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1. INTRODUCTION

In this report some design aspects of the calibration problem are
considered. Following Scheffe [1973] a statistical relationship is being
considered between two quantities U and V where V is generally more ex-
pensive or difficult to measure than U. For a given value of v,observations

on U are assumed to be random with a mean value

(1.1 n(v) = m(v,8) = ] 8,8, (V)

and variance 02 independent of v. Here the regression functions g, are
known while B = (B., B,,...,B )t and o are unknown. For a given value U,,
0’ "1 k+1 0
one is interested in finding the corresponding Vo To do this the system
is "calibrated". That is, accurate values Vs VoseesVy are chosen for v
and corresponding readings Ul’ UZ""’Un are taken. The regression co-
efficients B are then estimated by B and for a given value UO = u, the

corresponding v, is found by solving ug = m(vo,é).

0
Scheffé [1973] shows how a "calibration chart' can be constructed

which results in a band around the curve u = m(v,é). (Throughout we shall

view u and v as plotted in the vertical and horizontal directions respec-

tively.) 1In this way, for each measurement u, an interval estimate I(uw)

is constructed for the corresponding unknown value of v. The bands are

constructed for a given o and § so that "for every possible sequence of -

constants Ve the probability is at least 1-6 that the proportion of intervals

.containing the corresponding v, is in the long run at least 1-a". The reader

is referred to Scheffé [1973] for further discussion of the construction and

interpretation of the bands. Different aspects of the calibration problem

can also be found in Lieberman,Miller and Hamilton (1967) and the National



Bureau of Standards special publication 300 on Precision Measurement and
Calibration.

Scheffe's calibration charts find application in the calibration‘of
cylindrical tanks. The problem here is to determine the volume of a certain
liquid in the tank by taking pressure readings P = U at or near the bottom
of the tank. The tank is closed and V is difficult or impossible to measure-
directly. Now if P is the pressure reading at fhe bottom of the tank and
V is the volume of liquid in the tank then P = Vd/A, where A is the average
éross-sectional area of the filled portion of the tank and d is the density
of the liquid in the tank. Thus the pressure-volume relationship is a
straight line if the cross-sectional area A of the tank is constant. (The
liquid is assumed uniform with constant density d). The tanks are generally
cylindrical which would produce constant A, however obstructions inside the
tank prevent this from being the case. These obstructions are of the
nature of cooling coils, mechanisms to agitate the liquid or supporting
metal to strengthen the tank.

A simple "well defined" obstruction would abruptly change the cross-
sectional area hence the slope in the volume -pressure relationship. The
obstructions would in general change the area A in a more gradual manner.
However the regions of change are assumed to be small, relative to the
size of the tank and the accuracy of the measurements, and they are ignored.

In this case the volume -pressure relationship can be written as a

linear spline

k
(1.2) m(v) =a+by+ ) b, (v-£.),
i=1



where z, = max{0,z}. The quantities 51 < gz <...< Ek are called "knots"
and these will occur whenever the cross-sectional area changes. In equation
(1.2) the function is a + bv for v below El. The curve is continuous and
changes to slope b + bl at the point gl, etc.

On occasion it will be more convenient to work with a different basis
for the splines than that used in (1.2). We use EO and Ersl for the smallest

and largest volume readings respectively. Then define

E. -V
L E, <V < §
El'go O 1
N, (v) =
0 0 £, <V
v-£.
i-1
g <V < g
gi_gi_l 1-1 1
Ni(V) = o
i+1
g<v<g_
gi+1_€1 1 i+l
for i = 1,2,...,k
v-§
k
g, < v < g
£k+1—€k k k+1
Nk+1(V) = 0 v <t
k

These are called B-splines. They are simply triangular type functions

over successive pairs of intervals. With this basis the value Bi in

k+1
(1.4) m(v) = ) BN (V)

i=0



is given by the value of m(v) at &i, i.e. Bi = m(&i), i=0, 1,...,k+1.
An excellent discussion of splines is given in de Boor [1978].

The Scheffeé calibration bands around the function (1.4) produce various
width inverse intervals I(u) for the corresponding unknown value v. Generally
the wider the band is in the vertical u direction the wider are the horizontal
intervals I(u). In addition, however, low slope values of the curve m(v)
in (1.4) will produce much larger intervals I(u) than large slopes will.

For reasons which cannot be explained fully here we would like to
have the maximum (over the range of u values) of the lengths of the intervals
I(u) equal to a minimum. Generally one can then make a quantitive statement
about the overall accuracy of the calibration. It is possible to keep the
maximum of I(u) small if higher accuracy can be obtained in estimating thce
true curve m(v) in regions where it has lower slope. This accuracy is
measured through the variance or standard deviation of our estimate of the
response curve m(v). More observations are needed where the knots occﬁr
and where the slopes are low. The design problem is to see if any quantativé
statements can be made about where the values vy, v2,...,vn should be chosen
to obtain corresponding readings Ul’ U2,...,Un in the calibration.

In Section 2 some consideration is given to the selection of
Vis Vose sV, and a procedure is proposed. An illustrative exémp]e is

described in Section 3. Some discussions is given in Section 4.

2. CHOOSING THE VOLUME VALUES
As mentioned in the previous section it is desirable to keep the maximum -
width of the intervals I(u) at a minimum. In order to do this we consider

a general curve (see Figure 1) of the form

wealigiE






k+1
(2.1 u=m(v,8) = ) B.N.(V)
. il
1=0
where the Bi are all positive and increasing. (The range of v is from
EO to Ek+1 where generally EO > 0. At the.bottom of the tank the volume
and pressure should both be zero. However irregularities in the tank made
the validity of (2.1) questionable near the bottom so we like EO > 0).
In order to minimize max I(u) we draw a band of constant horizontal

u
width 2d about the curve. The Scheffe bands are produced by considering

(2.2) m(v,B) * 8[c1 + ¢y S(V]

The notation will be_explained carefully below. Our intent is to choose
d so that the constant width curve contains (2.2). The value d will then
be minimized by choosing the values Vs Vo,V these valués enter mainly
through the quantity S(v).

To explain the notation, the quality G is an estimate of the standard
deviation ¢ in our pressure readings. We will assume for simplicity that
o is known and therefore take ¢ = o. Some discussion in Section 4 will be
given to this matter. The quantities cy. and c, are constants depending on
the values of o and & mentioned in the introduction. The function S(v) is,
except for a factor of o, the standard deviation of the estimate of the
pressure readings for a fixed value v of the volume. If we let

NW)=(mﬂﬂ,“.Nh&WDttMm

(2.3) s2v) = %— N(v) M T() NE(v)

where the matrix M(u) is given by M{u) = f Nt(v) N(v) du(v). The measure

i is called the design measure and simply has mass 1/n at each observation



point ZE i=1, 2,...,n (n = number of observations). The observations
are assumed to be uncorrelated and in general some of the vy values could
be equal. In this case u assigns mass ni/n to distinct V{, i=1, 2,...,r.
The elements of M = M(u) are simply

(2.4} My =

=N

g N (v, N (VL)

The general problem would be to consider the maximum of the horizontal
wdiths of I(u) of the Scheffe bands and minimize this maximum with respect

to the values v SV This seems to be extremely difficult. We

10 Vore-
shall proceed by trying to minimize d.

To hold down the maximum width of I(u) we now require that the Scheffe
bands (2.2) lie inside the bands shown in Figure 1. Since the upper and

lower bands in Figure 1 are m(v+d) and m{v-d) respectively we thus require

that, for all v,

(2.5) m(v+d) - m{v)

Iv

G[C1 + CZS(V)]

(2.6) m(v) - m(v-d)

| v

c[c1 + cZS(v)]

It will be shown at the end of this section that o[c1 + CZS(V)] is
convex in v on each segment [Ei, Ei+1] i=20,1,...,k. The right hand side
of (2.5) then consists of convex segments, while the left hand side consists
of linear segments. Equations (2.5) and (2.6) will then hold provided they

hold at the bends of the left hand side. Thus we require (2.5) to hold for

(2.7) £,1=0, 1,...,k+l and £,-d, i = 1, 2,....k

and (2.6) should hold at the points

(2.8) Ei’ i=20,1,...,k+1 and Ei+d, i=1, 2,...,k.



Only points in the interval (EO, €k+1) are considered. It seems clear

that if

(2.9) £.

then we require that

c[c1 + CZS(EO)] f_ho

(2.10) ole, =+ czs(Ei)] j_hi and hi—l i=1,...,k

1

olep * 8] Sy

where hi m(£i+d) - m(Ei) = m(£i+1) - m(& -d). Let ss denote the slope

i+l
of m(v) on (gi, €i+1)’ i=0,1,...,k. Theﬁ since hi = dsi,the requirements
(2.10) become

(2.11) o[c1 + CZS(Ei)] < d Y5 i=0,1,...,k+1

where Yo = Sy Y, = max{si,si_l}, i=1,...,k and Yie1 T Sy

Now the design measure or the choose of vy, v2,...,vn enters these
equations in S(v). The general problem is still to choose the design so
that the value of d can be choosen as small as possible.

To reduce S(v), observations should be choosen at the points

are usually unknown).

g (Remember that the knots gl,...

0° F1or o bker 5
If we note the dependence of S(v) on u by S(v,u) then it is known that for
a fixed set of knots and any Ho there is another design Hio concentrating
on Ei’ such that S(v,ul) f_S(v,uO) for all v.

Suppose, then, that we had observations only at the endpoints and
knots. The matrix M(u) in (2.3) and (2.4) can be seen to be a diagonal

matrix with diagonal elements Py» PysesoPryy where np. =n,; = the number



of observations at ii. The value of S(&i) is then

(2.12) S(&;) = —

The conditions (2.11) then reduce to

c
(2.13) o[c1 + —z—i = dy. i=20,1,...,k+1
/Hi— '

The values of ng, Nyseees

should give a minimal value for d. Solving for n, in (2.13) we get

nk+1(2ni = n) and d which give equality in (2.13)

Cc,0 2

2
(2.14) n, = [57———]
i dyi—oc2

The general design plan would then be as follows:

(1). Take a preliminary set of m, observations (these may be equally

0

spaced or wherever they appear to give a good overall robust design).
(2). With the observations from (1), estimate Ei, Bi’ 61 and o, insert

these in (2.14) and solve for d so that Zni = m > My

(3). The values for n, in (2) are roughly the number of observations that

are required at Ei. Recall we already have m, observations from (1).

0

The remaining m1~m in (2) should then be chosen to made the combined

0
set have roughly ni observation at gi.

(4). Repeat steps (1), (2) and (3) if more stages are used to get m,
observations etc.

(5). To help implement step.(S) we may proceed as follows. For a given

set of observations assign each observation to the nearest estimated

gi value. The new set of my -, observations are then chosen as in (3).
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The combined set m, are then redistributed by taking those supposedly

at &i to be roughly uniform from (Ei—l + Ei)/Z to (Ei + Ei+1)/2.

The remainder of this section consists of a proof of the convexity of

ofc, + CZS(V)]. Consider the function SZ(V) defined in (2.3) and

1
take yin = (Ei, Ei+1) for a fixed i. The only basis functions Nj(v) which

are nonzero on I. are N.(v) and N, .(v). Therefore
i i i+l

(2.15) nsZ(v) = a NA(v) + 2b N, (N, (V) + © Nil(v)

where a,b and c are inverse elements in the matrix M(u) defined in (2.4).
The matrix M(u) is tridiagonal, i.e. has nonzero elements mij only for

|i-j| < 1, and has non-negative elements. The elements a and c¢ in the
inverse can be seen to be positive whilevb is negative. Equation (2.15)

and some simple algebra then shows that (2.15) is a quadratic in v with a
minimum on the interior. The convexity of o[c1 + czs(v)] is fhen equivalent

to the convexity of

g = ¢+ a1+ (A

where ¢ > 0, d > 0, uEIi and T > 0. However it can readily be shown that

g"'(v) > 0.

3. AN ILLUSTRATION
To illustrate the effect of the procedure we considered a tank which
was carefully studied. The tank volume was approximately 13,500 liters.

The equation of the pressure = U versus the volume = V was thought to be



11

(3.1) u = -271 + 2340 v + 11(V-~1.9)+
—27(\/—4.6)+ - 146(\/—5.5)+
-12(v-5.9), - 16(v-6.5)
+2.2(v-7.2)  + 20(v-10.0)

-20(v-10.3), + 2.5(v-12.5),

The equation was assumed to be valid over the range EO = 1700 litres to

g = 13,500 litres. Throughout the example we assume that the knot position,

10

the slopes and the standard error ¢ are known. In this case the effect of the
design in the simplest case will be isolated. Some discussion of this will

be given in the next section. The knots and slopes are then taken as in

the above equation. The standard error ¢ was chosen as ¢ = 0.6. Using

Scheffé, we then chose ¢y = 2 ‘and c, = 5 in the equation (see (2.14))

[oFNe)
(3.2) n, = 2]

=
i dyi ocy

2

Using a trial and error method we solved (3.2) for d so that I n, = 86.
(Three runs of measurements of 30 observations each were to be taken,
however 86 was more convenient than 90.) The solution for d was d = 1.03
and the corresponding n, values were 6.2, 6.2, 6.4, 8.2, 8.6, 8.7, 8.7, 8.4,
8.7, 8.7, 8.7. Since these were roughly equal it was proposed that the
number of observations around each knot should be taken equal. The fol-
lowing two designs were then compared.

Design 1. Take n = 86 observations equally spaced over the entire

range EO = 1700 to 510 = 13,500

Design 2. Take n = 30 observations equally spaced over go‘to ElO'
The remaining are chosen to make approximately equal
number around each knot. (see part (5) in the design

plan in Section 2)
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Using the above two designs, we simulated observations on the pressure
for the corresponding volume readings, using equation (3.1) and ran a
calibration chart for each design. The graphs in Figure 2 show the width
of the confidence intervals versus the volume for the two designs. It
seems clear that in the area where the knots are concentrated, between
4000 and 8000 liters, the proposed design is superior to the equally

spaced design.

4.. DISCUSSION

The Scheffe éalibration procedure involves the consideration of
two bands m(v) % c[c1 + CZS(V)] around the curve u = m(v). The bands are
used in a simple inversion process,. where for a given reading U = u we
solve u = m(v) for v and find an interval I(u) of possible v-values. It
is required that the lengths of these intervals be short. A simple
procedure is proposed whereby the two bands are bounded by "parallel”
bands of uniform horizontal width and an attempt was made at minimizing
the width of the outer bands. It would seem that a direct minimization
of max I(u) would present considerable difficulty. The procedure proposed

u
certainly needs further testing in that estimated values of Ei, Bi and
o should be used in step 2 of the procedure. It seems, however, that
the procedure will generally give lower overall width.

The conditions in (2.9) need some attention. In our example d = 1.03
and the spacings £i+1—gi were sometimes less than d. This, however, does
not seem tocrucial. Inextreme situations we might revert back to (2.5)-(2.8).

The Scheffe procedure gives bands, which in our case are ''square root
parabolic' on segments between knots. The regression function is assumed

known and probabilistic statements are made concerning statements that the



true volume v, corresponding to a given reading U = u, is contained in
an interval I(u). In our situation the unknown knots Ei prevent us from
assuming that our regression functions gi(v) are known. The accuracy in
any attempt at making confidence statements is then in question. Large
simulation studies might remedy this.

Since blueprints of the tanks are usually available, similarities
exists between tanks and other prior information is available, some sort

of Bayesian analysis might be more appropriate.

14
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