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ABSTRACT

Given ‘k normal populations with_unknown means and a common known
(or unknown) variance a two-stage procedure 353 with screening in the
first stage to find the population with the largest mean is under con-
cern. It was proposed and studied previously by Cohen(1959),A1am(1970),
Tamhane and Bechhofer(1977,l979) and Gupta and Miescke(1979). But up td
now a conjecture concerning least favorable parameter configurations in
an indifference zone approach remained unproved for k > 3. In this paper
we give a non-standard proof of the conjecture in case of k =3 for 531
which (under minor changes) works also for a simplified version 532. Be-

sides, the point is exposed where another {(more intuitive) method of

proof fails to work .

*The first author was supported partly by the Office of Naval Research
Contract N00014-75-C-0455 at Purdue University.



1.INTRODUCTION

Suppose we are given k normal populations T,, ... ,1Ck with
unknown means /1 <+-s My and a common known (or unknown) variance
L > 0 . The following two-stage procedure fﬂ_ to find the popu]a-'
tion with the largest mean was studied by Alam(1970), Cohen(1959) ,
Tamhane and Bechhofer(1977,1979) and Gupta and Mjescke(1979) :

Procedure 9)1 :

Stage 1 : Take & independent samples (xil’ een ’Xin ) of size ny
1 .
1=1, ... ,k, from 1r1, cee s M and compute Xi =
(Xil + ... 1n ) / o, i=1, .;. .k . Select all populations

1ri with X1 ma x {X ]J = i ,k}- - C , where ¢ >0 is
fixed . If only one population is selected , stop and assert that

this one has the largest mean . Otherwise proceed to Stage 2 .

Stage 2 : Take additional independent samples (Y, i1 e ’Yin ) .of
size ny from those populations being selected in Stage 1 and
compute Yi = (Y].1 + ...+ Yinz) / n, for them . Among the selec-

ted populations decide finally in favor of that population yielding

the largest ny Xi o, Yi

Thus. procedure ga is a combination of two classical one-stage
procedures where the first one (in Stage 1) 1is due to Gupta(1956) and

the second one (in Stage 2) is due to Bechhofer(1954) .



Now in all papers dealing with 391 the following conjecture con-
cerning the least favorable parameter configurations w.r.t. the proba-
bility of a correct selection , g&:{‘c.s.?°1} s M= (ﬂﬁ,.-.,ﬂk),in an

indifference zone approach was stated but remained unproved for k = 3:

Conjecture : Let §* >0 be fixed and consider a2, { RE RK l
1 - -_ -—
'u'[k-ll £ /‘[k] § },where for ,u.elR MU] .. /‘brk]

denote the ordered coordinates. Then -for every t eR

1
R~

inf ¢, {cs.% (t
/_"e-as# - i

teootitesty 1 65 P

In Sectioh‘B we shall prove the conjecture for k = 3 . But.we do
not see any way to adapt this proof propéf]y to cases where k > 3.The
point where another (more intuitive) method of proof fails to work will

- be exposed in Section 2 , Where also some general auxiliary results are
given .

| As a by-product (with minor changes) our proof works also for proce-
. P

- dure o s SaY , which differs from 531 only 1in Stagé 2 where final

decisions are made in terms of the Yifs instead of the ny Xi + n, Yi‘s.

2. SOME GENERAL PROPERTIES OF . anp P

I — -2

In this section we study the behavior of 531 and ﬁaé in the gen-

eral situation ( k> 2 ) and derive some preliminary results which will

be useful in Section 3 when we shall prove the conjecture for k = 3



We start with
b 1es. Py - f e, fc5.2 |x=x} PufX=x}, (@21

\ k
where X = (Xl""’xk) » X = (xl,...,xk) » M~€R and m=1,2 |,
and state without proof some properties of the terms appearing in
(2.1). They hold for both, 9)1 and 5’)2 and are well known or éafsy

to prove .
® - ® : o
P 1C.5.9 F = Py 1C.5. P } (2.2)
for every u,i e R* with Ay T /7[1.] s 1= 1,00,k .

- Thus from now on we restrict our considerations to parameter

configurations e R¥ with /1 é.yuz € ... % s

PofCs.® |x=x} - P&{C-S-?m'£=5+ag}

for every w, x € R and aeR , where 1= (1,1,....1) ¢ R .

P fCs®Y = e, 1 {058 T uerk, aer. (2:4)

G .
For  x €R" fixed, Py {C.5. % | X =x § isnon-  (2.5)

decreasing in My and non-increasing in Al DIREE s M1

k . . _
For ¢ R fixed, PA{C.S.?m | x = x % in non- (2.6)

decreasing in Xy

@ : _ . .
P/j{c.s.fm} is non-decreasing in Ay s pm€R



Obviously, (2.1) and (2.3) imply (2.4) , whereas (2.7) (which
was proved already by Tamhane and Bechhofer (1977)) follows from
(2.1) , (2.5) (the "M -part") and (2.6) . Analogously it could
be demonstrated easily that P, {C.S.%® } s non-increasing in

Ags enn s Ao if it were true that for every fixed AfE]Rk
Ptt{fC.S.me | X = x } were non-increasing in Xps <o« sX,_p - But

this does not hold true for k > 3 !

Counterexample : For k 2 3 let M 5,ﬂ2 £ .. éf‘k—l é,uk -§*

and 0 < £ <cfgbe fixed. Then for X = (Xl’XZ’ ... ,xk) with

';k T C < XpaXgs el uXy g < X e+ € and x -£Lx; £ x
and for x'= (xi,xz, ... ,xk) with xk_+ £ £ X] < X+ 2,
wehave P {C5.P) [X=x} < P{CS.P, |x-x21,
since in Stage 1 , under X 5_5 » all populations are selected
whereas under X-= x~ , T, and ™, only are selected . And
it is not difficult to see thét for sufficiently small g >0 ,

P €SP [X=x} < b fe.5.2 [X=x ] notds, too.

It should be pointed out clearly that though we are able to prove
the conjecture for k = 3 , the interesting question whether for k * 3
. () . . . .
and me {1,2} Bﬁ { C.s. !"]} really is non-increasing 1in Misenn

sAy 1 Or not still remains open .



3. PROOF OF THE CONJECTURE FOR k = 3

Now we shall study the case of k = 3 in more detai] . Let
h(><)=(2’u:o’2/n1 )-l/zexp(-nlxz/Zdz),erR,such
that Xi has the density h('x - M ) » xeR ,i=1,2,3. Before
we present our main result we state the following key lemma . Its

proof is of very technical nature and may be Skipped at the first

reading .

Lerma : | For every v>0 , w20 and me {1,2}

3 P(0,0, 8% { CS. Pyl Xy =-vew} (3.1)
P0,0,59 165 Fplxp=-v-w}

Proof : Let v,w>0 and m € {'1,2}. be fixed and let us denote

the difference of the r.h.s. minus the 1.h.s. of (3.1) by A ,Say.'

Then
A [P(o,o,g*) {cs.® | x- (-vW,Xp,x3) § h(xy) h(x5-6%)
R R
" Pl0,0,8% {es. @ |x- (-‘/+w,x2,>i3)} h(x,) h(x3—5")] dx,dx
= ,f jh[:P(O,O,g*) { C.s. %, ].X:(—v-w,xz-w,x3-w)} h(x,w) h(x=-=5%)
R R

() =f( = 4 4 TV . *‘
- 00,64 1 65 P, | x=( VR Xt X g ) T B(Xp ) h(xgtu-8 ) ] dxydxs.

Thus by (2.3) we get



_ e @ . .
A= ff P(0,0,6% {es.® | x=q "”‘2”‘3)} H(xpsx3) dxy dxs
R R

where H(X,,X3) = h(x,-w) h(x3-w-s*) - h(x,*w) h(x3+w—6*),(x2,x3)E]R2.

{(€.1)eR? [H(¥,y)>0 ]} and ©-
{ (E.m) € R l H(E.m)<oO } . Then the monotone 1ikelihood ratio

Now let C

property of normal distributions w.r.t. location parameters implies

. Moreover, let « : ]R2 — ]R2

be defined by o((g,oz) =
(8%-9,8%-€) and let (¥%,7%) = «(¥.,q) . (€.9) €R® in the

.foiiowing. Then in view of &« ( C )

C we get

A= [IT ErJP(O’O’g*) fecs.® |x- -(.;v,xz,XB)}H(xz,x?)) d(xy.x5)
C .
= AJ; [ P(O,O,S*) {C S ’(m, X = (-v,xé’< ,xé")} H(x2°<,x3°‘-)
¢
*P0,0,6% 165 By | X = (vaxpxg) } H{x.x3) ] d(X5,%3)
Finally, since H( €% 9™) = -H(¥.,y), (f.y) €R®, we
arrive at

A = I [P(O,O,g*) {C-S..(f)m l X = ("V’X_gax3)}
C

" P0,0,6% { c.s. 8, | x - (“"’xzw"xf)}] H{xp.x3)  d(x;.x5) -

/

Thus to complete the proof in view of H('g,fvl ) €0 for (g,n) <

we only have to show that for every (X5.%5) € ¢

(—‘)t



(-v,xz_,x3)-‘ } (3.2)

P0,0.6%) 1 €S- By | X
P(O,O,&*) {C.S.@m | x = (-v,x2°‘,x3°‘)}

Now Tet (xz,x3) € 'Cv be fixed. For notational convenience, let
3 .

for x €R” , S(x) = {16 {1,2,3} | xié X[3] - c}- denote
the set of indices of those populations being selected at Stage 1 in
case of X = x . We are stepping now through different cases for
S(-v,xz,x3) » showing that always vS(—v.,x2°‘,x3‘,’<) is as favorable to
"1‘3 (i.e. a correct selection) as S(—v,,xz-,x3), ( Note that this al-
7

ready will suffice to complete the proof for 2 ) and moreover,that

thereby the relevant x-values co-rrespondi‘n_g to ’lt’z and ’FC’3 do not

change to the disadvantage of 1r3
Obviously, X3 > X + € implies 3¢S(—v;x2_,x3) (cf.next case) or
3€S(-vuxtxf) € S(-vixy.x3) € {1,3} .Thus (3.2) holds for ,.

And since we have x3°‘ > X3, (3.2) is proved for ?1 » too .

Moreover, X3 & x, - ¢ implies 3 ¢ S(-v,xz',x3) and thus for

?1 as well as for 5’32 the 1.h.s. of (3.2) equals zero .
Finally, let x, - ¢ £ X5 £ Xp+c . If 3 ¢ S(-vsX5,x3) the
same argument as before applies. Otherwise, we have to distinguish

between three possibilities for S(-v,xz,x3) :

The first one is S(-v,x2,x3) = {1,2,3’} . This implies
{2,3} < S(-v,x,,“,x3°<) € S(—v,xz;x3) which proves (3.2) for ?)2

; o X _ oK _ = . P
and in view of X3 X2 = X3 =Xy and X3 > x5 for ‘(1 , too .



The second one 1is S(-v,xz,x3) = {2,3} which implies

S(—v,x2‘°‘,x3°‘) = {2,3} and can be handled analogously .

The third one is S(-v,xz,x3) = {1,3} implying S(-v,x2°(,x3°‘)
= {2,3} in view of XX - ¢ > v+ 8¥>0 > - v . This point
requires a bit more care since , at the same time ,» one population
('rc’l ) Teaves the subset of populations being selected whereas an-
other one (‘R‘z ) enters it . But this does not really cause diffi-
culties since our parameter configuration is u = (0,0,8% and
"therefore 'R-’l and 17:2 are "interchangeab]e" . Thus (3.2) follows
@

immediately for 2 and the additional argument X0 £ -v, i.e.

x3°< - XX 2 X3 + v 5 implies (3.2) foyr ?31 . This completes the
proof of our Lemma . |

The following representation of the probability of a correct

selection under P, or ?3 » respectively , will be useful in the
1 2

sequel : ‘
¥ w | .
@ = @ - '
“0o ¥
= 73] =
- f[g&{cs P X = Tl n( - wop
0 .
+ P {C s.?m |x1= x‘+w}h( ¥+ w - py )] dw
where pe€ ]Rk , ¥€R and m=1,2 . It is derived by substituting

Xy = ¥-w in the first integra] and Xy = ¥+ w in the second one .'



Theorem : For k = 3 ,the:c_Q_njzect;u-ne‘ rho:]f_dj.s_‘ true -for ?1

as for (PZ

Proof : In view of (2.4) and (2.7) it suffices to .prove -that for

every v. 2 0 snd m.e {1‘,2}

Now Tet v * 0 .and me{l,2} be fixed . Then by (3.3) for

¥ =-v and by the .symnét-r:y of h we get

P2v,0,8m T CS B} - P g {050 3

- f [P(—Zv,O,é‘*) ;{C"'S“.-'?m 1%

P(-2v,0,8%) {es.? | X1

w}_h( V.

W)

0
[

<
!

n
1
<

.+.wi} h( v +w)

P(O’O’Ag*.) —'{ C:S-:‘?m , X1 = W»} h( v 4w )

Pl0,0,5%) 16:5- % I %

By (2.5) this is bounded from below-by

!

1

<
B

+

-.V.

1

W .}.h( No-w) ] ~dw

og

j‘ [P(O,O,g“) { C.S.”?m , '~.X1=*vV‘W} - P(O,O,E*) {CS?‘?H '- X1="V+W} J
0 : :

[h( V-wW)-h(v+w) ] dw & o |

where the last inequality *follows from :the -fact -that .for NoW 20 e

have h( v - w ) > p VoW ) and (3.1) . Thus -the proof :is completed.
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