ON THE PROBABILITY OF CORRECT SELECTION IN THE SUBSET SELECTION PROBLEM

bу

Jan F. Bjørnstad Purdue University

Department of Statistics Division of Mathematical Sciences Mimeograph Series #79-32

November 1979

ON THE PROBABILITY OF CORRECT SELECTION IN THE SUBSET SELECTION PROBLEM

bу

Jan F. Bjørnstad Purdue University

1. Introduction.

Subset selection deals with the problem of selecting a random non-empty subset of populations out of say, k populations, with the aim that the selected populations are "close" in some sense to the best population. In particular, a subset including the best population is called a correct selection (CS). The classical condition on subset selection procedures is to require $P(CS) > P^*$. Usually P^* is chosen to be greater than 1/k.

There seems to be some confusion as to why and whether 1/k is an appropriate lower bound for P*. Gupta (1965) states that one should choose P*:1/k because for P*<1/k there always exist a no-data decision rule. Gibbons, Olkin and Sobel (1977) states that $1/2^k$ is the appropriate lower bound, but the justification given for this bound is incorrect. The bound $1/2^k$ is claimed to be obtained by the rule that selects each population with probability 1/2. However, this is not a subset selection rule since it may select an empty set. Also, P(cs)=1/2 for this procedure. Bechhofer and Santner (1979) support the lower bound 1/k on the basis of certain minimax arguments for no-data decision-rules.

The aim of this note is to clarify this issue. This author thinks that a lower bound on P* should depend only on the decision-space and

the class of procedures under consideration. From this point of view it is shown in Section 1 that for some reasonable classes, 1/k is the correct lower bound, in the sense that no procedure in those classes can achieve a P* less than 1/k. However, it turns out that for several classes 1/k is not the appropriate bound. It is also shown that a procedure with P(CS)<1/k has certain undesirable properties, which gives an argument in favor of considering only classes of procedures that has 1/k as the lower bound.

Section 2 deals with no-data rules. It is shown that Gupta's statement is incorrect if one only considers permutation-invariant no-data procedures. Bechhofer and Santner's approach is also briefly discussed.

2. P(CS) for Monotone, Ordered and Permutation-Invariant Procedures.

We shall consider the following situation. The k populations are denoted by π_1,\dots,π_k . π_i is characterized by a real-valued parameter θ_i . X_i is the observation from π_i . X_1,\dots,X_k are assumed to be independent. $F_{\theta_i}(x)$ is the distribution function of X_i . It is assumed that $F_{\theta}(x)$ is stochastically increasing in θ , and continuous in x for each π in the parameter-space $\theta \in \mathbb{R}$. This class of distribution functions is denoted by \mathcal{F}_c . Let $\Omega = \theta^k$. Let $\theta_{[1]} \leq \dots \leq \theta_{[k]}, \chi_{[1]} \leq \dots \leq \chi_{[k]}$ denote the ordered θ_i 's and χ_i 's. $\chi_{(i)}, \pi_{(i)}$ correspond to $\theta_{[i]}, \pi_{(k)}$ is defined to be the best population. The decision-space \mathcal{F} is the set of all non-empty subsets of (π_1,\dots,π_k) . A subset selection-rule δ is for each observed $\underline{x} = (x_1,\dots x_k)$ a probability-measure $\delta(a|\underline{x})$ over $a \in \mathcal{F}$. For a procedure δ , the individual selection probabilities are given by:

$$\psi_{\mathbf{i}}^{\delta}(\underline{x}) = P(\text{selecting } \pi_{\mathbf{i}} \text{ with rule } \delta(\underline{x}) = \sum_{\mathbf{a} \geq \mathbf{i}} \delta(\mathbf{a}|\underline{x})$$

Let $\psi_{(i)}^{\delta}$ correspond to $\theta_{[i]}$. Then the classical P* condition is

$$\inf_{0 \in \Omega} P_{\underline{\Omega}}(CS | \delta) = \inf_{0 \in \Omega} E_{\underline{\theta}} \psi^{\delta}(k) (\underline{X}) = P^*$$
 (1)

Let us for convenience denote $\inf_{\underline{\theta} \in \Omega} P_{\underline{\theta}}(\operatorname{CS}|\delta)$ by $\operatorname{P*}(\delta)$. The range of possible values of P* will depend upon the class & under consideration. Suppose $\inf_{\delta \in \mathcal{L}} \operatorname{P*}(\delta) = \alpha$, then the principle is that P* should be at least $\delta \in \mathcal{L}$, because no rules in & can achieve a P* less than α . Consider for example the class & of Gupta's rules (see Gupta (1965)).

$$\psi_i = 1 \cdot iff \quad X_i \ge X_{[k]} - d$$
 , $d \ge 0$.

Here inf $P^*(\delta)$ is 1/k, achieved by the rule corresponding to d=0. $\delta \in \mathcal{K}_G$ Hence for \mathcal{K}_G , P^* should be at least 1/k.

This principle will be applied to different classes of procedures to find out if 1/k is the natural lower bound. In order to define the class $\pounds_{\bar{1}}$ of permutation-invariant procedures, let g be a permutation of $(1,\ldots,k)$ such that gi is the new position of element i under permutation g. Then $g\underline{x}$ is defined by $(g\underline{x})_i = x_g - 1_i$, and $ga = \{gi: i \in a\}$ for $a \in \mathscr{A}$.

Definition 1.
$$\delta \in \mathbb{A}_1$$
 if for each permutation g
$$\delta(ga|gx) = \delta(a|x) \quad \forall a \in \mathscr{A}, \ \forall x.$$

Definition 2.
$$\delta$$
 is said to be ordered if
$$\psi_{i}^{\delta}(\underline{x}) \leq \psi_{i}^{\delta}(\underline{x}) \quad \text{when } x_{i} < x_{j}$$

 $\boldsymbol{\imath}_{0}$ denotes the class of ordered procedures.

<u>Definition 3</u>. δ is called <u>monotone</u> if for each i,

$$\psi_{\mathbf{j}}^{\delta}(\underline{x})\underline{<}\psi_{\mathbf{j}}^{\delta}(\underline{y}) \qquad \text{if} \qquad x_{\mathbf{j}}\underline{<}y_{\mathbf{j}} \quad \text{and} \ x_{\mathbf{j}}\underline{>}y_{\mathbf{j}} \qquad \forall \ \mathbf{j} \neq \mathbf{i} \ .$$

Let $\mathfrak{L}_{\mathbf{M}}$ be the class of monotone procedures.

 $\pounds_{\rm I}$, $\pounds_{\rm O}$, $\pounds_{\rm M}$ are the three basic classes of procedures we consider. If \pounds is one of the three or a combination of these, the basic question to answer is whether or not the following statement is true:

$$\inf_{\delta \in \mathcal{L}} P^*(\delta) = 1/k \tag{2}$$

Let us first discuss the relationship between the three classes. Clearly a rule can be monotone and not ordered or vice versa. The following results also hold.

Lemma 1.

- (i) $\delta \in \mathcal{L}_{I} + \delta \in \mathcal{L}_{0}$ (i.e. $\mathcal{L}_{I} \mathcal{L}_{0}$ is non-empty.)
- (ii) $\delta \in \mathcal{L}_0 \neq \delta \in \mathcal{L}_I$ (i.e. $\mathcal{L}_0 \mathcal{L}_I$ is non-empty.)
- (iii) $\mathcal{L}_{I,M} \subset \mathcal{L}_{I,0}$ and $\mathcal{L}_{I,0} \mathcal{L}_{I,M}$ is non-empty.

Here
$$\mathfrak{L}_{1,M} = \mathfrak{L}_{1} \mathfrak{n} \mathfrak{L}_{M}$$
 and $\mathfrak{L}_{1,0} = \mathfrak{L}_{1} \mathfrak{n} \mathfrak{L}_{0}$.

Proof.

- (i) is obvious. E.g. the rule that selects π_i if and only if $X_i = X_{[k-1]}$ is permutation-invariant but not ordered.
- (ii). Consider the following rule δ :

If
$$X_1 = X_{[k]}$$
: select π_1

If $X_1 < X_{[k]}$: select $\pi_{[k]}$, $\pi_{[k-1]}$, where $\pi_{[i]}$ corresponds to $X_{[i]}$. $\delta \in \pounds_0$, but $\delta \notin \pounds_I$.

(iii). First we note that $\delta \in \mathfrak{L}_{I}$ implies that $\psi_{\mathbf{j}}^{\delta}(\underline{\mathbf{x}}) = \psi_{\mathbf{g}\,\mathbf{i}}^{\delta}(\underline{\mathbf{g}}\underline{\mathbf{x}}) \quad \forall \ (\mathbf{g},\mathbf{i},\underline{\mathbf{x}}).$ Assume $\delta \in \mathfrak{L}_{I,M}$. Let $\underline{\mathbf{x}}$ be such that $\mathbf{x}_{\mathbf{i}} < \mathbf{x}_{\mathbf{j}}.$ We shall show that $\psi_{\mathbf{i}}^{\delta}(\underline{\mathbf{x}}) \leq \psi_{\mathbf{i}}^{\delta}(\underline{\mathbf{x}})$.

Let g be the permutation with gi=j, gj=i, gl=l \forall l ≠ i,j, and let y=gx. Then $y_i=x_j>x_i$ and $y_l< x_l$ \forall l ≠ i. Hence $\psi_i^\delta(\underline{x})\leq \psi_i^\delta(\underline{y})$ from Definition 3, and $\psi_j^\delta(\underline{x})=\psi_g^\delta(\underline{g}\underline{x})=\psi_i^\delta(\underline{y})\geq \psi_i^\delta(\underline{x})$, which proves the first statement. Let now k>3, and consider the following rule.

δ: select
$$\pi_i \leftarrow X_i \ge \min(X_{[k]}, \frac{X_{[k]}}{X})$$
; $\overline{X} = \frac{1}{k} \sum_{i=1}^{k} X_i$.

 δ is clearly in £ $_{1.0}.$ We shall show that δ is not monotone.

Let x_i =3/2 for $i \le k-1$ and x_k =2, and let y_i =0 for $i \le k-2$, y_{k-1} =3/2, y_k =2. Here $x_{k-1} = y_{k-1}$ and $y_j \le x_j$ $\forall j \ne k-1$. It is readily seen that $\psi_{k-1}(\underline{x}) = 1$ and $\psi_{k-1}(\underline{y}) = 0$. Q.E.D.

The results about P*(§) for the classes \pounds_{I} , \pounds_{0} , \pounds_{M} are given in the following

Theorem 1.

- (a) inf P*(δ) = 0, provided $F_{\theta}(x) \rightarrow 1$ as $\theta \rightarrow \inf \theta$.
- (b) $\inf_{\delta \in \mathscr{L}_0} P^*(\delta) = (1/k)^2$; $\forall F_{\theta} \in \mathscr{F}_c$.
- (c) inf $P^*(\delta) = 0$; $\forall F_{\theta} \in \mathcal{F}_{C}$.

Proof.

(a) Consider the rule

$$\delta \colon \text{ select } \pi_i \; \hookrightarrow \; X_i \; = \; X_{[1]} \; .$$

$$\delta \in \, \pounds_1 \quad \text{so we may assume} \; \theta_i \; = \; \theta_{[i]} \; .$$

Then

$$P_{\underline{\theta}}(CS|\delta) = P(X_k \leq X_i ; \forall i \leq k-1) = \int_{i=1}^{k-1} P(X_i \geq x) dF_{\theta_k}(x)$$

$$= \int_{j=1}^{k-1} (1 - F_{\theta_j}(x)) dF_{\theta_k}(x) .$$

Let $\theta_j \rightarrow \inf \Theta$ $\forall j \leq k-1$ and keep θ_k fixed. Then $F_{\theta_j}(x) \rightarrow l, \forall x$ and from Lebesgues convergence theorem $P_{\theta}(CS \mid \delta) \rightarrow 0$. Hence $P^*(\delta) = 0$.

(b) We observe that a $\neq \phi$ implies $\sum_{a \in \mathscr{A}} \delta(a | \underline{x}) = 1$ V x and hence

$$\sum_{i=1}^{k} \psi_{i}^{\delta}(\underline{x}) \geq \sum_{a \in \mathcal{A}} \delta(a|\underline{x}) = 1.$$
 (3)

Let $\delta \in \mathfrak{L}_0$. Then $x_i = x_{[k]} \Rightarrow \psi_i(\underline{x}) \geq 1/k$ from (3)

Hence:

$$P_{\underline{\theta}}(CS \mid \delta) = E_{\underline{\theta}}(\psi_{(k)} \mid \delta) \ge \int \psi_{(k)}(\underline{x}) \prod_{i=1}^{k} dF_{\theta_{i}}(x_{i}) \ge \frac{1}{k} P_{\underline{\theta}}(X_{(k)} = X_{[k]})$$

$$\{\underline{x} : x_{(k)} = x_{[k]}\}$$

Now
$$\inf_{\underline{\theta} \in \Omega} P_{\underline{\theta}}(X_{(k)} = X_{[k]}) = P_{\theta_1} = e_k(X_{(k)} = X_{[k]}) = 1/k$$
,

since $\boldsymbol{F}_{\boldsymbol{\theta}}$ is stochastically increasing in \cdot .

Hence: $P_{\theta}(cs | \delta) \ge (1/k)^2 \quad \forall \ \underline{\theta} \in \Omega$.

The lower bound is achieved by the following rule in \mathfrak{L}_0 :

If $x_i = x_{\lceil k \rceil}$ and i < k: $\delta(a_i | \underline{x}) = 1$

If $x_k = x_{\lfloor k \rfloor}$: $\delta(a_i | \underline{x}) = 1/k$ for i=1,...k.

Here $a_i = \{\pi_i\}$.

(c) is obvious e.g. let $\boldsymbol{\delta}$ be given by:

$$\psi_{\mathbf{i}}^{\delta}(\underline{x}) = 1 \Leftrightarrow x_{\mathbf{i}} \ge x_{[k-1]} \text{ for in } k-1$$

$$\psi_{\mathbf{k}}^{\delta}(\underline{x}) = 0 \quad \forall \underline{x}$$

 $\delta \in \mathbb{F}_{M}$ and if $\theta_{k} = \max \theta_{i}$ then $P_{\underline{\theta}}(CS|\delta) = 0$. Q.E.D.

From Theorem 1, we see that none of the three properties, permutation-invariant, monotone or ordered, alone insures (2).

A desirable property of a procedure δ is unbiasedness.

Definition 4. δ is said to be unbiased if

$$i < j \Rightarrow E_{\underline{\theta}} \psi^{\delta}(i) \leq E_{\underline{\theta}} \psi^{\delta}(j)$$

(Some authors, e.g. Gupta (1965) and Nagel (1970) use the terminology "monotone" for this property.)

Let 5 be the size of the selected subset. Ther

$$E_{\underline{\theta}}(S|\delta) = \sum_{i=1}^{k} E_{\underline{\theta}} \psi_{(i)}^{\delta}$$

Lemma 2.

 $P^*(\delta) < 1/k \Rightarrow \delta$ is not unbiased.

Proof. Let $\underline{o} \in \Omega$, arbitrary, and assume that δ is unbiased. Then $k \cdot P_{0}(CS \mid \delta) = k E_{\underline{\theta}} \psi_{(k)}^{\delta} \geq \sum_{i=1}^{L} E_{\underline{\theta}} \psi_{(i)}^{\delta} = E_{\underline{\theta}}(S \mid \delta) \geq 1$, since $S \geq 1$.

Hence $P*(s) \ge 1/k$.

Q.E.D.

So, if one only wants to consider unbiased procedures at least (2) must be satisfied. From Theorem 1 we see that there are biased procedures in each of the classes \mathcal{L}_1 , \mathcal{L}_0 , \mathcal{L}_M . It turns out (see Theorem 2 below) that stronger results can be obtained for some combinations of the three classes. Also restricting attention to non-randomized procedures can lead to different results. \mathcal{L} is non-randomized if for each \mathcal{L} there exists a \mathcal{L} , such that \mathcal{L} (a | \mathbf{L}) = 1. For a given class \mathcal{L} , let \mathcal{L} denote the class of non-randomized procedures in D. E.g. \mathcal{L}_0^n is the

class of non-randomized ordered procedures. Our basic question is now answered by the following results.

Theorem 2.

(a) inf
$$P^*(\delta) = 1/k$$
, $\forall F_{\theta} \in \mathcal{F}_{C}$.
 $\delta \in \mathcal{A}_{I,M}$

(b)
$$\inf_{\delta \in \mathcal{L}_{0}^{n}} P^{*}(\delta) = \inf_{\delta \in \mathcal{L}_{1}^{n}, 0} P^{*}(\delta) = 1/k; \quad \forall F_{0} \in \mathcal{F}_{C}.$$

Here $\mathcal{L}_{M,0} = \mathcal{L}_{M} \cap \mathcal{L}_{U}.$

(c)
$$\inf_{\delta \in \mathcal{A}_{1,0}} P^*(\delta) < 1/k$$
 for some $F_{\theta} \in \mathcal{F}_{C}$

(d) inf
$$P^*(\delta) \leq 1/2k$$
, $\forall F_6 \in \mathcal{F}_c$.
 $\delta \in \mathcal{L}_{M,0}$

Proof.

(a) Let $\delta \in \mathcal{L}_{I,M}$. Then from Nagel (1970):

$$P^*(\delta) = \inf_{\underline{\theta} \in \Omega} P_{\underline{\theta}}(CS|\delta) \text{, where } \Omega_0 = \{\underline{\theta} : \theta_1 = \ldots = 0_k\}.$$

For
$$\underline{\theta} \in \Omega_0$$
: $E_{\underline{\theta}}(\underline{\psi}^{\delta}) = \ldots = E_{\underline{\theta}}(\underline{\psi}^{\delta}_{k}) = P_{\underline{\theta}}(CS|\delta)$, since $\delta \in \mathcal{L}_1$.
Hence: $E_{\underline{\theta}}(S|\delta) = kP_{\underline{\theta}}(CS|\delta)$. Since $S \ge 1$, it follows that inf $P^*(A) = 1/k$.

The lower bound is obtained by the rule that selects π_i if and only if $X_i = X_{[k]}$.

(b) Let now $\delta \in \mathcal{L}_0^n$. Then $X_{(k)} = X_{[k]} \Rightarrow X_{(k)} > X_{(i)}$ $\forall i \leq k-1$ with F_{θ} -probability 1, which implies $\psi_{(k)}(\underline{X}) = 1$ with probability 1. Hence

$$P_{\underline{\theta}}(CS|\delta) = E_{\underline{\theta}} \psi_{(k)}^{\delta} \ge P_{\underline{\theta}}(X_{(k)} = X_{[k]}) \ge 1/k$$
.

The lower bound is attained by the same rule as in (a).

(c) Let $\Gamma_0 \in \mathcal{U}_{\mathbb{C}}$ be such that there exists $\theta^* \cdot \theta^*$, a
b for which

Let $0_1 = 0_{k-1} = 0^{-k}$, $0_k = 0^{-k}$.

Consider the following rule.

$$\delta(a_{1}|\underline{x}) = 1 \quad \text{iff} \quad x_{1} > b \text{ and } a < x_{1} \leq b \quad \forall \ j \neq i$$
 for $i = 1, ..., k$
$$\delta(a_{1}|\underline{x}) = ... = \delta(a_{k}|\underline{x}) = 1/k, \text{ otherwise.}$$

It is readily seen that $\delta \in \mathcal{L}_{1.0}$.

$$P_{\underline{0}}(CS|\delta) = E_{\underline{0}}\psi_{k}^{\delta} = P(a < X_{\underline{i}} \leq b, \forall \underline{i} \leq k-1 \text{ and } X_{k} > b)$$

$$+ \frac{1}{k} (1-P(A))$$

Here:

$$P(\Lambda) = P[\bigcup_{i=1}^{k} (X_i > b \text{ and } a < X_j \le b] = (.01)^{k-2} \frac{k-1}{2} + (.01)^{k-1} \cdot \frac{1}{2}]$$

This gives:

$$E_{\underline{\theta}} \psi_{k}^{\delta} = \frac{1}{k} - \left(\frac{P(A)}{k} - \frac{1}{2}(.01)^{k-1}\right)$$

$$= \frac{1}{k} - (.24)(.01)^{k-2} \left(\frac{k-1}{k}\right) < \frac{1}{k} .$$

(d) Consider the following procedure δ given by:

If
$$x_i = x_{\lfloor k \rfloor}$$
 and $i < k$, then $\delta(a_i | \underline{x}) = 1$
If $x_k = x_{\lfloor k \rfloor}$, then $\delta(a_{\lfloor k-1 \rfloor} | \underline{x}) = \delta(a_{\lfloor k \rfloor} | \underline{x}) = \frac{1}{2}$.
Here $a_{\lfloor i \rfloor} = \{\pi_{\lfloor i \rfloor}\}$.

$$\delta \in \mathfrak{L}_{M,0}$$
. Let $\Omega_k = \{\underline{\theta} : \theta_k = \theta_{\lfloor k \rfloor} \}$. Then

$$\inf_{\underline{\theta} \in \Omega_{\mathbf{k}}} P_{\underline{\theta}}(\mathbf{cs}|\delta) = \inf_{\underline{\theta} \in \Omega_{\mathbf{k}}} E_{\underline{\theta}} \psi_{\mathbf{k}}^{\delta} = \frac{1}{2} \inf_{\underline{\theta} \in \Omega_{\mathbf{k}}} P(X_{\mathbf{k}} = X_{\mathbf{k}}) = \frac{1}{2k} .$$
(3.1.1)

Remarks.

- 1. From the proofs of Theorem 1 (a), (c) and Theorem 2(a) we see that for the classes \mathcal{L}_{I} , \mathcal{L}_{M} and $\mathcal{L}_{I,M}$ the same results hold when restricting attention to non-randomized procedures.
- 2. It does not necessarily follow from (2) that all $\delta \in \mathfrak{L}$ are unbiased. However, for the class $\mathfrak{L}_{I,M}$, Nagel (1970) showed that all $\delta \in \mathfrak{L}_{I,M}$ are also unbiased.
- 3. Since $\mathcal{S}_{1,M} \subset \mathcal{S}_{1,0}$ we see from Theorem 2(a), that it is essentially required that a procedure is permutation-invariant, ordered and monotone for (2) to hold, although for non-randomized procedures it is enough that the procedure is ordered.

We conclude this section with a few observations about the discrete distribution-case. Let \mathcal{F}_d be the class of all stochastically increasing discrete $F_\theta(x)$, $\theta \in \Theta \subset \mathbb{R}$. The results for ψ_1 , $\psi_{1,M}$, $\psi_{1,0}$, ψ_{M} are essentially the same as before. It can also be shown that for the classes ψ_0^n , ψ_0^n , $\psi_{M,0}^n$, $\psi_{M,0}^n$, we now get that $\inf P^*(\delta) = 0$ for some $F_0 \in \mathcal{F}_d$. This differs from the results for ψ_0^n .

3. P(CS) for Permutation-Invariant "No-Data" Rules.

By definition, δ is a no-data rule if it is independent of x, i.e. $\delta(a|\underline{x}) = \delta(a) \quad \forall \ a \in \mathscr{A}, \forall \ \underline{x} \ , \text{ so that}$

$$\sum_{a \in \mathscr{A}} \delta(a) = 1.$$

 δ is permutation-invariant if $\delta(ga) = \delta(a)$, $\forall g$, $\forall a$.

If |a| denotes the size of a, then

$$\delta(ga) = \delta(a) \ \forall g, \ \forall a \in \mathscr{A} \Leftrightarrow \delta(a) = \delta(a')$$
 if $|a| = |a'|$

Let p_i be the probability that a subset of size i selected, i.e.

$$p_i = \sum_{\{a: |a|=i\}} \delta(a) = \binom{k}{i} \delta(\{1,...i\}) , \text{ if } \delta \text{ is permutation-invariant.}$$

Let $p = (p, ..., p_k)$. \underline{p} characterizes a permutation-invariant no-data rule, since for any a with size i

$$\delta(a) = p_i/\binom{k}{i} .$$

One way to select according to this rule in practice is first to select a subset size according to \underline{P} . Then given size i, one chooses a randomly, i.e. each subset of size i have probability $\binom{k}{i}^{-1}$ of being selected. It is readily seen (also shown by Bechhofer and Santner (1979)) that

$$P_{\underline{0}}(CS|\underline{p}) = \sum_{i=1}^{k} p_i \frac{i}{k}$$
; independent of $\underline{0}$

and

$$E_{\underline{\theta}}(S|\underline{p}) = \sum_{i=1}^{k} i p_i$$
; independent of $\underline{\theta}$.

Lemma 3.

If δ is a permutation-invariant no-data rule, then

$$P(CS | \delta) \ge 1/k$$

Proof.

$$P(CS | \delta) = \sum_{i=1}^{k} p_i \frac{i}{k} \ge \frac{1}{k} \sum_{i=1}^{k} p_i = 1/k$$
 Q.E.D.

Hence, there are no permutation-invariant no-data rule which can achieve P*<1/k, showing that Gupta's statement is incorrect for this class.

We also see that the lower bound 1/k is achieved by the rule p with $p_1=1$.

Now, for any $P^*\ge 1/k$ there exists a no-data rule p with $P(CS|\underline{p})=P^*$. This can be seen as follows. If $1/k\le P^*<1/2$, let for example p be given by:

$$p_1 = \frac{k+2-2kP^*}{k}$$
, $p_2 = \dots = p_k = \frac{2kP^*-2}{k(k-1)}$

Then

$$P(CS|p) = P*$$
.

If
$$P^* \ge 1/2$$
, let $p_1 + ... + p_{k-1} = \frac{2(1-P^*)}{k-1}$ and $p_k = 2P^*-1$.

Then

$$P(CS|\underline{p}) = P^*$$

Since $E(S|\underline{p}) = kP(CS|\underline{p})$, it follows from Berger (1979), (under weak regularity conditions) that for each $\frac{1}{k} \leq P^* \leq 1$ there exists a permuation-invariant no-data rule that subject to the condition

$$\inf_{\theta \in \Omega} P_{\underline{\theta}}(CS \mid \delta) \ge P^*$$

are minimax for the risk $E_{\theta}(S|\delta)$.

The criterium used by Bechhofer and Santner (1979), which is to choose P* greater than or equal to $P(CS | \underline{p}^0)$ where \underline{p}^0 is minimax therefore seems hard to understand.

REFERENCES

- Berger, R. L. (1979). Minimax subset selection for loss measured by subset size. (To appear Ann. Statist. 7 No.6).
- Beechhofer, R. E. and Santner, T. J. (1979). A note on the lower bound for the P(CS) of Gupta's subset selection procedures. <u>Technical</u>

 <u>Report #401</u>, Cornell University.
- Gibbons, J. D., Olkin, I. and Sobel, M. (1977). <u>Selecting and ordering</u>
 populations: A new statistical methodology. John Wiley & Sons, Inc.
- Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technometrics 7, 225-245.
- Nagel, K. (1970). On subset selection rules with certain optimality properties. Mimeograph Series #222, Department of Statist., Purdue University.