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1. introduction.

Subset selection deals with the problem of selecting a random non-
emply subset of populations out of say, k populations, with the aim
that the selected populations are "close" in some sen;e to the best
population. In particular, a subset including the best population
is called a correct selection (CS). The classical condition on sub-
sel selection procedures is to require P(CS)>P*. Usually P* is chosen
to be greater than 1/k.

There seems to be some confusfon as to why and whether 1/k is an
appropriate lower bound for P*. Gupta (1965) states that one should
chonse P*»1/k because for P*<1/k there always exist a no-data decision
rule. Gibbons, 0lkin and Sobel (1977) states that 1/2k is the appropri-
ate lower bound, but the justification given for this bound is incorrect.
The bound 1/2k is claimed to be obtained by the rule that selects each
population with probability 1/2. However, this is not a subset selection
rule since it may select an empty set. Also, P(cs)=1/2 for this proce-
dure. Bechhofer and Santner (1979) support the lower bound 1/k on the
basis of certain minimax arguments for no-data decision-rules.

The aim of this note is to clarify this issue. This author thinks

that a lower bound on P* should depend only on the decision-space and



the class of procedures under consideration. From this point of view
it is shown in Section 1 that for some reasonable classes, 1/k is the
correct lower bound, in the sense that no procedure in those classes
can achieve a P* less than 1/k. However, it turns out that for several
classes 1/k is not the appropriate bound. It is also shown that a
procedure with P(cs)<1/k has certain undesirable properties, which
gives an argument in favor of considering only classes of procedures
that has 1/k as the lower bound.

Section 2 deals with no-data rules. It is shown that Gupta's state-
ment is incorrect if one only considers permutation-invariant no-data

procedures. Bechhofer and Santner's approach is also briefly discussed.

2. P(CS) for Monotone, Ordered and Permutation-Invariant Procedures.

We shall consider the following situation. The k populations are
denoted by LERRRTL IR, is characterized by a real-valued parameter
ei' Xi is the observation from L X]""’Xk are assumed to be indepen-

dent. F .(x) is the distribution function of Xi' It is assumed that
Fe(x) is ;tochastically increasing in 8, and conti uous in x for each o
in the parameter-space @ c R. This class of cistribution functions is
denoted by 3C. Let Q=6 k. Let e[]]j,..fp[k],x[]]j...ix[k] denote the
ordered Ui's and Xi's. X(i)’"(i) correspond to ”[i]' ") is defined
to be the best population. The decision-space & is the set of ail
non-empty subsets of (w],...,nk). A subset selection-rule & is for each
observed 5;(x],...xk) a probability-measure &(a|x) over a€@/ . Tor a
procedure &, the individual selection probabilities are given hy:

¢? (x) = P(seiecting e With rule §|x) = )  d(a]x)
asi



Lot w(;) correspond to D[i]' Then the classical P* condition is

inf P (CS[8) = inf Eewgl)(l) = p* (1)
0ce - 0€Q

{et us for convenience denote inf PO(CSIG) by P*(s8). The range of

0EQ —
possible values of P* will depend upon the class & under consideration.

Suppose inf P*(§) = «, then the principle is that P* should be at Teast
S€x
i, because no rules in £ can achieve a P* less than o. Consider for

example the class &, of Gupta's rules (see Gupta (1965)).

G

by = 1 AFF XpoXpged o, d20.

Here inf P*(8) is 1/k, achieved by the rule corresponding to d=0.
s€k
G

Hence for £ _. ,P* should be at least 1/k.

G ’
This principle will be applied to different classes of procedures

to find out if 1/k is the natural lower bound. In order to define the

class £I of permutation-invariant procedures, let g be a permutation of

(1,...,k) such that gi is the new position of element i under permuta-

lion g. Then gx is defined by (g§)i=xg-1i, and ga={gi: i€a} for acy

Definition 1. S€EL if for each permutation g

1
s(gafgx) = &(a|x) Vaeo/, vx.

~Definition 2. § is said to be ordered if

§ $
wi(é)fwj(ﬁ) when X, <x;

.#0 denotes the class of ordered procedures.



Definition 3. & is called monotone if for each i,

$ ) . . s
v (x)<ws(y) if x;<y; and XY 5 ViFi.
Let EM be the class of monotone procedures.

SI s ﬂo s EM are the three basic classes of procedures we consider.
If £ is one of the three or a combination of these, the basic question
to answer is whether or not the following statement is true:

inf P*(s) = 1/k (2)
SES

Let us first discuss the relationship between the three classes. Clearly
a rule can be monotone and not ordered or vice versa. The following

results also hold.

Lemma 1.
(i) ¢e€ £ L 6s€ £, (i.e. £ - £, 1is non-empty.)
(ii) 8€ £ $ s¢€ £ (i.e. £4- &;1s non-empty.)

(iii) £I;M <fr 0 and $1 0" £I,Mis non-empty .

Here SI,M = sl ] £t4 and £I,0 = LI Fiﬁo

Proof .
(i) is obvious. E.g. the rule that selects mo if aﬁd‘on]y if Xi:X[k—l]
is permutation-invariant but not ordered.
(ii). Consider the following rule §:
If X] = X[k]: se]ecf w]
| If X1 < X[k]: select "[k]’ “[k_l],wﬁere il corresponds o x[i]'
s€ &, but s¢ £q-



(iti). Tirst we note that g€ £, implies that w?(5)=¢6.(gx) v {g,i,x).

[ gi'’= =

Assume §¢€ 8 Let x be such that Xy <Xy

[,M°
We shall show that ¢?(5) §.¢§(§)

Let g be the permutation with gi=j, gj=i, gf=2 VA&# i,j, and let y=gx.
Then yi:xj>xi and Yo<X, ¥V 2 i, H?nce ¢?(§)EP?(X) from Definition 3,
and wg(5)=ng(gé)=w?(x)3p?(5), which proves the first statement. Let now

k-3, and consider the following rule.

: X
: - L R
§: select L Xi 3_m1n(X[k], ) 5 X

X i

X.
i

| —
If D~ X

1
@ is clearly in f 1.0° We shall show that & is not monotone.

Let-xi=3/2 for i<k-1 and xk=2, and let yi=0 for i<k-2, yk_]=3/2, yk=2.
Here x, 1=y, _y and Y; i_xj v j#k-1. 1t is readily seen that wk_](5)=1
and vk_](x)=0. : Q.E.D.

The results about P*(s) for the classes L1, 84, 8y are given in the

following

Theorem 1.

(a) inf P*(G)

0, provided Fe(x)+1 as o»inf o .

ﬁel(\I
(b) inf P*(s) = (/)% 3 vF ez
' 8 C
SNC K
0
- : * = . T
(¢) ;ka,P (8) =0 5 v Fee 3 -
) M
Proof.

(a) Consider the rule
§: select mooe Xi = X[]] .

¢ c m .= .
6€ & SO We may dassume 91 9[1]

1
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Then

k-1
PQ‘CSIG) = P(Xk < Xi ; Vi< k-1) = figl P(Xiz_x)dFUk(X)
k-1
= fn (1-F_ (x))dF, (x) .
=t % %

Let 9j+inf ® V j<k-1 and keep 8y fixed. Then F, (x)-1L¥x and from
U s
J

Lebesgues convergence theorem Pe(Cslé)»O. Hence P*(s) = 0.

(b) We observe that a # ¢ implies ) s{a|x) = 1 Vv x and hence
: acoy

x) > § s(alx) = 1. (3)

“let s€ £, Then X =Xy = wi(g) > 1/k from (3)

Hence:
k _
_ . 1, -
PQXCS!ﬁ) = Eg(w(k)lé) 2_f¢(k)(§)il]dFBi(x9:_Eﬂ Q(X(k) = X[k])

ES (TS

Now inf P_(X = Xrpa) = P
JUARCR (SRl (5 LS

since Fo is stochastically increasing ir - .

==, K(k) = ) 7K

Hence: Py(cs|s) > (1/k)7 v g eq.

The Tower bound is achieved by the following rule in s
If x = X[y and i<k: 5(a,-|2<_) = 1

If xy = X[y]: s(ag|x) = 1/k for i=1,...k.

Here a; = {ni} .

(c) is obvious e.g. let & be given by:

]

o) .
wi(ﬁ) e x, 2 X[k-1] for i-k-1

"‘i( x)

0 vx



S and if e max ey then PO(CSIG) = 0. Q.E.D.

M
T<i<k-1
From Theorem 1, we see that none of the three properties, permutation-

invariant, monotone or ordered, alone insures (2}.

A desirable property of a procedure § is unbiasedness.
Definition 4. 8§ is said tc be unbiased if
<. § §
T = ety < B¥(y)
(Some authors, e.g. Gupta (1965) and Nagel (1970) use the terminology
“monotone" for this property.)
Let. S be the size of the selected subset. Then

kK s
Eg(Sls) = ) Ejug;
g i=

Lemma 2.

P*¥(8) < 1/k = & is not unbiased.

Proof. Let ¢ ¢q, arbitrary, and assume that § is unbiased. Then

- = 6 ~ 6 - .
kop(es]s) kng(k) = L Egu(iy EQ‘SIG) > 1, since S » 1.

Hence P*(s) > 1/k.
Q.E.D.

‘S0, if one only wants to consider unbiased procedures at least (2) must
be satisfied. From Theorem 1 we see that there are biased procedures

in each of the classes £-I, £4 Sy - It turns out (see Theorem 2 below)
that stronger results can be obtained for some combinations of the three
classes. Also restricting attention to non-randomized procedures can

tead to different results. & is nan-randomized if for each

x there exists a€@/, such that s(ajx) = 1. For a given class £, let

+" denote the class of non-randomized procedures in D. E.g. £g is the



class of non-randomized ordered procedures. Our basic question is now
answered by the following results.

Theorem 2.

(a) inf P*(§) = 1/k , VFE€ET .

GEAKI,M

(b) dinf P*(s) = inf P*(s) = inf P*(s) = 1/k; v'FOEJC.

n n n
dELO 6€£I,0 GE$M,O
Here ‘gM,O = J&‘Mﬂ‘»&(}.
(c) inf P*(s) < 1/k for some F € 3
R ¢ C
6€$IO

(d) inf  P*(s) < 1/2x , VF €3 .
S€Ly

Proof.

(a) Llet s¢ 47 - Then from Nagel {1970} :

* = 3 = . = = i
P*(s) = inf Pe(csla) » where @ (0:64=-..50, J.
0E R, —
- 0
. § = = § = X c 3 N
For 6 690. EQ—({D1 ) = ... Eg(wk) Pg(cvslo) . since 6€ £ .

Hence: Ee(Sla) = kPe(CS|6). Since S > 1, it fcllows that inf P*(s) - 1/k.
— - Y

1,M
The lower bound is obtained by the rule that selects s if and only if
Xi = X[k].
n - N
(b) Let now &€ £ 0 - .Then X(k) X[k] = X(k)> X('l) Vi - k-1 with

_Fe-probability 1, which implies w(k)(l) = 1 with probability 1. Hence

Puleste) = Egu(yy = Py(Keyy = Xpyp) 2 k.

The lower bound is attained by the same rule as in (a).



{¢) tel r“ (,:s'-C be such that there exists 0'-0", a<b for which

Fﬂ,(a) = .49 1~F9,(b) = .5
Fﬂn(a) = .01 1-Fe"(b) = .5
Let wlf__.znk_]=o' . ok=n".

Consider the follawing rule.
sla |x) =1 iff xi>b and a<xj§b vV j#i
for i=1,...k
d(a]|§) = ... = 6(ak[§) = 1/k, otherwise.

It is readily seen that §¢€ & 1.0 °

) = 6 = 75
PQ(CSIA) = Eyby = P(a < X;<b,Vi<k -1 and X >b)
+ 1 (1-p(A))
Herae:
k k-2 k-1
P(AY = Pl U (X‘i>b and a<xjib vi#i)]=(.01) k1 + (.01)
i=l
This gives:
§ .1 P(A) _ 1 k-1
gt = & - - 2007
21 k-2,k-1, 1
= ¢ - (28)(L0) TR )< o

(d) Consider the following procedure § given by:

If x; = X[¢] and i<k , then 6(ai[5) =]

1f Xk = X[k] N then 6(a[k_]]l£) = G(a[k]lz(_) = ]? .

Here 3[1] = {'ﬂ[]-]}.

'\)i_a
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€ 8y - leta = (o: 0, = IR
Then
inf P(cs|s) = inf Ep’ = inf P = Xpp) = o
peEQ, =~ o€, = a€n, ° _
' Q.F.n.
Remarks.

1. Ffrom the proofs of Theorém 1 (a), (c) and Theorem 2(a) we see thal
for the classes £, £y and & .M the same results hold when restricting
attention to non-randomized procedures.

2. It does not necessarily follow from (2) that all Sc £ are unbiased,

However, for the class £ M Nagel (1970) showed that all s¢ & are

.M
_ also unbiased.
3. Since § IM < ® 1,0 we see from Theorem 2(a), that it is essentially
required that a procedure is permutation;invariant, ordered and monotone
for (2) to hold, although for non-randomized procedures it is enouqgh that
the procedure is ordered.

We conclude this section with a few observations about the discrote
distribution-case. Let 3y be the class of all sto hastically increasing »

discrete Fe(x), 86€ ® cR. The results for & o I 5 1.0° &y are

essentially the same as before. It can also be shown that for the classes
n

0’
This differs fram the results for & c

. . n . . K<) - —
& £, 8 M,0 ° & M,0 We now get that inf P*(s) = 0 for some F C Sy

3. P(CS) for Permutation-Invariant "No-Data" Rules.

By definition, § is a no-data rule if it is independent of x, i.e.

s(ajx) = s(a) va € /Vx , so that



1

Y s(a) = 1.
acy

o is permutation-invariant if s(ga) = 6(a) ,Vg,va.
If |a] denotes the size of a, then
s(ga) = ¢(a) vg, va € oZ @ s(a) = s(a') if |a| = |a']

Let p, be the probability that a subset of size i selected, i.e.

s * ys(a) = (:)6({1,...1}) , if & is permutation-invariant.
ta:]al=it
Let p = (p,...pk) . p characterizes a permutation-invariant no-data

rule, since for any a with size i
, _ k
5(3) - P1/(1)

One way to select according to this rule in practice is first to select
a subset size according to P . Then given size i, one chooses a randomly,
i.c. cach subset of size i have probability (?)-] of being selected.

Il is readily seen (also shown by Bechhofer and Santner (1979)) that

k ;

P,(CS]p) = Y P, %— ;  independent of o
Q i=1

and

k
E (S|p) = } ip. ; independent of 8 .

Lemma_3.
If ¢ is a permutation-invariant no-data rule, then

P(csls) > 1/k

Proot.

o~ &
o
5] -
[v

=1

e~ =

P(cs|s) =

p; = 1/k Q.E.D.
i=]



Hence, there are no permutation-invariant no-data rule which can achieve
P*<1/k, showing that Gupta's statement is incorrect for this class.
We also see that the lower bound 1/k is achieved by the rule p
with p]=1. |
Now, for any P*>1/k there exists a no-data rule p with P(CS]Q)=P*.

This can be seen as follows. If 1/k<P*<1/2, let for example p be given by:

_ k+2-2kp* o 2kPx-2
Py K > Pp T e TP T Y

Then
p(cs|p) = P*
If P*>1/2, let Py + ...+ Pe-1 = gi%§$il and P = 2P*-1
Then P(CSIR) = p*

Since E(S|p) = kP(CS|p), it follows from Berger (1979), (under weak
reqularity conditions) that for each %—g_P* < 1 there exists a permuation-

invariant no-data rule that subject to the condition

inf Pe(cs!a) > p*
pEQ =

s
are minimax for the pisk Ee(Slé).

BTN -
The criteriwm used by Bechhofer and Santner (1979), which is to
choose P* greater than or equal to P(cs|p®) where p® is minimax there-

fore seems hard to .understand.
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