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ABSTRACT

The problem of estimation éf a bivariate disfribution fuﬁction with
randomly censored data is considered. It is assﬁmed_that the censoring
occurs independently of the lifetimes, and that deaths and losses which
occur simultaneously can be separated._ Two»eStimators are developed:
a reduced-sample (RS) estimator and‘a'self-consistenf (SC) one. It is
shown that the SC estimator satisfies a nonparametric "likelihood" fﬁnction
and is unique up to the final censored values in any dimenéion;'it jumps
at the points of double deaths in both dimension;T The two estimators are
compared. An example is presented illustrating the estimates in a reliability

setting.
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1. Introduction and summary. The nonparametric estimation of a

bivariate distribution function using randomly censored data is treated.

For each pair of items, one attempts to observe the lifelength of cach

itgm. However, there is a random mechanism which can censor the data beforc
the lifelengths have been observed. The problem is to estimate the bivariate
distribution function, or, equivalently, the bivariate survival function in
the presence of censored data.

There are numerous situations where bi#ariate estimation is important.
Times to death or times to initial contraction of a disease may be of intcrest
for littermate pairs of rats or for twin studies in humans. The time to a
deterioration level or the time to reaction of a treatment may be of interest
in pairs of lungs, kidﬁeys, eyes, or ears of humans. In demography, therc
are the lifelengths of married couples. In reliability aéplications, the
distribution of the lifelengths of a particulaf pair of components in a
system may be of interest. The censoring may arise for a number of reasons.
The items may withdraw from the study, they may be withdrawn due to a‘chungc
of health status or contamination. They may be censored by death from a causc
unrelated to the study. The censoring may also be due to random entry into
the experiment and then truncation of the experiment at a fixed timec.

This paper reviews in Section 2 the one-dimensional survival estimation
problem, focussing on the nonparametric approach of Kaplan and Meier (1958)

and the related self-consistency technique of Efron (1967). In Scction 3,



two bivariate estimatérs are proposed: a reduced-sample (RS) estimator and
a4 sclf-consistent (SC) one. Conditions for the existence and uniqueness of
the latter estimator are presented. The relative merits of the estimators
arc discussed. The final section illustrates the calculation of the estimators

for a rcliability example.

2. One-dimensional survival estimation. Let Xg (i=1,...,n) be in-
dependent, identically distributed (i.i.d.) random variables from a continuous
survival distribution function F(x) = P(XO > x). Let Ci (i=1,...,ﬁ) be i.i.d.
censoring variables (observation limits) from the survival distributionr

H(x) = P(C > x). The pair (Xi, ei) (i=1,...,n) are observable, where

1 if Xi = XQ (uncensored) :

X. = min(x(.),c.); €. = { L
i i’7i , 0
0 if X, < X. (censored).
i i
Let the survival distribution of the X's be denoted by G(x) = P(X > x). It

" is assumed that the C;'s are independent of the Xi's; i.e.,

G(x) = F(x) H(x). (1)

Kaplan and Meier (1958) develop two estimators of F(x). The first,
called the reduced-sample (RS) estimator, requires additionally that all

the Ci's are observable. It is given by:
= 0
F(t) = N(t)/N"(t), (2)

where N(t) is the number of items observed and surviving at time t where
deaths but not losses at time t are excluded, and where No(t) is the number

of items for which Ci > t.



For the second estimator of Kaplan and Meier, assume initially that the
times N of deaths are fixed and discrete (i=1,...,I). Then the estimator of
F(t) proposed by Kaplan and Meier is the product of estimated conditional

probabilities:

F(t) = E. p; fort e [Sj’sj+1) (j=1,...,1-1),

12)]

where p. = N./M. for M, the number of X. > t and N. the number of X. > s.
i i’ i i j - i j— i
excluding the deaths at S, The limiting estimator as I tends to infinity such
that max[si+1—si|-tends to zero is called the Kaplan-Meier product-limit
estimator. They show that it is the nonparametric maximum likelihood cstimator
(ire., it maximizes the probability or "likelihood" function). This estimator
is not defined for any losses which follow the final death. Efron (1967) shows

that the product-limit (PL) estimate is the unique solution of the following

self-consistency equation

A F(s.)
nF(s.) =N, + J (1-e,) —31—, (3)
J i<j 1 F(si)

where Nj_is the number of X.

i 2 S excluding deaths at Sj’-

j.
The estimator which satisfies (3) has a closed-form solution, but this
will not be the case for the bivariate situation. Consequently, the following

result which describes an iterative solution will prove useful in the bivariate

treatment of Section 3.

0)

Theorem 1. Let F§ = Nj/n and define F}k) iteratively as

ng_l)

(1- €) ;%E?TT' (k=1,2,...).
i

e = pl0s §
J i<j



(k)= . . .
Then the sequence (F } 1s non-decreasing sequence which converges to

the Kaplan-Meicer solution F(sj) of eqdation (3).
I'roof. To show that F§k) is increasing in k, it suffices to show that

F;k)/ng) (i< 3j) 1is non-decreasing in k. This follows by induction.

RO (D)
_ j j ; 1 eyl
Note that, for k = 0 and 1, oy < 1y Since Y (l-¢ ) 5_ } o« Ek)N
F. F. k<i . k
1 1 k<j
for i < j. Assume that F}k)/ka) is increasing up to and including k=%.
Then it suffices to show that F}z)/F£2) §_F§2+l)/F£R+1).
© F(Z 1)
(2) 0 :
Fo7 = F0 + ) (1-e. )
j j i<j (Jl 1)
P2 d o
an (l)‘ F(l) F(2—1)
(2+1) (0) (2) j
F. =F o+ 7 (l—e) = F, +Z (1—5)[ .

Then

(2+1) () (2) (2-1)
K F E.
J J {F(z)(F(l) Y- ek)[ J ])

(2+1) (2) . (2) (Z-l)
Fi k<j k
(2), (L) | R et b ()5 (2)
L), (2 2)..(2
- FFS o+ Y (1-e )[ ])}/F
g L O (z i§)

= (rMp®) ) —L ,Ek'+ F e pp(A-1)y,
i3 i <k<i Fél) i i i 7y
1- ¢ - 1-

e

k (V) .(2-1)
- FSF, )
k<i Féz_l) o) i<k<j Fé



- M7 a-e )[ i ]+ [ I ]F..(”F.(Q‘l).
i k Fél) Fé%—l) F(Z) Fgl—l) 1 i
i i

i<k<j
1- €
) ke
k<i Flfl'l) o7

Now apply the induction hypothesis twice to the right-hand side to conclude
that it is nonnegative. Therefore, the sequence F;k) is nondecrcasing. Since
it is also bounded, the 1limit of F§k) (as k»=) exists;call it ﬁj' Then it is
clear, since Ej satisfices (3), that Ej = ;(sj). [}

Note that the proof does not hinge on the initial selection (F}O) = Nj/n)
bu% works equally well for ahy F}O) and thatvF§O) E_E(sj).

Numerous authors have continued work in this area of one-dimensional
survival estimation. Breslow and Crowley (1974j supplied the details for the
asymptotic behavior of these estimates of Kaplan and Meier. Efron (1967) applied
the product-1limit, self-consistent estimator to the two-sample testing problem.
J. Sander Chmiel (1975) has studied asymptotic behavior of functions of the
Kaplan-Meier PL estimate. Turnbull (1974) looked at the_doubly censored data

problem, and Meier (1975) extended the theory to the more general censoring

situation than the random censoring mechanism.

3. Bivariate survival estimators. Let {(XS,Y?)}2=1 be i.i.d. pairs of

random (lifelength) variables from the continuous joint survival distribution
F(s,t) = P(X° > s, Y0 > ). Let {(c;,D)};_| be i.i.d. pairs of censoring
variables from continuous joint distribution H(s,t) = P(C > s, D > t). The

variables Xi’ Yi’ Ei’ ei are observed, for i=1,...,n:

1 if X. = X
{ i

S O

- 0
— - 8 —
Xi = min (X.,C.}; 3 =

0 if X, < X, ;
i

=



0 1 if Yi =Y
Y. = min (Y.,D.); el = {
i i1

[ TR B " T

0 if Y. <Y
i

l.et the distribution function of (X,Y) be denoted G(s,t) = P(X > s, Y > t).

Tt is assumed that (Ci’Di) is independent of (Xg,Yg) for all i=1,...,n; that

is, the censoring takes place independently of the lifetimes. Thus,,

G(s,t) = F(s,t) H(s,t). (4)

For the bivariate reduced-sample estimate, assume that not only are
Xi’ Yi’ ei, e{ available for each pair, but also Ciand Di (even if botﬁ members
- of the pair may have failed prior to censoring). The natural extension of
the RS estimate of Kaplan and Meier is based on solving quatioﬁ (4) in
terms of F(s,t) and then estimatihg G(s,t) and H(s,t). In particular, the

RS cstimate is:

F(s,t) = G (5,t)/H, (0,£) | (5)

where nH;(s,t) is the number of pairs such that Ci > s and D, >t and
nGn(s,t) is the number of pairs for which Xg > s, Yg > t with Ci > s and
I)i >t (i.e., nGn(s,t) is the number alive at(s,t),ekcluding deaths at s

in the first or at t in the second).

There are two main disadvantages of this RS estimator. Firsf, there
arc relatively few situations in which one enjoys the luxury of observing
the censoring variables when the lifetime precede them. Secondly, there is
no guarantee that the point estimate in (5) based on a binomial model with-
random numbef of trials is indeed a Bivariate distribution function as s

and t range over all values. In particular, it is possible to construct



examples for which the probability of a rectangle is mnegative (see Secction 4).
The second estimator is a bivariate self-consistent estimate. Assume
initially that the possible times for losses and deaths occur at discrete

poihts. Let s >S5y be the distinct times for the first item of the pair,

100
and t_,...,t, be the distinct times for the second item. Define &8.., a.., B..,
1 J _ 13 1] 1)
and A.. as follows:
1)
Gij = number of pairs for which Xk=si, Ykztj, €k=1, EL =1 (doublc dcath);
aij = number of pairs for which Xk=si, Yk:tj s €k=0, EL =1 (censorcd 1in
first coordinate, death in second);
. Bij = number of pairs for which Xk=si, Yk=tj, €k=1, Ei =0 (death in first,
censored in second);
Xij = number of pairs for which Xk=si, Yk=tj, €k=0, EL =0 (double ioss).

Just as in the one-dimensional case, it is necessary to separate deaths
and losses which occur at any point (Si’tj)' The convention adopted here is
that deaths precede losses in each dimension. Therefore, in the first coordinate,

. the pairs 6.. and B.. precede a.. and A..; in the second coordinate §.. and a..
i ij ij ij ij ij
precede Bij and Aij' Pictorially, this can be represented by Figure 1. There

is intuitive appeal for this convention in that if a loss occurs at time t, the
item‘éan be assumed to be surviving at the time of the censoriﬁg.

The problem is to estimate Fij = F(Si’tj) for i=1,...,I, j=1,...,J. Con-
sider the maximum likelihood criterion extended to the bivariate casc. The
nonparametric ”1ike1ihood" of, more correctly, probability function is

I J §.

. Ai. ai. Bi.
L=n 1 A EY oY (6)
i=1 j=1 ij ij ij ij



sre A - r o . - F. . - F. is the probability of death in
where i Iij + Ii—l,J—l Fl,]—l i-1,j P y

the rectangle (si_l,si] X (tj_l,tj], Qi' = F, iy - Fij is the probability

of death in (si,m) X (tj-l’tj]’ and Rij = F, . - Fij is the probability of
death in (Si—l’si] X (tj,w). In order to maximiie L by choice of Fij for fixed
values of §,., A.., o.., and B.., differentiate gnL with respect to F.. and
ij ij ij ij _ ij

set equal to zero to get the "likelihood" equation

5ij . Gi+1,j+1 _ 6i,j+1 ) 61+1,j . Aij +-Bi+1,j
b5 Benger %451 Biaps Fis  Ria1,j

(7
B.. o. . a. .
1), _1,3+1  Tij _ 0

Rii Q501 Y
Then solutions to (7) are possible mgximum ""likelihood" estimates. .
Consider a self-consistent approach. At time (si,tj), to estimate Fij’
one would surcly.count all Nij pairs that are known to.be ali?e at.(si,tj)
(so exclude deaths at s; or at tj but not losses). Now for the aklrpairs
that were censored in the first coordinate at Sy bu?hdied in the sgcond
coordinate at time tz’ for k < i and 2 > j, the expected number to sufvive

il

K4 6;;—. Similarly for the Bkl pairs censored in the second

to (si’tﬂ) is o

coordinate for k > i, £ < j, the expected number to survive to (sk,tj) is

R

Bk2 ﬁkln Finally, of the Akl’doubly censored pairs for k < i or L < j, the
ke,

Fmax(i,k),max(j,!&)

k2 sz

This

expected number to survive to (si,tj) is A



o)

argument leads to the bivariate self-consistency equation:

~

- Q.
nF.. = N.. + z e j}&_
U ey Uep
k<i
(8)
R, . B ‘
N z Bkg AkJ . X ng max(i,k),max(j,1) ’

k>i RkIL k<i sz

<] OR :
2<j

where N.. = z § o+ ‘Z o+ X B + z Ao é.. = ﬁ_'_ - ﬁ_., and
ij K>i k2 K>i k4 K>3 k& k>i k2 ij] 1,j-1 ij
>3 2>j 2> >3

~

.. = E. . - F...
i] i-1,j 1)

i

Theorem 2. An estimate Fij satisfying (8) also is a solution of equation

~ ~ A ~

{(7) with Fij replaced by Fij and Aij by Aij = Fij + Fi—l,j—l - Fi—l,j - Fi,j—l"

Proof. From equation (8)

nﬁ..'= n(a. .-ﬁ..) = z ., + ) « + ) B., + z A
1] i-1,7 ij 253 i 95 i-1,2 95 il 25 i-1,2
Q. Q. ., - R, .
_ 2 o, Q'All N z _ - 1-},2 if z B-l ?lJ (0
2> TR 2>j Q 2<j YR
i-1,0 k2 ig
R, . CF,
- ‘e Tt L Ny - T 1,8 -
k<i-1 Bg kei-l LA S I
2<j-1 2>j s

exc.(i-1,j-1)

A

Form an equation for nR.

i,j-1 in a similar fashion and subtract cquation (9)
b4

from it to obtain:
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- - QG -0,
”(Ri _1—le) = nAij = 61:1 + Z akj 1_,\"’] 1]
k<i-1 ij
(10)
l—R.. R. -
by e S § oy, LIy
tg-1 Rie kei-1 Frr
2<3-1
Divide equation (9) by Ai' = Rl,]—l— i = Qi—l,J_ Y
(S.. [o P B }\ .
n = .:L + z AkJ + Z Algz +. z Akg (11)
A..  ksi-1Q 2<j-1 R, k<i-1 F
1j k ig 255-1 k2

s ~

Form three other equations similar to (11) based on Ai+1,j’ Ai,j+1’ Ai+1,j+1

instead of the A,. of (11). Add equations based on A.. and A, . and subtract
1] . 1j 1+1,j+1

those based on A. . and A, . _:
i+1,] 1,3+1

%15, Six1,50 C%,541 Sien, L M

~

0=

b0 Mt B5ar Ba,y Fig
(12)
8

ir1,i P51 %

A

+

Riet,i Ry Qje1
The proot is complete in that (12) is just (7) with Fkl replaced by Fkl' 4d

The above theorem proves that if there is a self-consistent (SC) estimator,
it is also "maximum likelihood". It is necessary to show the SC estimator exists

and to find conditions for its uniqueness.



il

Assume initially that all the B's and A's are zero so that only a-censoring

occurs. Then the self-consistent equation (8) reduces to

~

N.. a, Q.
Pyt Lo
: kb 7,
>3
Calculating Qij = Fi,j—l - F1]
. N, . ,-N.. a . Q..
Q.. = ( i,j-1 ;J) . z kj QlJ
ij n . n -
k<i ij

the that this equation is similar to one-dimensional self-consistency
- v N. . ,-N..

equation (3). Therefore, letting Qi?) = —iilil——il-and defining Qg?) iteratively,
' (m)

. SO
1)

by Theorem 1 the sequence {Qg?)} is increasing. Consequently, the F

derived would also be increasing. In a similar manner, assume that o's and

A's are zero so that only B-censoring occurs. Then the sequence {Rﬁ?)} is

m)

nondeéréasing and hence so 1is ng It is also possible to prove that if

M)y
J

the a's and B's are zero so that only double censdring occurs that {Fi

is nondecreasing sequence in m. These results suggest the conjecture that in

‘general the iterative prOcedure'{Fi?)} beginning with Fgg)
(m)

ij

= Nij/n is non-

decreasing in m. This then implies, since F < 1 for all i, j, and m, that

the sequence Fi?) converges to ﬁij’ the SC estimate, for i=1,...,1; j=1,...,J.

Given an estimate which satisfies the SC equation (8), the next issue

is whether the estimate is unique. Let J denote the IJ x IJ matrix whosc
((i1), (k,2)) entry is

32 log L

Tanan TR
ij
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G Y 500 T eyt g Y 5 8y 5

+ b.. + b. .,
1] 1+1,3

2 2
where d.. = 6../(A..)7, 2.. = A.. F.., a.. = a../0,.
€ 1) 1J/( 1J) 1] 1J/ 1] 1) 1J/Q1J,

and b, . = B../R?.. Further,
1) 1] 1)
T(3) r1,5+1) = Y41, 541
i) @1,5-1 © Y1,

TG -1+ © 4,541

T63)G-1,9) = 45 "9 g by
' T3 -0 T Y5 e,y g

J(ij)(k’g) =0 if [i-k| > 2 or |j-2] > 2.
Theorem. The matrix J is non-negative definite.

Proof. Multiply the matrix J by Q = {q,... } whére q,.. = (—1)1+J(—1)k+2.
— (13) (k, 2) (1j) (k,2) o

Then the resulting matrix (call it K) has all non-negative entries.r-porove J
is non-negative definite it suffices to prove K is.- Decompose K in the following
manner : | |

Let L be diagonal 1J x IJ matrix with entries Eij at the entry (ij), (ij)
and zeros elsewhere. Let Aij denote the IJ x IJ matrix with ones at
(ij)y(i3), dnNaGg,j-n, (i,3-1)(ij), and (i,j-1)(i,j-1) with zeros elsewhere.

Let Bij denote the IJ x IJ matrix with ones at (ij)(ij), (i-1,3)(ij), (ij)(i-1,j)

and (i-1,j)(i-1,j) with zeros elsewhere. Lastly, let Dij denote the IJ x 1J-
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with zeros exéept for the.ones at (ij)(ij), (ij)(i,7-1), (i1 (i-1,7)
(1j) (i-1,5-1), (Lj-1D(5), (1,5-1)(E,5-1), (-1 (-1,5), (1,j-D3G-1,j-1),
(i-1,j)(i3), (i-1,7)(ij-1), (i-1,j)(i-1,7), (i-1,j)(i-1,j-1), (i-1,j-1)(ij),
(i-1,j-1)(i,j-1), (i-1,j-1)(i-1,j) and (i-1,j-1)(i-1,j-1). Then, it is
readily seen that

Q=L+ ) a..A .+ )} b..B .+ ) d..D,..

i,j YO oy Mg

Since L, Aij’ Bij’ and Dij are all non-negative definite, K and hence J are also. LI

Because J is non-negative definite, the likelihood function L of equation
{6) is convex in the Fij's. This implies that the maximum L is unique up to
pbssible flat spots by shifts in adjacent Fij's. In particular, the same
uniqueness problem in one-dimension carrigé over to the bivariate casce; namely,
there is no uniqueness possible to the right of last death for a-censoring,
above the last death for B-censoring and bdth above and to the right for
A-censoring. That is, deaths must follow losses in the appropriate way for
the estimate to be unique. In the event that that is not the case; one can
achieve specificity or uniqueness by arbitrarily cenverting the final losses
~(with no deaths thereafter) in any appropriate dimension to deaths.

Both the reduced-sample and the self-consistént eétimators facilitate
estimation with random censorship. The RS estimator requires the additional
information of(Ci,Di) even if Xg precedes Ci or Yg'precedes Di' Its advantages
are that it is easy to compute and is unbiased and consistent. In the event
that all Ci and Di exceed the largest Xg and the largest Yg, respectively, the
estimator reduces to the ehpirical bivariate estimator with no censorship.

The main disadvantage is that the resultant estimator nced not be a dis-

tribution function. The sclf-consistent estimator, while more difficult to
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compute, dﬁes not require the complete censoring information concerning the
Ci's and Di's. Further, it is always a distribution function; in the event
of no censoring it reduces to the empirical distribution function. The

estimator jumps only at the points of double-deaths or final censored values

in any dimension.

4. An example. Consider a number of identical systems of two (relevant)
components A and B. Each system can function if either component is functioning,
even although the components lifetimes may be dependent. In the first yeaf of
a two-year study, 100 such systems are placed on tests. Of these, ten fail
in both A and B at the end of year 1, 8 fail in both éomponents in the second
year, 20 have A fail in year 1, and B in year 2, 15 have B fail in year 1,
and A in year 2. Of the systems still functioning, 10 have failed in A in
the first year, 5 in B in year 1, 16 in A in year 2, 12 in B in year 2, and
4 systems have no component failures:after two years. The 90 systems sfill
functlonlng at the end of year 1 are joined in the second year by an addltlonal
1000 identical new systems. Of these 1000, 110 fail in both A and B by the
end of year 2, 325 fail only in A, 275 in B and 290 do not fail after 2 years.
(Sce figure 1). Let T denote the time beyond which no componént functions in
the figure.

The bivariate RS estimates for the jumps at years (ij) are:

£, = .11 £, = .22 frqg = .05
£, = 22 £,, = -.02 £, = .12
£lp = 10 f,0 = .16 fop = -04

Notc that as remarked earlier that the resulting estimator need not “be a bivariate

distribution function; in this case, it is not, due to. the negative mass at (2,2).



The self-consistent estimates are:

~ ~ ~

£, = .11 £, = .20 £, = .11
- = % = - =

£, = .21 5y = -06 £y = -09
£p = .07 £yp = <12 f15 = .03
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