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ABSTRACT. In a recent paper Feigen (1979) considers the problem of
characterizing point processes with order statistic (0.S.} property,
called 0.S.-point processes. However the class claimed there to char-
acterize these processes fails to include an important class of point
prbcesses appropriately called '"the mixtures of linear death processes'".
Besides pointing this out, the paper (1) studies some elementary properties
of these latter processes, (2) shows that the class of 0.S.-point processes
~ consists only of either these mixtures or of the mixtures of Poisson pro-
cesses save a time-scale transformation,(S) removes the customary assumption
of finiteness of the first moment of these processes, (4) characterizes
completely a multivariate analog of the 0.S.-point processes, (5) considers

briefly the state-dependent 0.S.-point processes, among others.
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%. AINTROPUCTION. The author was just about ready tovwrite this paper
after completely characterizing point processes with the so called order
stéfistic (0.S.) property studied previously by Crump (1975) among others,
when a paper due to Feigin (1979) containing some of these results ap-
peared. As it turns out in (Feigin (1979)) the class claimed to char-
écterize these point processes fails to inélude an important class of
point processes, which could properly be called as mixtures of lincar
death processes. In the next section wé consider this latter class of
processes and some of their elementary properties before returning in
Section 3 to the question of characterizing point processes with 0.S.-
property henceforth called 0.S.-point processes. The results of Crump
(1975) as well as those of Feigin (1979) are restricted- in that they
assume the finiteness of the first moment of the process for all t > 0.
This restriction is removed in Section 3.1. In Section 4 we characterize
a multivariate analog of 0.S.-point processes, while in Section 5 wc
briefly touch upon the processes with state-dependent 0.S.-property. The

paper ends with a few useful remarks, where it also gives a necessary and

sufficient condition for a Markov point process to have an 0.S.-property.

* These investigations were supported in part by U.S. National Science
Foundation Grant No. MCS-7903704.



2.0. MIXTURES OF LINEAR DEATH PROCESSES.
IR AAAAT VLAV S AT WU U
Suppose a process is initidted with a random number Z of particles
at time t = 0. Each particle independent of others undergoes a death
process with a common length of life distribution governed by a eon-
tinuous distribution function (d.f.) F(-), with F(0) = 0 and F(t) > 0,
.Vt > 0. The process D(t), t > 0, denoting the number of particle-

deaths occurring during (0, t] will be called hencéforth a mixtute of

linear death processes with D(0) = 0. Constructively we have for t > 0,

0 when Z = 0,
W o) = -
sup{j : T(J) <t, j=1,2,...,k}, when Z = k > 1,

where for k > 1, when Z = k, (T(l),...,T(k)) is an order statistic based

on TI’T7""’Tk’ which are positive mﬁtually independent random variables
(r.v.), denoting the lengths of lives of the particles with common d.f. F.
Since F is assumed continuous with F(0) = 0, almost for every sample path,
the process jumps only in unit steps. Also by definition it is separable

nondecreasing and has right continuous sample paths. Again it is easily

seen that

2) G(s;t) = B(sD) = g(1-(1-8)F(D)),

where g{+) is the probability generating function (p.g.f.) of Z, defined
by

(3) g(s) = E(sZY, |s| < 1.

We now have the following theorem.



THEOREM 1. The process {D(t), t > 0}, a mixture of death processes with

D(0) = 0, a.s., is Markovian with 0.S.-property.

PROOF. Using the constructive definition of the process D(t), it can be

easily seen that for 0 = ty <t <eeet <t and 0 = n,<mn <n

<...<n; <n,

2

we have

() P(O(t) =n, D(t;) =n, i=1,2,...,k

i=1,2,...,k; Z = m)

. Z P(D(t) = n, D(t;) = n,

m=n

il

) P(z=m)P(D(t) = n, D(t,)) =n,, i=1,2,....k|z =m)
m=1n '

MM nn
( K [F(t,) - F(e; )] 1 ) [F(©) - F(t)]

El (ni'_ ni_l)! (n - nk)!

- e™airay,

i
where g(m)(-) is the mth derivative of the p.g.f. g(*). A similar expression

can be obtained for P(D(ti) = ni, i=1,2,...,k) which along with (4) can be

shown to yield

(5) PO =nld(t) = n, i=1,2,...,K
n—nk
- [F(t) - F(tk)] 'g(n)(l'— F(t))
(n - nJ: () ’

g (- F(t))

provided P(Z > nk) is positive. Similarly one obtains an expression for

P(D(t) = n|D(tk) = nk) and finds it coinciding with (5), establishing

_ thefeby the Markovian property of the process. Again for 0 < tp <ty <...<t et



and n > 1, a similar approach yields

(6) P(ti T st dti, i=1,2,...,n, D(t) = n)
n
=eMa C ey 1 F(dt,),
i=1

where vy SV, <Llls v, are the n points of jumps of the process. However

since

(M P = =5 Fo1" - g™a - ),

we have using (6) and (7)

n
1 = = H) = 1 ! il
(8) P(t; <v; <t, +dt,, i=1,2,...,n[D(t) =n) = n f

which corresponds to the distribution of an order statistic from distribution
with d.f. given by F(t)/F(t), for 0 < T < t, for the fixed t. This establishes

the 0.S.-property of our process. [J

2ok A RBARKAROUT SONTRENTE ARALY -

Based on the fact that a mixture of Poisson processes is é}so a Markov
process (see McFadden (1965)), Cane (1977) observed in_connectidn with
probability models on accident proneness (see Bates and'Neymanjflggﬁ'a3b))”
@ complete probabilistic nondistinguishability betweén two models that are
otherwisc conceptually different. One of these models is that of a' mixture.
of Poisson processes where the Poisson parameter (s}mbolizing a measure of
accident proneness of an individual) varies randomly over the populdtion
of individuals, while otherwise it remains conStant-thraughout the in-
dividual's life time. The other process is a time nonhomogeneous Markov
point process where the rate of a future accident depends in- an apprqpriate

manner on time as well as on the number of previous accidents (see Cane



(1977) and also Puri (1979) for relatéd details). A somewhat analogous
nondistinguishability is observed between the following two processes.

The first one is the mixture of linear death process {D(t), t > 0} as
defined above, where the initial number Z of live particles is assumcd
random according to a p.g.f. g(+) given by (3) with particles' lifetimes
being otherwise mutually independent and also of Z, with a common d.f. ().
The second process {6(t), t > 0} is a Markov (birth) point process with the

instantaneous rate pn(t) for the (n+1)th event at time t, given by

gD 1 ey
e™ 1 - Feen

(9) pn(t) = F'(t) - », n=20,1,2,...,

5r0vided P(Z > n) is positive, where F'(-)? the probability density cor-
responding to F(-), is assumed to exist for t > 0. The validity of the
above claim can be easily established féilowing Cane (1977) by checking
that the mixture of death processes in question is itself a Markov 'birth!

process with the corresponding instantaneous (birth) -rates given by (9).

2.2.
;A

As in Section 2.0., a mixture of linear death processes is defined
by g(+), the p.g.f. of Z and the life time d.f. F(+). Let & be the
class of such mixtures with varying (g,F), where for each element of %,
we always assume F to be continuous with F(0) = 0 and F(t) >0, YVt > 0.
Let %(F) be the subclass with F fixed but only g varying. In the fol-
lowing we briefly state some of the closure properties of these classes
without proofs as they all follow rather easily.

a) If for any element {D(t), t > 0} of & all the lengths of lives
Ti's arc multiplied by a positive constant ¢, while g remaining

unchanged, the new process Dc(t) still belongs to ¥ and satisfies



(1, lDC(t) = D(t/c), a.s.

If instecad all the lengths Ti‘s are added a pesitive constant ¢, the
new process Dc(t) defined still as the number of deaths occurring in
(0,t], strictly speaking does not belong to %. The new process. of

course is given a.s. by

' c 0, for t <c
an o°(t) = §
D(t-c), for t > c.

b) Let {Dn(t)} be a sequence of mixtures belo“gingft°'55'wiﬁh-Ggﬁ,Eﬁ}
as the corresponding defining sequence of p1g.f.“s and d&.£."s. Then
the sequence {Dn(t)} of processes converges weakly to an element of
¥ provided &, converges to a proper P--g».f. g and En_ converges, weakly
to a proper continuous d.f. F with F(0) = 0 and E(t) > 0, ¥ E > 0.

¢) The class Y (F) is closed unde} superimposition of a finite number
of its elements. For instance if two elements of SR G@iﬁ&&gﬁm@img
to (g;,F) and (g,,F) are superimposed; the resultant process: beliongs
to %(F) with g = g,g,.

d) The class ¥(F) is closed under mixiﬁg which has to be with E@&p%ét
to the distribution of Z or equivalently with respect to g. However
the class & is not closed under mixing which is, with respeet to both

g and F.

3.0. CHARACTERIZATION OF O.S.-POINT PROCESSES.

LAV MM'VM'\J%’\/VWVVV\AM’\!\NVMNAN\I\NV\NVVV\NV\J
Let {M(t), t > 0} with P(M(t) < =)} =1, ¥t>0,bea separable peint

process with right continuous paths having unit steps at times Myo Bose

Unlike in Feigin (1979), instead of considering the process {M(t) - M(0), t > 0}



we assume without loss of generality that M(0) = 0. Other than this, we
shall follow in this section the notation of Feigin (1979). The 0.S.-
property is now defined as follows:

Given that M(t) = k, the successive jump times [ul, uz,...,uk} are
distributed as the order statistic of k independent identically distributed.
(I.I.D.) r.v.'s with d.f. Ft(-) supported on [0,t]. We mention at the
outset that since the process M(t) takes jumpé only in unit steps, the
d.f. Ft(-) has to be continuous for every t > 0. Following Feigin (1979),
we shall say that a point process M(t) has property P if it has O0.S.-property
with

-(12) Ft(_x) = %—, 0<x<t, t>0.

We state the following two theorems due to Feigin (1979).

THEQREM 2. The point process M has property P if and only if U a homogeneous

Poisson process N with unit rate such that N(0) = 0 and

(13) M(*) = N(W ¢), a.s.,

s

where W is a nonnegative r.v. independent of N.

THEOREM 3. Let EM(t) = m(t) be finite Vt > 0. Then if M is a point process

with 0.S.-property, there exists a homogeneous Poisson process N with unit

rate and an independent nonnegative r.v. W, both defined on the same prob-

'ability space (2, %P) as is M, such that

(14 - M(+) = N(Wm(*)), a.s.

Unfortunately theorem -3 is nmot quite correct, sincec not all O.S.—poinf
processes have the representation (14) even under the condition that m(t)

be finite V t 3 0, an assumption which we shall drop later in Section 3.1.



Subject to (14), for cvery t > 0, the distribution of M(t) should be a
mixturc of Poisson distributions. However mixtures of linear death processes
studied in Section 2 do cnjoy 0.S.-property and yet all such mixtures do not
yicld the distribution of M(t) as mixture of Poissen distributions, wnless of
course the p.g.f. g(*) of r.v. Z is itself a mixture of'poissqﬁ distﬁibutioﬁs
(see also Puri and Goldie (1979) for such mixtures). A close serutiny va
Feigin's proof of theorem 3 reveals that he first introduces a_?r@@gss

R(+) defined by
(15) R(m(t)) = M(t),

and then applies theorem 2 to the process R(+) for establishing theerem 3.

However one must remember that theorem 2 holds only when the process in

question has property P for all t > 0,7 Thus for the case with 1lim m{t) = ®,
— . goace

the process R(t) is defined for all t > 0, through (15) and singce it then
enjoys property P,.Vt > 0, theorem 2 applies and the result of theerem 3

as stated is correct. If however lim m(t) = y < =, the procéss R(t3 is
100

defined through (15) only for 0 < t < y, so that R(-) enjoys property P

(i.e. 0.S.-property subject to (12)) only for 0 < f < v, Consgqugntiy

thecorem 2 does not apply in this case. Whgt we need for fhiS is_thg following
analog of theorem 2 applicable to‘the case where property P hblds bnay f@r

0 <t <t¥ <o,

THEQREM 4. The point process M has property P for 0 < t < t* for seme fixed -

t* < o with P(M(t*) < ») = 1, if and only if d on the same prebability space

as that of M, a nonnegative integer valued r.v. Z, and for Z = k, k > 1, an




order statistic T(l) < T(z) <,..< T(k), independent of Z but with its

distribution identical to the one based on a sample of size k from d.f.

Ft*(x) given by (12) such that they define a mixture D(t) of death processes

as in (1) for 0 < t < t*, with

(16) M(t) = D(t), a.s., 0 < t < t*.

PROOE. In view of theorem 1, if (16) holds, clearly M has property P for

0 <t <t*. On the other hand given that M has property P for 0 < t < t*,
the proof follows in a rather straight forward manner by defining as in

(1) a process D(-) by taking Z = M(t*) and T(l) = My i=1,2,...,k whencver

M(t*) = k > 1, where 0 < u, < <...<

1 K, < t* are the times of unit steps

Mk
for the process M(t) during (0,t*) and they form an order statistic bascd on

k I.I.D. r.v.'s with d.f. Ft*(-) given by (12). |

We now have a revised version of theorem 3.

THEOREM 5. Under the conditions of theorem 3, if lim m(t) = =, the as- |
L0

sertion of the theorem 3 holds as stated. If on the other hand 1im m(t) = vy

{0

is finite, then on the same probability space as that of M, & a nonnegative

integer valued r.v. Z and for Z = k > 1, an order statistic T(l) <...< T(k)

independent of Z, but with distribution identical to the one based on a

sample of size k from d.f.

a7 Fx) =
' 0 elsewhere,

such that they define a mixture D(t) of death proceSses>as in (1), with
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(18) M(t) = D(t), a.s., VO <t <.

PROQF. For the case with 1im m(t) = =, the proof due te Feigin is walid.

______ fron

On the other hand for the case with lim m(t) = vy < «, following Eeigin
teo '

(1979), we consider a process R(+) defined by
(19) R(m(t)) = M(t), R(0) = M(0) = 0, R(y) = M{=),

so that the process R(t) is defined only for 0 < t < Yo Thgraxggmgﬂt of
Feigin now goes through in showing that the process R has the preperty

P for 0 <t <y, so that by theorem 4, # a nonnegative integer valued ».v.
Z and for Z = k, k > 1, an order statistic T(l) <...< T(k),'im@epegdent
of Z with its distribution same as that of an order statistic based on

a samplc of size k from d.f. FY(x) given by (12) such that they define a

mixturce D(t) of death processes=fof-0 < tﬁj_y; with

20) R(t) = D(t), a.s., 0 <t <y,

Now using (19), we have

(20 M(t) = R(m(t)) = D(m(t)); a.s., 0_5 t < v.

llowcver note that since m(t) is continuous, process D(m(t)) correspeonds

a4.s. to the process D(t) defined in the theorem wifh

(22) Z = R(y) = D(y) = M(»), a.s.,
and
(23) 73 Cp ey i 21,2, 0,

so that (23) forms an order statistic from dﬂf. (17), whexe

m_l(t) = inf{s : m(s) > t}, for 0 < t < ¥v. (]
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The above theorem assumes the finiteness of EM(t) = m(t), V't > 0.

In the next section we attempt to remove this restriction.

Rd W%MMWBM EM(t) .

The results of Crump (1975) are all subject to the assumption that
0 <m(t) = EM(t) <o, Vt > 0. éame is true in the case of Feigin (1979)
if we agree to exclude the trivial case where m(t) = 0 (hence M(t) = 0,
a.s.) for some initial finite interval of the time axis. These results
in particular include theorem 3 and 5 of the previous. section and also
that in this case one must have |

(24) F0) =2 0cxct<a t o

We now abandon the assumption of finiteness of M(t), and instead make

the following weaker assumption (A):

=0) <1, Ft (x) >0,.V0 < x E-tO’ and

(A) dt_ >0, dP(Mt
0 0

o)
F(ty) >0, Vt > t,.

With this we have the following theorem.

~ THEOREM 6. Let for an 0.S.-point process M(t) the assumption (A) hold

and

-1
(25)  q(t) = { Feleg)] » for 2,
Ft (t), for t j_to.

0

Theh

W F () = qG0/a(t), 0 < x < t,

(ii) for t z_to, Ft(to) is a nonincreasing continuous function of t so

that q(t) is positive, continuous, and nondecreasing in t with q(0)



(iii) If 0 < m(t) <=, Vt >0, then

m(t)  q(t)’

F, (x)/F_ (t), 0O <x <t <t
tO to -

(26) F (x) = Ft (x) FthO), 0<x<t, <t
0

Ft(to)/Fx(to), 0 < to_g x < t.

Other cases being analogous, we shall prove (26) only for the case witlh

0<x<t<t The basic tool we use is the following idemtity whdch:

0
‘must hold due to- the 0.S.-property of the process M{t).

27) H(s;x) = H(1-(1-5)F_(x)3t), ¥ 0 < x < tzfs} < L.
Here
28) H(s;t) = E(SM(t)); s| < 1.

In particular we have from (27)

(29) H(s;x) = H(1-(1-s)F, (x);t.); O < x < t;|s] < E.
t, 0 = %0 =

Using this on the right side of (27) for 0 < ¢ f-tﬁf we: have: flop
0 <x <t < tys

{30) H(s;x)

H(u;t)]u - 1_(1_s)Ft(XJ

HO-(-wF, (0 stlly = 1o (1), ()

H(L- (l-s)FtvO(t.)“Et_ (x5 €y



13

Note that since P(M(to) =0)<1, H(s,to) is strictly increasing in s.

Consequently on equating (29) and (30) it follows that we must have

Ft(x) = Fto(x)/FtO(t). Again for t z>t0’ that Ft(to) 1s nonincrcasing

in t follows from (26) for 0 < ty <x <t and the fact that Ft(x) < 1.

Also its continuity and hence that of q(t) as well as its monstonicity now

follows from the continuity in x of the d.f. Ft(x). Finally part (iii)

foliows from (i) and (24). d

REMARK 1. Under (A) it is easily seen that for t > tO’ Ft(to) =

P(u, < tOIM(t) = 1), and for t < tg, Fto(t) = Py < tIM(tO) = 1). Using

these it is rather straightforward to show that the old assumption
0 <m(t) <o, VYt >0, along with (24) imblies (A).

We now have a generalized version of therorem 5, which.is given
below without proof since the same proof as that of theorem 5 works after
replacing m(+) by the function q(-) of (25), which like m(*) is also con-

tinuous and nondecreasing.

THEOREM 7. For an 0.S.-point process M(t) satisfying the assumption (A),

the assertions of theorem 5 hold with the function m(-) replaced by the

function q(-+) given in (25).

4+ MOUDLYARIATE S RUNT RRUSRSSES -

A simple multivariate 0.S.-point process M(t) = (Ml(t),...,Mn(t))
would be the one with the following O.S.—prbperty:

Let M(0) = 0. Given Mi(t) = ki’ i=1,2,...,n, the successive times

{“il’ “iZ""’”ik} of unit jumps for the ith component process Mi(t) are
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distributed as the order statistic based on ky I.1.D. ¥.v."s with @@~
tinuous d.f. Fit(x) supported on [0,t], the various sets of &rder statistics
for i =1, 2,...,n, being mutually indépéﬂd@h%.

A multivariate separable point process with saiiple paths eofitFhucus
from the right, having jumps only of unit steps foi one of the component
processes at a time, and having the above 0.S.-property will Be caliled a
simple multivariate 0.S.-point process. We introduce the follewifig @§-

sumption, the analog of (A).

it

(A*). Tor every i =1,2,...,n, T t, >0, I P(M(t.) =0) < 1, F,
, i

(%) > 0,
V0 < x <t and Ft(ti) >0, Vt> ti'

With this we have the following theorem.

THEOREM 8. Let M(t) be a simple n- multivariate O.S.-peint process

isfying condition (A*). Then we have
(i) for i = 1,2,...,n, Fit(x) = qi(x)/qi(t), 0 < x < t < oy ylie: & 85

in theorem 6

-1
[F. (t.)] 7, for t > t,
(31) O B
[Fiti(t)’ for.t <t

(i1) The process M(t) is Markovian.

(iii) Let without loss of generality lim qi(t) = Yyo Witthi < Gy
tores

for i = 1,2,...,r and Yi = fori=1+1,...;n, WiﬁH.O § ¥ & 1

Then d a_joint probability distribution: of nonneggtive intiesé

r.v.'s Z_, Z .5W@ :
r.v. s 3

1 IR

mecative 1 e W b
"Zr and nonnegative r.v.'s Wr}I, Wf+2¢
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(32) P(Zi.= ki’ i=1,2,...,r; Wi < wi; i=1+1,...,n)

k ; w

1"4-’ r’ r+1’---,wn))

forw. >0, i=r+1,...,n, and ki = 0,1,2,..., such that

n Mi(t)
(33) H(s,,.-.,s5_;t) = E[ T s, 1
1 . i
i=1
o oo [ [} T q(t) k
=1 ... J. mn-a-sy) —— "'
k,=0 k=0 0 0 i-=1 Yi
1 T
7 n
- - expl- X (1—si)qi(t)wi] p(kl,...,kr; dwr+1,...,dwn),
i=r+l] v :

Is;] <1, i=1,2,...n.

PROOF. Proof of (i) is similar to that of theorem 6, and (ii) follows
from a simple argument used by Crump (1975). To prove (iii) we use the
following basic identity for the p.g.f. H, which follows from the 0.S.-

property. -
ql(x) qn(X)

(34) 3 _H(l—ul,...,l—un;?() = H(l—ul qlT"“’l—un an) ;t),
for 0 < x <t < =, Iuilvg_l, i=1,2,...,n. Let us fix 0 < x < =, and

define

(35) h(ulﬁ...,uﬁ) = H(l—ul,...,l-un;x).

Then through (34) h is well defined for 0 < u, < 1, i = 1,2,...,n, taking

1

ui's real. However using right side of (34), by taking t large cnough we

can extend the definition of h, for 0 Su <0, i=1,2,...,r and for



0<u <=, 1=

r+l,...,n, where ei =
1

(34) and (35), it is easy to see that

k +..
-1 1

.tk k,+...+k
n 1 n

(36)

Yi/qi(x), i=1,2,..

3 h(u

16

.»¥. Using

1,...,un)

k k
du

for all combinations of ki >0,1i=1,2,..

i=1,...,r; 0 < u, <o, i =71+l,...,n.
(ul,...,un) to (Vl""’vn) with
_Vi
(37) ui = ei(l"e )’ 1= 1’2,- T3 V
and let
_Vl

* = - b
(38) h (vl,...,vn) = h(el(l e -),...,
which is defined now for V 0O v 2, i=

bc seen that the function h* is completely

opcn octant 0 < Vi <ew, i =1,2,..

(sce Bochner (1960}, page 87) ¥ a unique n-

.du
n

n

.onand YO <u, <686_,
i i

We now change the variables

= ul, 1i=r1+4#l,...,n,
-v
0_(1-e r) v v, ),
T 5 'r*l,..."h"
1,2,...,n. Using (36) it can

monotone in the n-dimensienal

.n, so that using a well known theorem

AN

variate measure ¢ (y.,.
4 x(yl, ﬁ

(possibly dependent on x) over n-dimensional closed octant Y3 > 6,

i=1,2,...,n, such that for 0 f.Vi < o, i
(39) ho(vy,ooov ) = [ oof expl- )
0 0 i=1

=1,2,...,n, we have

v.y;l oo (dyg,. . dy ).

From this and the preceding relations, it easily follows that

foo) <0

,sn;x) = f ...f

0 0

: T
(40) H(sl,... (n
i=1
: n
exp[- ]
i=r+l

[1—(1-51)

Yy
1 )

q. (x)

i
Y.

1

(1'Si)yi]'Gx(dyl""’dyna’
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valid V x > 0. For removing the dependerice of the measure ¢ on x and
in order to bring (40) into the form (33), we proceed as follows. ILet

0 < x < 1. Using (34) with t = 1 and (40), we have

ql(X) qn(XJ
(41) H(sl,...,sn;x) = H(l—(l—sl) a}fij»,...,l—(l—sn) E;TTT ;1)
o © T . q. (x) Y3
=[ .. (1 [-a-s) i 1 ).
0 0 i=1 i
n q; (x)
° exp(—1=12‘+1(1—si) qlT]-) * )’i) Cl(d)’l,---,d)’n)
© o T q. () i
=f...J(m-a-s)=—1)
- fo fo i=1 vy
n -
- exP(‘i=§+1(1‘?i)qi(x)Wi) p(dwy,...dw ),

where at the end we changed the variables from,(yl,...,yn) to (wl,...;wn);

with wi = yi, i=1,2,...,r and wi = yi/qi(l), 1 =m7r+l,...,n, and o 1s
the new measure for w.
Similarly let 1 < x < t < o, Using (34) with x ='1, and taking

ui = (1—si) qi(t)/qi(l), i=1,2,...,n, we have

| q, (1) | q,(t)
(42) H(slx"'.vsn;t) = H(l“(l-sl) —q—l—(l—)_ ,1-':1_(1—Sn) W )1))
q; (1)
valid for S5 € [1- a—ffj-,l], i=1,2,...,n. Again using (40) in (42),
i : : ,

we have . for t > 1,



1&

3 o (t) Y5
(43) H(s s .05 5t) = /. j € n [1-(1-s, ) -1 ).
0 , i=1 ;
v % q; (t)
exp(- ) (1-s, ) * %) oy bdy,,. .. 0dy ),
i=r+l ( ) L S TR
, q; (1)
for H € [1- a—fzj-,l], i=1,2,...,n. We now extend thrqugh apglytlc
i

continuation the validity of (43) for |si| <1, 1i=1,2,...,n. FEinglly

(43) can be equivalently written as in (411-xi@léing,¥9%%¥h%£ with, (41},

= | q;(t) i
(44) H(sl,...,sn;t) = f f ( H [1- (1 -S. ) -1 ).
0 i= 1 .
n o
: eXP(-i=§+l(1-Si)qi(t)Yi) Q(QY121'12§¥B}L

valid for !sil <1,1=1,2,...,nand t > 0. Note that Q has te Qg.g
probability measure since H(1,...,15t) = 1. Also putting S; ¥ 1, ﬁgg.

i = r+l,...,n and then letting t > « on bpth sides of (44), since the

left side limit is a p.g.f., we note that the measure p must cence

its mass on nonnegative integer values for yi,'i =.1,2,...,r. This makes

(44) and (33) equivalent, thereby completing the proof. [J

REMARK 2. The characterization of the disfributiqnqu M(t) for t > 0,
through (33) characterizes all the simple multivariate Q.S,:Egig; Brocesses,
since the distribution of M(t) together with the 015¥‘P¥QE?¥§¥ allgws us

to obtain the distribution of any arbitrary fini§¢ dimensional vector

(M(t;),...,M(t,)), for 0 < t; <...< t, < Moreover the 0.S.-property

and the form (33) admit the following prqhabilisticé@ly eguivalent cons

structive interpretation for these processes. Observe first the random
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vector (Zl,...Zr; Wr+1""’wn) according to the probability measure p.

Given this vector construct n independent point processes Mi(t),
i=1,2,...,n, where the first r processes are linear death processes

using (Zi’Fit)’ i=1,2,...r, and the remaining are Poisson processes
with E(Mi(t)lwi =w.) = wq,(t), i = r+l,...,n. With this, it is cvident

that lim Mi(t) = Zi’ a.s., for i =1,2,...,r, and lim Mi(t) = o a.s8.,

too o oo
fori=1r=+1,...,n. ‘
REMARK 3. Since {M(t); t > 0} is a Markov process, with jumps of only

unit steps for only one of the components Mi(t), i=1,2,...n, at a

timé, the possible transitions are only of the type

L R ),

~(45) (21,...,2j_1, L5 2j+1,...,zn)_+-(21,...,2j_1, J.+1, ooty

for j = 1,2,...,n. Now using the constrﬁction mentioned in Remark 2 and
following Cane (1977), it can be easily shown that analogous to (9) the

rates corresponding to the transitions (45) are given by

(21,7.‘,zj_1,zj+1,...,z )

. . Q)
(46) A(J) (t) = H (0,...,0;t) N ]
Riseesty (21,22,...,2j,...,£n) qj{t)
H 0,...,0;t)
_ (2y5-.-52)
for j = 1,2,...,n, provided in the denominator H (0,...,0;t) is positive,

where qi(t)'s are assumed to be continuously differentiable, H is given hy

{(33) and
L.+,..+8
e %) 1 n
(47) ( 1’ ? n 3 g H(Slr' )Sn;t)
H (0) ,O;t) = 2, 2
1 n
3s 9s s, = =5 =0
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In view of the previous remark we notice again a nondistinguishability
between the two models, one based on a mixture of multivariate processes
and the other on a single multivariate Markow process, an observation
similar to the ome madeiby Cane (1977)‘andza150 discussed earlier in
Scection 2.1{

REMARK 4. For the case with r = n, where lim qi(tB =y <, i= 3,2,...,n,
tse ' '

it 1s possible to define directly an m-variate mixture of linear death

processcs D(t) = (Dl(t),...,Dn(t)) on the same sample Space as that of

M(t), with M(t) = D(t), a.s., by taking

(48) g = (Zl"--:zn) = l_\fl-‘(m) = (Mlcm)—:-~',Mn(w)D
and
(49) T£j) = “ij’ i= 1,2,...n;_j‘= 1,2,...,

where for each i = 1,2,...n, (ng), j=1,2,...) is the order Statistit

nceded to define Dj(t) as in (1), and uij’s.are as defined in theozem 3.

Hlowever for the case with r < n, where lim-qi(t) =, for i = r+l,...,n,
t>o

the-proof of Feigin (1979) does not go through, as:it involves a trans-
formation of time scale using the function q(-), which in the present
~case are more than‘one and are possibly different. Thus in the case
with r < n, it was not possible to obtain slightly stronger resuits

similar to Feigin (1979).

é. STAT‘—D‘%ENI NT

As a generalization to the ordimary 0.S.-point {univariate) provesses

studied in Section 3, we may consider processes with the State-dependent
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0.S.-property. Here the process M(t) is defined exactly as in Section

3.0., except that now for each given M(t) = k, the continuous d.f. Fé;)

for the order statistic depends not only on t but also on the state k.
‘These processes in general are highly nonMarkovian but are quite in-
teresting. While their detailed investigation will be reported elscwhere,

we close with the following theorem given here without proof.

THEOREM 9. Let M(t) with M(0) = 0, a.s., be a univariate state-dependent

0.S.-point process satisfying the condition

(Al) q to 2 P(M(t0)=0) <1, FltO(x) >0, VO < x <t and

il Flt(to) >0, Vt > t,-
let -1

[Flt(to)] ,, for t > to
(50) qq(t) =

Flt (t), for F f_to.

0

Then Flt(x) = ql(x)/ql(t), for 0 < x < t. Also the process is Markovian if

and only if it is an ordinary 0.S.-point process with -

(51) Fkt(x) = Flt(x), 0<x<t<w k>1.

& AJRN CONCRURING, REMARKS -

We make a few remarks for the univariate 0.S.-point processes bclow,
although some of these may also apply to the multivariate case also.
(a) We have shown that univariate 0.S.-point processcs are cither mixtures

of Poisson proccsses, save a time-scale transformation, with

(52)  H(s;t) = EGTYY = [ exp[-(1-s)q(t)w] w(dw),
0
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where lim q(t) = =, and ¢ is the d.f. of the r.v. W of theorem 3, or they
t>oo )

are mixtures of linear dcath processes with

53 neso) = BT - gaoaesy W,

for some p.g.f. g(+) and a nondecreasing function q(:) with q(0) = 0,

lim q(t) = y and 0 < y < ». The reader may refer to Puri and Goldie (1979)

t 20
concerning the infinite-divisibility properties of mixture of Poisson processes
for varying values of t. In particular the mixture (52) is infinitely divisible
for all t > 0, if and only if ¢ is an infinitely divisible law. Similarly

it can be shown that (53) is infinitely divisible ¥ t > 0, if and enly if p.g.f7
g(+) corresponds to an infinitely divisible law. ” ﬁ
(b) Crump has given a condition (see (2.i2) of Crump (1975)) which is neces-
sary for a point process to have an 0,S.-property. An analogous conditien,
which is both necessary and sufficiént, is given without preoef in ﬁhe fol-

lowing theorem, as it can be easily established.

THEOREM 10.  Let a point process M(t) be a nonhomogeneous (Markev) birth

process constructively defined with birth rates Xi(t), i=20,12,...,m,

which for 0 < i < m, are all strictly positive, continueus and integrable

over (0,t) for all t > 0, with Am(t) = 0. Here m may be”ipfin%§g Q§_§i§ite;

in the latter case it is an absorptien state for the process. Then in order

that the process M(t) be an 0.S.-point process, it is necessary and suf-

ficient that for all t > 0, the A's satisfy the identities (54) given

bclow for some positive constants L(i), i = 0!1,2,...,m,’with L(O) = I,

and a function h(t) which is strictly positive, continuous and intergrable

over (0,t), ¥Vt > 0.
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(54) pi(t) = h(t) L(i+1)/L(i), i = 0,1,...,m-1.

Here for i = 0,1,2,.

(55) Cop () = () explA L (B) - A(1)]
and
: t
(56) A1) = f A (W) du.
0

: t
Furthermore, if H(t) = f h(u) du, we a}so have
. . t .
' L
(57) EM(t) = H(t) = Z%%%TT'IO A @) explA () - A ()] du,

for i = 0,1,2,...,m-1, and

k . .
58) P(M(t) = k) = L(n) l§£$ll-- exp[-A ()], k = 0,1,...,m.

(¢) For an 0.S.-point process, which is_a”mixture of Poisson processes with
the corresponding p.g.f. given by (52), assuming that the function q(t) is
continuously differentiable and using (46) for n = 1, we get the corresponding

birth rates as L K+l
[ w exp[-q(t)w] ¥(dw)
(59)  A(t) = q'(t) -+ — ,
| [ W expl-q(t)w] w(dw)
: 0

Hh
o'
=
-
I

0,1,2,..., where ¢ is a probability measure. If for seme 0 < j <L < oo

>
~
ct
~—
i

Al(t), it turns out that we must have Ak(t) = AO(t), Vk >0. This

follows by showing, using the lemma given below, that in this case the

measure ¥ must be degenerate.

LEMMA. Let for an arbitrary nonnegative random variable Y,

1

60)  E(Y) E(YS) = E(Yh),

for some k > 1, where the moments involved are assumed finite, then

P(Y = ¢c) =1, for some ¢ > 0.



PROOE. The lemma is trivial if P(Y=0) = 1. Suppose therefore P(Y=9), < 1,

so that E[YX] > 0, for all x > 0. It can be now easily seen that

B(x) = &1E(Yx) is a convex function of x and that the conditien (60), which
1s equivalent to B(1) + B(k) = B(k+1), implies that B(x) = ax, for some
constant a. From this ‘the lemma follows with c = exp(a).

(d) Consider again a mixture of Poisson processes correspcnding to (52),

from which we have

(61) P (t) = P(M(t)=0) = [ exp[-q(tIw] ¥(dw).
0

This relation may be‘useful in characterizing the mixing probability
measure ¥. For instance, let q—l(r) = inf{t : q(t) > t}. Since q(-)

is continuous, we have the Laplace Stieltjes transform of ¢ given by

©

f  exp(—6w) Y (dw) =.P0(q_1(9)), for 6 > 0.
0 :

(62) b*(6)

Similarly for a mixture of linear death processes corresponding to (53),

we have
(63)  Po(t) = Hose) = g(1- LBy,
which yields

(64)  g(s) = Py(a” (v(1-5))), 0 < s < 1.

(c) CLOSURE PROPERTIES. As in Section (2.2), we can note some of the
closure properties of 0.S.-point processes. For instance analogous te
(d) of Section 2.2, it can be easily shown that if we have {Mi(t), t > 0},

i=1,2,...,k, all independent 0.S.-point processes with qi(t), i=

1,2,...,k, as the corresponding functions entering either in (52) or (83)

as the case may be, then all mixtures of these k processes have,Q.S.fprQPQrty

if and only if
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(65) q (t) = ¢, q(t), i =1,2,....k,

for some constants c; and a function q(t). This means either all the k

processes have to be of the type (52) or all of the type (53); in either
casc the corresponding qi(t)'s must satisfy (65). Similarly superim-
position of the above k processes subject to (65), yields again a processes

with 0.S.-property (see also (c) of Section 2.2}.

QQ&NQ%&EQQEMEQI. The author is indebted to his colleague Professor

llcrman Rubin for suggesting the use of the function q(+) defined in (25).
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