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ABSTRACT

: The multiple decision problem of se]etting a random non-empty
subset of populations, out of k populations, that are close in
some sense to the best population is considered in a decision-
theoretic framework. Uniformly optimal procedures for non-
negative semi-additive loss are derived. A class of likelihood-
ratio type of procedures is shown to be admissible for monotone

additive loss.

1. INTRODUCTION

Let TyseeesTy be k populations charactef%zed by Bys--050)
respectively. Xi represents ﬁi' X],...,Xk are assumed to be
independent, and Xi has density f("ei); b,e9c R, with respect
to some o-finite measure v. Let e[]] << e[k] be the ordered
85 and let (i) be the population corresponding to e[i].



Subset selection is a multiple decision problem concerned
with selecting a random non-empty subset of populations that are
"“close" in some sense to the "best" population, usually defined to
be (k)" The classical approach, mainly due to Gupta (1965), is
to select as few populations as possible while controlling the
probability of selecting (k) We shall consider the more general
problem of selecting at least t populations, 1 < t < k-1, in a
decision-theoretic, non-Bayesian framework. Carroll, Gupta and
Huang (1975) proposed procedures for this general problem, using
the classical approach. | o ' _

Let X = (X],...,Xk), e.= (e],....ek) and o* = (e[]],...,e[k]L
The decision-space is denoted by G, = {ac {1,...,k}: la] > t}.
Here |a| is the size of subset a, and decision a is interpreted as .
selecting the populations =, for i ¢ a. The loss function is
‘denoted by 2(6,a). A subset selection procedure is a measurable
function &: Gy x l!k + [0,1]. &(a]x) denotes the conditional
probability of decision a given that X=x, such that

T s(alx) =1.
Gy

Let G be the group of permutations g on {1,...,k}. For
ae Gt’ ga = {gi: i¢e a}, and gx, x¢ nzk, is defined by (gx)i =
X ']i' It is assumed that v is permutation-invariant and that the
loss function is invariant under G, i.e. 2(e,a) = 2(go,ga). It
follows that the decision problem is invariant under G. & is by
definition a permutation-invariant procedure iff §(gajgx) = s(a|x)
for all ac¢ Gt’ X e R*, ge G. Let 8 be the class of invariant
procedures.

The individual selection probabilities for the procedure § is

‘given by

YG(X) = P(selecting n |X=x) = ] é&(a|x).
i 1 as

16 = (vf....,vﬁ) uniquely determines & if & is nOnQrandomized.
The risk function of a procedure § is given by




r(e|s) = [ I 2(e,a)s(alx)p(x,8)du(x)

aazt »
where p(x,8) =1 f(xi,ei) and u is the product-measure of v on H!K
Since the risk is invariant under G if 6 ¢ 8 we have
Sedy= r(e]s) = r(e*|s) vyo ¢ @k. (1.1)

We observe that since the decision-space is finite, the conditions
of Sion's theorem (see Sion (1958)) are satisfied, and it follows
that a minimax procedure always exists.

In Section 2 we consider non-negative, semi-additive loss
functions of the form

2(6,a) = a(]a]) ] 25(8). (1.2)
ica

Here a(]a|) > 0 and ¢.(6) > 0. It is shown that, under certain
conditions, the procedure that selects essentially the t popula-
tions corresponding to the t largest Xi's minimizes the risk
uniformly in 8 for all 6 ¢ 8;- Since G is a finite group this
procedure is also an admissible minimax procedure (see e.g.
Ferguson (1967)). This result complements the Bayesian results
for the case that t=1 by Deely and Gupta (1968) and Miescke (1979).
Miescke (1979) considers the loss (1.2) and shows that under some
conditions there exists a Bayes rule that selects exactly one pop-
ulation. Deely and Gupta (1968) considered the case zi(e)=e[k]-ei,
and showed a similar result for the Bayes procedure.

The main theorem in Section 2 is proved by employing a cer-
tain technique for minimizing r(e]|s), 6 ¢ QI;.at a fixed point
0 ¢ gk. This approach is quite general and will now be described
for a general loss 2(8,a).

Let X[]] 5,..5_X[k] be the ordered X,'s and let Y, = X[i]’
i=1,...,k. Let Y= (Yl""’Yk)’ Yey = {y: ¥ o2 Wyt Gy =
{g €G: gy=y}, and m(y) is the number of elements in Gy. Define,
for fixed o,

Chglaly) = gng(e,ga)Pe(X=gY|Y=y)/m(y)- (1.3)



One can regard h,(aly) as the conditional expected loss of select-
ing the populations corresponding to Yi’ ie a, given that Y=y.
The density of Y is p(y,8)/m(y) where
ply.e) = ZG ply,ge); yey.

v %
Hence, Pe(x=gY|y) = m(y)p{ay,8)/p(y,8) and we have that
hg(aly) = gEXGz(e.ga)p(gy,e)/E(y.e). | ()

From (1.4) it follows that he(aly) = ho.,,(aly). Let a; mi'nimize
he(aly)n i.e. . -
hola ly) = min ho(aly); yey.

&Gy

LEMMA 1.1. Let 6 ¢ oF be fixed. Then r(86) is minimized in

8; by S0 given by
§o(935ly) = Un(y) vge 6, vyey. (1.5)
whene n(y) is the number of different decisions in {9a,: g ¢ Gy}.

Proof. From (1.1) we may. assumé e] <-..2 8. S¢ 8 impiies

§(alx) = Zc(galgx)l'(gx.y)/m(y) : : (1.6)
g6 :

where I(a,b) = 1 if a=b and 0 otherwise. By conditioning on Y we
get from (1.6) that _ '
r(e|s) = Eg{Ry(Y[8)}
where
Ro(yls) = T s(aly)hy(aly).
mt'

Now, hy(aly) = h,(galy) if y=gy, and it follows that 8ys
defined by (1.5), minimizes r(e]s) for s ¢ 8;- Forxe Rk, 8, is
defined by '

s,(alx) = sy(galy) iff gx=y (1.7)
8y is well-defined by (1.7) and permutation-invariant, because
8,(aly) = & (galy) if y=gy. o Q.E.D.




Remarks. 1). From (1.4) we see that 8 is also a Bayes pro-
cedure with respect to the prior that puts equal weight on each
different permutation of e*, since the posterior risk in this case
is proportional to

Y 2(e*,qa)p(gx,0*)/p(x,06*)
g6
(See also Blackwell and Girshick {1954, Theorem 7.3.1.).}

2). Let‘yo =lyey: yy <.e yk}. S is non-randomized on‘yo.
In Section 3 we restrict attention to the case t=1. Recently,
several papers have considered this problem from a Bayesian point
of view. Some contributions, in addition to those already men-
tioned, are Goel and Rubin (1977), Chernoff and Yahav (1977),
Gupta and Hsu (1977, 1978).
Section 3 deals with additive loss functions of the type

(6,a) = ] 25(e) (1.8)

ica
where 21(9) is now allowed to take negative values. Typically
zi(e*) > 0 for i < k-1 and zk(ef) < 0. This is an example of a
two-component- 1oss. The addition of any population in the
selected subset»increases'one'component and decreases the other
component of the loss. It seems clear that two-component loss
functions are ‘more realistic -than a non-negative loss. We are
mostly concerned with admissibility for such additive, two-compo-

nent loss. Let the non-randomized subset selection procedure Ga’b

be defined by its individual selection probab1]1t1es e b .
(w , ..,Wk ) as follows.
a b f(x.,a+b) k f(xi,a+b) _
(x)=1 “xj‘x[k] or C (a b) ?(x =7 i=]f(xi’a) (1.9)

Cz(a,b)={z](ea’b)-zk(ea’b)}/z](ea’b), where ea,b=(a,...,a,a+b).
Let

8 = {va’b: a,atb ¢ @ and b > 0}. - (1.10)
It is shown that under certain conditions 8 is a class of




admissible procedurés, provided the prdbability model is contin-
uous.

2. NON-NEGATIVE SEMI-ADDITIVE LOSS

_ Assume now that the density f possesses the monotone likeli-
hood ratio property. The loss function considered is (1.2), i.e.

2(e,a) = a(|a]) ] 25(e)
iea

where a(]a]) > 0 and ¢.(6) > 0 for i = 1,...,k. It is assumed that
the zi's are invariant under G, '

| 25(8) = 25,(g8) vlg.i,0). (2.1)
Forue R, [u] is the integer value of u. '

The main result is the following

THEOREM 2.1. Assume (1) [fla(r) > a(t) > 0 for r > t, and
(i1) o <85 =1;(6) 3_zj(e). Then a uniformly best permutation-
invaniant procedure is given by
60({k-t+1....,k}|y) =1 46 Yp_g < Yot (2.2)

8o(ay u (k-s+2,...kHy) = (3,7 (2.3)

6 Yyosa1-q < Ykost2-q * 0" Ykesl < Yisepr and 1 <s < 8,
q > t-s+1. Here |ay| = t-s+] and a; < {k-s+2-q,...,k-s+1}.

Remarks. (1). Theorem 2.1 implies that 8, is minimax and
. admissible in ol. Hence 60 is minimax and admissible among all
subset selection procedures, since G is finite.

(2). Theorem 2.1 also holds if a nuisance parameter o.is
present, assuming the density fa has the monotone likelihood ratio
property, for fixed o.

(3). Ifb'y e‘y°, 8o selects the populations corresponding_to
Yo k122 Yk-t41"

(4). The result of Theorem 2.1 also holds for 2(6,a) =
a(lal)ié zi(e)+y(|a|)v(e), if y(r) > y(t) > 0 for r > t, and

a

v(e) = v(ge) > 0.



(5). Theorem 2.1 applies to any loss of the form
2(e,a) = a(la]) ] 2;5(e)+h(e) (2.4)
i€a

provided o(r) and %5 satisfy the conditions in the theorem:
(6). Brostrom (1979) considers admissibility of subset
selection procedures for two normal populations. A similar result
to Theorem 2.1 is given for k=2, although the loss considered by
Brostrdm is not quite equivalent to the loss considered here.
For t=1, Theorem 2.1 reduces to

COROLLARY 2.1. Let t=1. Assume (ii) of Theonem 2.1 holds
and that ra(r) > (1) > 0. Then a uniformly best permutation-
Anvardiance procedure 48 given by

§o{kYy) =1 i vy < ¥

so(ﬁ}ly) = 1/q 4if Yk-q < Yk-qtl =v++= Yk
and 1 > k-qt+1.

Remark. Bahadur (1950) and Bahadur and Goodman (1952) con-
sidered the decision-space {a < {1,...,k}: |a|] = 1}, and showed a
similar result, for a particu]af loss function. This has been
generalized by Lehmann (1966) and Eaton (1967) to the problem of
selecting exactly t populations. :

Examples of loss functions satisfying the conditions in
Theorem 2.1 are:

-1
1(e,a) = (12 iga(e[k_tﬂl-ei?»f

2(0,a) = O[] - T%T-iéaef; t=1.

Let, for t=1,
2(8,a)=]al+ c g I(e, ,e[k]), ¢ > 0. -(2.5)

This loss was employed by Gupta and Hsu (1977 1978), and is of
the form (2.4) with o«(r) = 1, h(8) = ¢ « #{i: o 8 = e[k]} and



£i(e) =
1-¢ if 8y = e[k].

. Hence Theorem 2.1 applies to (2.5) provided ¢ < 1. It is interes-.
ting to note that Gupta and Hsu (1978) showed that in this case the
Bayes procedure is also equal to 60.

If 8 is a scale-parameter then, for t=1, a loss function of

the following type may be of interest,
| | 2(e,a) = T%T-iéa(e[k]/ei). . (2.6)

(2.6) satisfies the conditions in Theorem 2.1.

Deely and Gupta (1968) considered Bayes procedures for the

loss £'(6,a) = ] a'(a,i)zi(e) and t=1. However, it is easily
‘ i€a
seen that if Byse-.sky are linearly independent and (2.1) holds,

then for 2' to be permutation-invariant it is neceseary and suffi-
cient that a'(a,i) = af|a]) Vi € a, for some function
a: (1,...,k} - R. . |

In order to prove Theorem 2.1 we shall apply Lemma 1.1. We
first need some preliminary results.

Let he(aIY) be given by (1.3), and let

65 = {9 € G: 1 = gi). (2.7)
Then '
he(a!x?=a(|a|)ggG 1égazi(e)Pe(#ngy)/m(y):
= “(lal)jéa gészgj(e)Pe(X=ngy)/m(y)
-k _
=a(la]) [ I 250e) ] Po(X=g¥ly)/m(y).
j€a 1=1 1 g€y,
Let now

T(i,4) = T, o(1.3) = géG Po(X=g¥|y)/mly).
R
It follows that



T(i.3)= ) -play,e)/ply.e) = ¥ ply,ge)/ply,e) (2.8)
%6, ; %6
and

k
ho(aly) = a(la]) § I 2;(6)T(i,J) (2.9)
jea i=1

Remark. If there are no ties in y then T(i,j) = Pe(xi=ley)'
In case of tied observations it can be shown that
P (X;=Y.|y) = 1 T(i,2).
0" (e ¥ymy)

Define
c [of
T°(3) = _X]T(i.j). (2.10)
1:

We have the following result:

LEMMA 2.1. Assume 6, <...< 8. Llet 2 <m. Then

1¢(2) > T(m), vc.
The proof goes in the exact same way as the proof of Lemma 3.1 in
Bickel and Yahav (1977).

Remark. If 2 <...< Yo then we can define the antiranks

D= (D],...,Dk) by XD = Yi' Lemma 2.1 says in this case that
. i

Pe(Dz < c|Y=y) > Pe(Dm < c|Y=y)

provided oy <...< '8 and £ < m.
Let

‘ k
Wa) = J T 2,(e)T(i,3)
jea i=1

so that he(aly) = o]al)W(a). By using a technique similar to
Bickel and Yahav (1977, Theorem 3.1) the following result is
readily shown.

Let for any a € Gy, v = r(a) = laj]. Then

LEMMA 2.2. Let 8y <...< 8, and assume that zi(e) 3_Lj(e) if

01 < ej.



k
W(a) > W(k-r+l,....k) = 7 Z 2. (0)T(4,3).
J=k-r+1 =1

Proof of Theonem 2.1. Fix 6 € @¥. We shall show that
- r(els ) = inf r(6|6), and that 8, € 8;.
568

I
From (1.1) it follows that we may assume 6, <...< 0. From Lemma

1.1 it 1is enough to minimize h (aly) given by (2.9). Let a € Gy o
r = |a|, then from Lemma 2.2 we see that
he(aly) > a(r)H(k-r+l,...,k).
Let m=[r/t], such that mt < r < (m+1)t.
Now,

r .
W(k-r+1,... k)= z[zuk r)(25(0) - 2441(0))%2, ()1,
J=1 i=1
It follows that
Wik-rt1,..., q{l 321[1§1T (k- r+(q 1)t+)(2,(e)- 11+](e))+zk(e)]
k-r+(q-1)t+j < k-t+j. Hen;e from.Lemma 2.1,
TV (k-r+(g-1)t+j) > TH(k-t+])
and therefore _
W(k-r+1,...,k) > [r/tIW(k-t+1,...,k):
Hence

hg(aly) > [Fla(ru(k-t+1,... k) 2 a(tW(k-t+1,... ,K)=hy (2 |y)

where a°={k-t+l,... ,k}. From Lemma 1.1 a &I-best procedure at o
is given by

6(@Iﬂ%MﬂT1 Vg € 6 = {g € G: gy=y}

and n(y) = number of different decisions in {ga° g€ Gy}

Clearly, if y, 4 < yk 41 then n(y)=1 and (2.2) follows. If

Yk-st1-q < Ykost2-q = - Vkostl < Yosezr 1 S5 2t a2 - s+,

=( 9 ‘ = -
then n{y) = (;_c4;)» and for any g € Gy, ga =a, u {k $+2,...,k}
for a; < {k-s+2-q,...,k-s+1} and |a]| = t-s+1. Hence (2.3)
follows. Q.E.D.



3. ADMISSIBILITY FOR ADDITIVE LOSS

3.1. TIntroduction and preliminary results

It iS now assumed that t=1, such that the decision-space is
G =Gy =f{ac {1,...,k}: ]a] > 1}. We consider additive loss of
the type (1.8):

t(8,a) = _Z zi(e).
i€a

(2.1) is assumed to hold such that 2(6,a) is permutation-invariant.

We are now mostly interested in the case where zk(e*) < 0. The
admissibility of the class 8, given by (1.9) and (1.10), will be
studied.

We shall also be concerned with properties 1ike orderedness
and unbiasedness. Let us therefore briefly describe these con-
cepts and some related basic facts.

Definition 3.1. Lleta, = {a€@G: a=(r,rtl,....k); r=1,...,k},

and let
Go,y =u9Gy» fory €y,

g EGy
where Gy = {g: gy=y}. Then & is said to be an ordered procedure
if '
1 8(a]x)=1, when x = 9 ¥ €Y.
2 E€9(Gy y -

Let 8 denote the class of ordered procedures. Consider the
statement (A): Xq < X =_?§(x) g_vg(x). It is readily shown that
if 6 € 8 then (A) holds, but (A) does not necessarily imply that
§ € 8- To see this, let k = 2 and 6 be defined as follows. If
X} < Xgs §({1}|x) = .4 and 8({2}|x) = .6. If x; > x,, 6({1}]x)=.6
and §({2}{x) = .4.

However, if & is non-randomized we have that & is ordered if
and only if (A) holds. »

We are mostly concerned with the class 8, of permutation-
invariant procedures. The following result follows directly from

Definition 3.1.

s ey



LEMMA 3.1. LdGEQI. Then

ses =] slaly)s1 vyey.
*G
0,y |
Definition 3.2. & is said to be an unbiased procedure if
. [ : 6
0y < 8y implies that Ee(vj) < Eg(¥s).

Deginition 3.3. & is a monotone procedure if

' ' : . -§ )
Xj < X5 and x; > x; forvi #j= wj(x) 5_vj(x').

The properties of orderedness and monotonicity of procedures
are not really related, since orderedness (for nonrandomi zed pro-
cedures) concerns different vi's for the same X, while monotonicity
relates to the same ¥; for different sets of observations. So a
procedure can be monotone and not ordered or vice versa. E.g. let
§ be given by

!g =1 {iff X z_min(x[k], x[k]/i)’ X = zxi/k.

Then & is ordered but not monotone. - However, if § is nonrandom-
ized, permutation-invariant and mqnbtone, then 6§ is also ordered.

~ (See Bjgrnstad (1979) for proof.)-
From Nagel (1970) we have the following result.

LEMMA 3.2. Assume f has the monotone Likelihood natio prop-
erty. Let 6 be a pevmutation-invariant and monotone procedure.

. Then & 4is unbiased.

We say that & is a ﬂl-best procedure if there exists o € @k
such that r(e|s;) minimizes r(els), vé € 8;. As mentioned in Sec-
tion 1, a sl-best procedure 6 is also a Bayes procedure, so that
8 is admissible in 8; if it lS unique Bayes in 8. This is the
techn1que we will apply to show admissibility of a procedure We.
state this result as a lemma to be able to refer to 1t,later.

LEMMA 3.3. Let 6§, be a best procedure in 3y at 0. Assume
§ € 8; and that r(eolc) = r(eolao) dmplies r(e|s) = r(s]s ),
Ve € ek. Then 8o 44 admissible in 8, and hence among all proce-
dunes. )



3.2. General admissibility-theory forn 8 -beAt procedures

We shall first consider how to m1n1m1ze r(e]s), 6 € 8, at a
fixed point 8 € ek. The approach given by Lemma 1.1 can still be
used. However, since we are now dealing with additive loss it is
more convenient to employ a technique similar to the one used by

Studden (1967). Let p(x,8) = Hf(xi’ei)’ and let

Pji(xse) = ﬁZG p(x,g8).
ji
We see that for y € y, Pji(y,e) = B(y,e)T(i,j)f Gji is given by
(2.7). Let

k
Tj(x.e) = i);lzi(e)Pj'i(x,e).

Then Tj is permutation-invariant in the following-way.

Tj(x,a)=ng(gx,e) and.Tj(x,e)=Tj(x,ge), vg € G. | (3.1)

For the additive loss we'consider, r(e|s) = Y (e)E (WG) Hence
two procedures are equivalent 1f ‘their 1nd1v1dua] selectlon proba-
bilities are identical. Therefore, from now on a procedure § will
only be defined by its selection probabilities w-(w],...,vk). Let
[]] <€er.S T[k] be the ordered T ‘s and let I = {i: T, -T[]]}

Then the sl-best procedure at o 1s given in the following result.
THEQREM 3.1. Let o € @X be gixed. Degine ¥° by:
] : i Tj <0
o _ - v i1, 2
;=14 if T[]] > 0 and jeI; q = |I|

Then ¥° is a best procedure in 8 at o.

Proof. From (3.]) it follows that v e sI. Let now ¥ EsI.
Then it is readily seen that

k
kir(efy) = jZ]fvj(x)Tj(x,e)du(x).




It is therefore enough to show
k- _
):][vj(x)-wg(x)]Tj(x,e) >0 for all x. (3.2)

If T'[]] < 0 then (3.2) is obvious. Assume now that T[]] g_ 0.

or _ A ‘
Then zvaj T[]], while }:vaj > T[]]Z\FJ. >_T[]] and (3.2) follows.
: Q.E.D.
Remark. For the decision-space G‘t’ t > 1, a similar result
holds. Let.¥" be defined by: | |

- t_ . t_ o
(i) If T[.t]< 0 then “’j =1 if Tj < 0 and \l'j 0 if T_jz_O.

) (ii) If T[t] > 0 and T[S_lg < T[S] FTeee= T[S+q_l] < T[S+q]s
s<tc< s+q-l,tthen vj=l if TJ. < T[S_]], vj=(t-.s+] )/q if
Then it can be shown that \yt is a best procedure in 8y at e, with
respect to G,.
In order to apply Lemma 3.3 in admissibility-considerations,
. we must show that \ro, given by Thgdrem 3.1, is essentially unique.
“Let Po be the probability-measure defined by the joint density
p(x,8). A sufficient condition for uniqueness is given in the

following result.

THEOREM 3.2. Let o € 8% be fixed. Assume

Po(Ty=0)=0 for j=1,....k. (3.3)

‘Then v° géven by Theorem 3.1 is a.s. (P,)-unique ‘n 8y, d.e. ved,
and r(e|y)=r(e|¥®) imptLies v=¥° a.s. (Py)-

Proof. Let ¥ € §; and assume r(e|v)=r(e]¥°). Let X_ =
o {x: T[]_](x,'e) < 0 and Tj(x,e) # 0 for j=1,...,k}, and let X_=
e T[]](x,e) > 0}. It then follows from (3.3) that

k k o
{ .Z](wj-wg)Tjdu + { _Z](\yj-vj)TJ.du = 0. (3.4)
. . _ J= - + J= ..



From (3.2), this implies that (Wj-WO)T =0 a.e. (u) on X_ for

i=1, ,k since {WJ WJ}TJ > 0 on X_ for all J Hence ¥ = ¥°
a.e. (u) on X_. It remains to show that ¥ = 0 a.e. (u) on X,-
From (3.4) and (3.2) it follows that ¥ = 0 if T > T[]] a.e. {n)

on X+, and also that

Zv =1  a.e. (u) on X,.

. . 0o .
F) L= Y, . = .e. .
Since ¥ € &, this shows that WJ WJ if TJ T[]] a.e. (u) ;nEX;

Definition 3.4. A family @ of probability-measures is called
homogeneous if P(A) = O implies P'(A) = 0 for all P, P' € P.

COROLLARY 3.1. Let o € ok be gixed. saune that (P,: 6€o®}

{8 homogeneous and that (3 3) hotds. Let ¥° be the best pnoce-
dune in 8 at 6 . Then ¥° is admissible.

3.3. Monotone additive £Loss

It is now assumed that f possesses the strict monotone like-
1ihood ratio property, i.e. f(h,e%)/f(u,ei) is strict increasing
inu € R for all 8; < e' The additive loss is now monotone, in
the sense that if e < eJ then 2, (8) > L (6). We shall also
assume that 2](9*) > k(e ) if e[]] < e[k]

From (3.3) we see that T (y,8), j=1,...,k and y € ¥ uniquely
determines Tj(x,e) for all j, x. It is therefore enough to con-
sider Tj(y,a) for y € %. Let now '

k
= _Z 24(8)7(i,3),

so hy(aly) = a(]al) X U ., and a(IaI)U can be regarded as the
JEa

conditional expected loss of select1ng the population correspond—
ing to Yj given that Y=y. It now follows from (2.8) that if
p(y,8) > O then



i= 1,k | (3.5)

Let _
Mg = {x: 0 < f(xi’ej) < = for all (i,j)}

- Then we can strengthen Lemma 2.1 to

‘LEMMA 3.4. Assume 8y <...2 8 and 8y < 0. Let ¢ < m, and
Ye€ Men‘y. Then, provided Yy < Yo

c
I T(i,e) > Z T(i,m) ¢ < k-1.
i=1 i=1

. LEWIA35 Assume e[]]<e[k].y€M and_yJ J+l
l.2,_...,k'-]. ThenT(y e)<T ](y 8) for j = 2,3,...,k.

fqr‘j =

Proof. Fr_om (3.1) it follows that Tj(y,e) = Tj(y,e ), Vi.
Hence we may assume’e] i< ek.' From (3.5) it is enough to show

that U. < U;

j j-1° Now

k=1 E
o= L THa)e (o)t (0)) + £, (0). (3.6)
Result now fol]lows'from Lemma 3.4 and the fact that zi'(e)qiﬂ(e)

for at least bne i. Q.E.D.
We can apply Lemma 3.5 to show that ‘the sl-best procedures

are ordered.
LEWA 3.6. Let o € 8% be fixed. Assume P,(YeM,) = 1 and

6[]] < o[k] Then there exists a version of the 8 -but procedure
at o, gwen by Theorem 3. 1., that is ordered.

_ Proof. We may assume that yé Me’ ¥y 2o 2 Yy Let first
Tk(_y) < 0. Then the 8 -best procedure 8, is given by

,sé(all.\!) =1, where a = {r,r+1,...,k} and T.(y) <o, Tr_](yv) > 0.

NQQ 2, €G, <G, y'. So Lemma 3.1 holds. Consider next the
case'Tk(y) >0andy, =..= Yp > Ypa- Then Tk(y) =...% Tp(y)',
from (3.1). Also Tp_](y) > Tp(y)from Lemma 3.5. Consider the

following version of ¥:



5,(13|y) = 1/(k-p*1) for j=p, p*i,... k.

Then (j} € G. . for j > p, and it follows that

I s,(aly) =
*a,

From>Lemma 3.1, 60 is ordered. _ Q.E.D.

0,Y

We note that PB(E(Y,e) < ») =1. Hence, Pe(Y € Me) = 1 if and
only 1f P (p(Y,g0) > 0) = 1 for all g€ G. If (P o€ aX} is
homogeneous then P (p(X g) = 0), for all g € G and therefore
P (p(Y,ge) 0) = 0 for all g € G. It follows that-Pe(Y € Me)= 1

if {P K 6 ® } is homogeneous.
Def1ne the quant1ty
) mfly.e ) .
u%‘)q+k i flype,) (65, 0 P g e )77 (3.7)
J ¥:80% b£1+] azlf(y ’eb) s H'f(yq,e -1 ) . )
o ' QEGjb-QfJ 9 q '

We have that

1 K
I I oply.)

a=1 gEG
RUTIE Z T(a,)=
=1 X Z ply,ge)
_ &6y
. L plyae8) o
=11+ % { i *6ja : .}. ]
bisilal 2. PY-98)) '
<65,
Hence,
| T s mleenT. | (3.8)

Now, if 6 <...< 8, and 87 < 0p» then f(y N )/f(yj,eb) is non-
1ncreas1ng in y v(a <i, b > i+1) and for a=1, b=k we get that
f(y »0 )/f(yJ,ek) is strict decreasing in y It follows from

(3:8) that T'(j) is strict decreasing in Y ifye M and from



(3.6) we then have that Uj is strict decreasing in Yj for fixed
{yz: 2#j}, ifye Me‘ ' '

This enables us to give necessary cdnditions for (3.3) to
hold.

LEMMA 3.7. Let v be the Lebesgue-measune, and assume

- Since P {5(Y 8)=0} = 0, it is

Proof. We can assume 8y <...2 6
= 0. We only need to consider y € M .

‘enough to show that P (U =0)
Let y(j) (y]. -s¥j. ]syJ+]. -»¥y). For given y(J) there ex1sts_
at most one value of y. for which U, = 0. Let A(y(J)) be this
value. Define a{x), vx € IRk -1 beJlettlng A(y( )) = 0 if no such
‘value ‘exists, and a(x) = 0 for all x & {v: v; <...< v, ;}. Then

k .
=0) < =a(gx{1)
Pg(U;=0) “121 ggeipe{xi a{gx* )1,

where G1 is the group of permutatlons on X(i)
Since v is Lebesgue-measure, X1 is a continuous random variable.

Also we have that Xi_and A(gx(l)) are jndependent. It follows
that Px; = a(ex{))1 = 0; vi, va e 6. Q.E.D.

We can now state the main admissibility result.

‘THEOREM 3.3. Assumptions: A1) {P,: 6 € 8%} is homogeneous.
A2) v is Lebesgue-measure. A3) e € ek such that 6[]] < °[k]' Let

v° be the best procedwre in 81 at 6. Then ¥° is admissible.

Proof. We sha]lvépply Corollary 3.1. Hence, we only have to
show that (3.3) holds. This follows from Lemma 3.7, since Al) im-
“plies that P (Y € M) = 1. . Q.E.D.

. Remarks. 1) When v is the Lebesgue-measure v can be chosen
non-randomized as follows. If T[]](x,e) <0, wo(x)- 1iff

Tj(X-O)'? 0. If T[]](x,e) > 0, Y O%x) = 1 iff X5 = X[x]-



2) If 2&(9*) > 0, the loss is a special case of the loss
considered in Section 2. If ¢ (e*) < 0, then T.(x) < 0, vj, and

¥2(x) = 1, vj. Therefore the interesting case is when 2 (e*) >0
and zk(e*) < 0. Examp]es of such loss functions are conSIdered in
Section 3.4.

To summarize the results in this section, we have shown that
if A1), A2), A3) hold then the Sl-best procedures are admissible
and if A1), A3) hold then the »I-best procedures are ordered.

3.4, A class of admissible procedunres

We make the same assumptions on f and ¢ as in Section 3.3.
We shall now consider the class 8, defined by (1.9) and (1.10).

THEOREM 3}4; Assume Al), A2) hotd. 'Theﬁ.ﬂL {8 a class of
admissible procedunes.

Proof. Assume ¢ = (a,...,a, atb), b > 0. Then 1](9) =, .=
zk_](e); and

(X.e) <0e PJk(x 6)/p(x 9) > C N(a,b).

In this slippage-conflguratlon .
f(x,,a+b) k f(x, ,a+b)
J 2
jk(x’e)/p(X9e) {f xj’a }/!'Z] f(xz,a)

From Theorem 3.1 it follows that ¥2° b, given by (1.9), is
the sl-best procedure at o, and hence from Theorem 3.3, ¥2 a,b is
admissible. : : . Q.E.D.

Since f has the monotone 1ikelihood ratio property we see
that the procedures in 5 are monotone and hence, from Lemma 3.2,
unbiased,,l e. e. 58y E (wa b) < E (wa b)

Applications.

Let v the Lebesgue measure and consider the exponential
family of distributions given by the density



O-Xi

f(x;,0,) = A(e,)h(x,)e 1 (3.9)

This family is homogeneous, such that the assumptlons of

Theorem 3.4 hold. The procedures y3sP

a,b c b’XJ k in. : ' :
=] iff C (a ble Y > igle or.xj-x[k]. (3.10).

in 3L are now given by

¥

_ Therefore the exponential procedures defined by (3.10) are
‘admissible, and also ordered and unbiased Examples of selection
problems with contlnuous exponential d1str1but10ns of the form
(3.9) are (i) selecting the largest normal mean with known var1--
‘ance, and (11) selecting the smallest scale parameter for gamma
distributed populations. ' o

~ Bjgrnstad (1978) showed that the exponent1a1 class (3.10) has
certain minimax properties for the normal case, with Cl and b now
determined to satisfy a certain control condition

vi/ng S
If Vi has the gamma density {r(p)“i} (v /n )P e le’ » then we
let e1=1/n‘ and Xi = -Vi in (3. 9) It follows from (3 10) that

- by k =-bV. 1

,b | iy- |
v; =1 iffe J < Cz(a,b)(izle )" or vJ o

It is clear that the admissibility result, Theorem 3.3,

holds for any loss function of the form
2(e,a) = ] 24(0) + h(s) _ e
i€a , , o

where the z%‘sisatisfy'the‘conditions in the theoogm. We shall
now consider some loss'functions that are equivalent to monotone
additive loss functions, i.e. of the from (3.11).

2y(e,a) = Z (e[k]-e.)-elal. e> 0.

" This loss is also conSIdered by Mlescke (1979) Here. Cl(a;b) =
b/(b-¢).
2,(0,a) = { (°[k]’°i) +a g I(ei,e[k]), a > 0.

Here, I{u,v) = 1 if u=v and 0 otherwise. We see that 22 is of the



form (3.11) with h(e) = a-#li: 05 = op, 7}, and

z%(e) =
2, is similar to the loss considered by Bickel and Yahav (1977),
and implies that C (a,b) = (b+a)/b.
ns(g,a) = 1£az (e -e[k]+A) + Z 2 (e -e[k]+A),
- where &' is non-increasing, & " is non-decreas1ng, L' (u) = 0 if
u>0 and‘z“(u) =0 if u<O0. 23 is of the form (3.11) with
z‘(e) 2' (e, -e[k]+A) - 2"(e, -e[k]+A) and h(e) = Zz"(e -e[k]+A)

L is an approprlate loss when it is of interest to select popu-
lations with 8 > e[k] A, for some fixed & > 0. Here, Cz(a,b) =
(2'(a-a)-2"(a- a)+z"(A)}/{£ (a-a)-2"(a8-a)}. Kim (1979) considered
this loss.

The loss given by (2.5) is also equivalent with a monotone
additive loss. ‘This loss gives'cg(a,b) = ¢. Deely and Gupta
(1968), Berger (1979) and Gupta and Miescke (1980) deal with
aspects of the problem of minimizing the expected subset size sub-
ject to controlling the probability of selecting n(k) In partic-
ular, Gupta and Miescke (1980) consider the class of procedures
defined by Seal (1955) and show that Gupta's maximum-type proce-
dure is optimal in Seal's class for three normal populations, when
e[k]-e[]] is suff1cient1y large )

‘From Theorem 3.1 it follows that when the two components |a]
and ﬁ; I(e ,e[k]) are cons1dered s1mu1taneous]y, then for any 6
with e[]] < e[k], no procedure in Seal's class is a sI-best pfoce-

dure.
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