gly) u (ay) 3I g (v) ulay) .

n->oo

Note, on the other hand, that the g, are increasing in k , so that



the monotone convergence theorem implies that

lim I g, (Y) nlay) = f g{y) ulay) .

ko0

Combining this with (2.6) and (2.3) leads to the conclusion that

n-r-oo

(2.7) ‘ lim I g(y) u (ay) > f s(y) ulay) > o .
T

Next, let € = inf h(y) . Observe that € is greater than zero,
yel .
since C 1is a compact set in the interior of T , and h 1dis strictly

positive and continuous on the interior of T . By condition (i) of

the theorem, it follows that

Together with (2.4) and (2.7), this gives that

kel

lim f [R(6,8°) - R(0,6%)] 7 (da8) > e f g(y) u(ay) > o .
0 - T ‘ '

But this contradicts condition (ii) of the theorem. Hence (2.3) cannot
hold, completing the proof.“

The above theorem can be used to show that a decision rule 60 is

inadmissible, by first showing that if . 60 were admissible, then con-

ditions (i), (ii), and (iii) would be satisfied, but that there exists
% .

an appropriate ¢ for which (2.2) is violated. This contradiction

establishes the inadmissibility of 60 .



The verification of coﬁditions (i) and (ii) éf the theorem can
generally be carried out using Stein's necessary and sufficient condi-
tion for admissibility (Stein (1955)). Indéed (i) and (ii) are fre--
quently just more expiicit statements of Stein's necessary condition.
(Farrell (1968a and-1968b) establish this for a wide variety of
problems. ) |

The verification of condition (iii) of the theorem tends to be
gquite difficult. It involves showing that if {ii) is satisfied, then
8 properly normalized subsequence of the ﬁn’ will converge to a
probability measure. It should be possible t§ demonstrate this fairly
easily for problems of estimating, undér a quadfatic loss, the natural
parameter (vector) of a distribution from the (mltivariate) exponen—

‘tial family. See Bréwﬁ (1971) and Berger and Srinivasan (1978) for
indications cf %hy thié is so. For other problems, however, no general
metﬁod,of verification seems available.

The rule 6* is found by trying to determine a rule which is
better than 50 for "large 0" ‘(or "large Y"). This is usually much
easier than trying to find a rule that is better for all 6-._ Indeed
the problem typically reduces to that of solving a differential in-
equality. (See Brown (1979).) When a better rule for large 0 is
found, it will frequently be the case that the integral in (2.2) over
these large 0 is ihfinite. Tt will then follow easily that (2.2) is
violated, so that 60 is inadmissible.

Two final points deserve mention. First, the measure u can
sometimes be explicitly represented in terms of 60 » or, at least,
the integral in (2.2) can be replaced by an integral involving 50 >

but not U . This is a very desirable simplification.



‘Finally, the verification that g(y) is positive outside some

compact set can be hard wvhen T is not closed. Fbr example, if
= (0,) , then one must show that 6 is better than &° for

small Y , as well as for large Y . This can be annoying, and is
indeed the difficulty encountered in using Brown (1980). The diffi-
culty can be circumvented, here; by trying to choose a closed T .
If © 1is closed to start with, Brown (1980) wiil_usually be easier
té apply then Theorem 1, since Brown (1980) does not require the
verification of conditions (i) through (iii).

For an explicit applicaﬁioﬁ_of the above theory, the reader is

referred to Berger and Zaman (1979).
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