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1. TINTRODUCTION

It would seem that if econometric models arce counstructed and oot i
mated as a source of information for decision making or choice,
statistical decision theory, based on the analy:is ot losses due to
incorrect decisions, can'and should be used. Consequently, in this
paper we make use of decision theoretic procedures as a basis (ol
gauging the sampling performance of alternative costimators (decision
;ules) for a range of econometric models.

Within this context the widely used leasl squares cestimator lor
estimating the unknown coefficient vector in the general linear
statistical model is minimax and minimum variance unbiased when the
random errors have the usual normal distribution. The discovery ol
the "Stein effect" [ 12 ] brought out the fact that the least squaes
estimator is inadmissible under squared error loss when the
size of the coefficient vector is three or morce and James aod Stein
[ 9 ] specified an estimator that demonstrated this inadmissibilicy.
Since fhis development users of the linear model have been prescoted
with a bewildgring array of new estimators for the coefficient vector
[ 8 1, all of which domiﬁate the traditional lcast squares cstimator .
These new estimators are all minimax and bilased, a few of them are

admissible. Furthermore their risk functions are usually hiphly
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depeadent on the design matrix in the linear model and the specified
dealpgn matrix may preclude consideration of certain forms of estimators.
In this paper we develop a general minimax estimator, discuss its
peneral form and note that it includes many of fhe ridge-type and Stecin-

type estimators.

2. MODEL

Arcume the following linear statistical model
(2.1) y = X8 + e

where y is a (T x 1) vector of observations, X is a T x K nonstochastic
known matrix of rank K » 3, B8 is a K x 1 vector of unknown coefficients,
and the unobserved random vector e has a multivariate normal distribu-

tion with mean vector 0 and Efee'] = OZIT, with unknown scalar 02 > 0.

We consider estimators B of the unknown vector £ under the risk
PR 2. P, Y7o 2
(2.2) : p(B.0758) ~ E[(B-B)'Q(B-B)]/a" ,

where Q is a K x K specified positive definite matrix

The Jeastl squares estimator of B,

(2.%) b= (x'x)7]

A
X'y ,
is wobiased and under a squared error loss measure is minimax, and

' ? - .
pf,07gb) = trace Q(X'X) 1. Estimators of 02 are often functions of
(2.4) s = (y~Xb)'"(y-Xb) ,

which fs Independent of b,
Not ¢ that because the risk of the maximum likelihood estimator b
in conatant for all values of the unknown parameters, any estimator

g of # which iy dlstinct from b and 1s also minimax must have risk
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less than or equal to that of b everywhere, i.c., p(B,oz;ﬁ) f_p(ﬂ,aj;h) for
all values of B8 and 02 > 0. 1If the above inequality holds for some
value of the parameters we say that é dowminates b. 1{ one
estimator dominates a second estimator we say the second estimator
is inadmissible. The admissible estimators for this problem are a1l
generalized Bayes. Not all generalized Payes estimators are adwisgible,
but all the proper Bayes estimators are admissible [ to ).

- There are of course various possible specificalions or form: of
uncertainty which may be imposed on the statistical model. Because
of this range of alternative statistical models a number of estimators
have arisen in the literature and theiy propertics and relattonship
to one another and to the maximum likelihood estimator are often |
;nclear. For example, one possible speci[icatioﬂ involves coertain
elements in the B8 vector being a priori.sét equal (é fixed valuesn,
say zero,.and preliminary test estimators [ 5 ] bave artsen out of
this format. Alternatively another possible specification fs that of
a certain prior distribution for all or part of the clements of the
unknown coefficient vector B. Uncertainty as to the exacl [orm of Che
prior density function has led to a consideration of uﬁpirivul Bayen

[ 8 ] and Stein-type estimators.

3. A FAMILY OF ESTIMATORS
We will examine estimators which "correct" the least squares ot i--
mator by some matrix H whose stochastic elements are functions of (he
quadratic form b'Bb/s where B is a positive definite matrix.
Let

(3.1) 6(b,s) = (I-H)b
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where 0 7 s a positive definite matrix which commutes with the

bl

I VR 1 -1 %
positive definite matrices Q ’BQ and Q’(X'X) 'Qz, which also commute

with cach other. Tt is assumed that therc is an orthogonal nonstochastic matrix
S VR | Loo_L L -1k
Posuch that PQ 'BQ P, PQHQ P and PQI(X'X) Q%" are diagonal
-1 ;
matrices with diagonal celements fi, hi and di respectively. The
- Fb .
chatacteristic rootya hi of Q°HQ arce assumed to be functions of
'nh/e)y.our any of the hi'n take on values greater than one, the

crtimator & may be improved upon by a "positive part" counterpart [2],
. + +
(1.7 § (b,s) = (I-H )b .

+ -Lo L 1 -1 1
The matvix I commutes with Q 28Q € and E (XX IQB and is chosen such that the

\. N L
matvix PO Q p' is diagonal with elements

- h, 1f-h <1
(3.1 hf == b i ’ : .
! a, 1f h, > 1
1 1

wherve a0 is any real-valued measurable function of b'Bb/s with Z—hi <
i =
. 2+ 2 . . . .
a, - L tor he > 1. So p(B,07;8 ) < p(B,07,8), with strict inequality
i i -
. c s
it & and § differ on a set of positive measure.

A anoaside it should be noted that a number of ridge type esti-

mators [ ¢ ] have been considered which have the above form with

(v.4) hy = 1/(1 + "i) ,

where i, 1S function of a quadratic form in b. For example, if we

et al I and set Q= 1 with a, >0, and 0 < r_l(') < 1 where d?l is: the ith
- - - i

characteristic root of (X'X)—l, results of Casella [ 6 ] show that if

cortan regularity conditions on r oare satisfied and if

(3.5) o PIXIRb Ay A (b X )



and

2

-1 .- 1 ,-2 . .-
—1} <2 [ ail diz/max {ui di b - 21,

-1
(3.6) max {di d.1
4
. . - . . _ N . ' - .1 be
then the ridge estimator 1s minimax. If a, = 1, then tr (X'X) mus L b
| —2 " agee . ivoo RV .
greater than or equal to 2 max. ch. rt. (X'X) . In general the ap may e

chosen such that (3.6) is satisfied.

Furthermore a number of priors may be specificd for which the
resulting Bayes estimator has the form of (3.1) and is minimax.

General Minimax Fstimator

Assume that the matrix H has the form. ‘
3.7) H = h(b'Bb/s)C ,

where C is a known matrix and h 1s a real-valued mcasurable function of
b'Bb/s. Our task is to give conditions on h which insurc that the estimitor
(3.8) §(b,s) = [Ik—h(b'Bb/s)C]b
is minimax.

At the outset note that for certain design mafrices X and certain
specifications of B and C, no function h exists for which & 15 minimax.
In particular, if B = (X'X) and C = I-and Q = I, then no estimator of
the form 6 is minimax 1if tr()('X)-1 is less than twice the maximum

characteristic root (max ch rt) of (){')()—'1 [4]. For the repression

problem, certain Stein-type estimators do not dominate the least squares



-6~

estimator as noted in the comments to the paper by Dempster, Schatzoff
and Wermath [ 71, The conditions to be given for the minimaxity of §
are gencratizations of those developed by Efron and Morris [8] for the

case when (X'X) = IK.

5

L L -1 . .
Theorem:  Assume Q'CQ * and Q ‘BQ 7 are positive definite matrices

§ . P P % A _]!5
which commute with each other and with Q°(X'X) "Q?. Then

b'Bb. )
" { f; - — ————
(1.8) §(b,s) IK h ( - ) Ci b

Ia aloiwax if the following conditions hold:

0 0 < ¢ = 2trEE0 )2 max ch re_fe(xx 1o} ’

o (T-X+2) Gnax ch rt{C'QCB‘l})

fwhich fmplica K > 2);

C .
(i1) 0 <hlu) <2, _ .

Fer 211 w » 0 and h 1s diffeventiable for all u > 0; and

) d c 1€ Y.
(ifi) wl(u) =y ° [7? - h(u)](l|fo)h(u)

S non-decreasing function of u if h(u) < co/u, where

TR T . . . 3R JPApS s 8 .
(1-K=2) ¢ M chrt _&_Q&B____i__ and £, =| (4/(1-k-2)d_| . Further-
max ch rt {C(X'X) "Q}

d =
) 4

more il h("o) - CO/UO» assume h(u) =co/u for u > u

The proof of the general minimax theorem is as follows: Because
Lﬁ —"LJ '“Ll‘ —Li "}’ [] -1 ‘1'5 .
Q°CQ 7, Q BQ * and Q(X X) "Q? commute, there is an orthogonal matrix

P such that the wmatrices are simultaneously diagonalizable as previously

noted with hi & h(b'Bb/S)ci.

+
|
Setting w = KRQémll, we have that



(3.9) p(B,0%;6) = g|{b=B)'Q(b=)
g
_ 1t ) ! -
+ |E nZ{s b Bb L(LEQQ - 2E (~b—‘2) Qes b 57 s
o g /
) .
If w K
= tr(X'X)_lQ+E h2 "21“1 Z'(:zw2 -2 I ¢,d -1
11 e o
X (1-K)

b2
E | (w,-Elw,])d, h -—«1~1-~ v,
(T ~-K)

" where XZ(T—K) has the chi-square distribution with (T-K) degrees of free-

dom and is independent of w.

If w?
Differentiation and integration by parts of |h —;J—i- w, exp ~éJ(w]—E[wll)7
XI(T-K) ' '
implies that
~F 2 9. 2
(3.10) E[(wi E[wi])di h(Efjw /x (1- K) [~ {h()f W /X (- K)
Substituting
Lf w2 Tf w2 fw?  firw?
(3.11) E 33 n{ 213 woll=E|h —;—Li— T2 R (A R
. . 2 Y
LA (1 & (r-ky Xy N

X
for | E (w ~Ew, )d h(é \> in p(B,0%;6) yields for u = ¥f w7/X (T-K) *
(T-K)

(3.12) p(8,02;8) = tr(X'X)”'q + E | h?(u)

-2 1£]cidi E |h (u)
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Note In Tine with [g] that Elx(xz(n)xz(n)] = nE[g(x? (n ))] + 2E[g" (x2 (n ))X (n)ﬂ

Efiw]{ )ciwi
Setting ;',(xz(n)) = —)—- - » and applying this
Xy )% (ny

result fmplies

)cfwf Xciwi - rcs w2
(3.13) E[W? (u) VX gy | = (TK-2) B 2 () ———)| - 4E|n’ (u)h(u)[—L
2 2 2
X" (T-K) X~ (r-K) X (T-K)

\_/

Substituting this in the last expression for p(B,02;8) we have

Lclw AP |
tr X0+ E[R (1) u ((T-K—Z) h (u)<_i_13 =2(zd c;)

I‘fwi/ uv

_1 2
Le,d, fw” Lclw?
- 4h' (u) u <__1.L-Ti_i>+ S N h (u)
: 2
- L ywy X" (T-K)

it

(3.14) p(ﬁ,oy;ﬁ)

-1
te,d, f, w2 Ic2y? : :
<o E (AL 3L henl @+ (E e bew) w))
f w? 2 ° °

11 X (1-K)

i

-1
(‘(u) u (mf;x {c_idll}) <(T—K—2) h(u) max {cifgl}' -2(zcid;1)>

- 4h' (u) u (1 +(fo/co)h(u) u)

This last inequality is truc because

Ec?iwzi -1
(3.1%) h(u) (T-K-2) | --=== )< h(u) (T-K-2) max {c2f’ }
2 ii
If w i
11
and
, » A
(1.16) ((T-K-2) K(u) max {c2£7'} = 2(c,d 1) /u]
A it1 1%1
1 non-positive, and
ffte d7f w2 Lcw? ' - B
.7 -J--‘-L—‘> + _-i—i——> (W) (@ + (£ /c ) h(w) ! < max fegdy ).
2 2
) III{wi X (T-K) i
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Usiﬁg the definition of wl we may rewrite the last upper bound so that

] Ic d_lf.w% Le?w?
(3.18)  p(8,02;68) < tr(x'x) q-g| 4ff L1211 Li Y] o (f /e

2 L2 )
Zfiwi

2~

h(u) u)-l¢l'(u) cglu do (co/u - h(u))2+ro

< erx'x) o, if HORN

where

\ (d_-2) ¢ | '
(319 ¥ @ = weu © (e fu - e @ e u ) -

L (fo/co) uh (u]=h (“)(do+fo+1)

«

if h(u) # co/u- If h(uo) = co/uo,;Lhen h{u) = co/u for u > U, and we

define w;(u) =0 for u > u_. Since w; > 0 we have that p(8,0%;6) < nr(x'x)”'q
which implies that § is minimax.

These results imply there exists a large class of estimaﬁors that
are superior to many of the maximum likelihood estimators cmployed in
econometric work if performance is evaluated under the squared cerrox
loss measure.

Admissible Estimators

It has been noted by Berger and Srinivasan (3] that when Q = 1 and
02 is known, a necessary condition for admissibility of estimators of 8
of the form

(3.8) §(b) = (I - h(b'Bb)C)Db
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is that ¢ = UQ(X'X)—IB. This would suggest that there may be some form

of catimator (as 1in the‘case of the positive part estimator) which
automattically improves on estimators of the above form if C # 02(X'X)_1B.
The condition that C = 07(X'X)—1B arises from a much more general condi-
tion for the admissibility of estimdtors of B that is given by Berger
and Srinivasan [ 3 ], which says that an admissible estimator 8* of B
must satisfy the condition that O_ZX'XG*(b) has a symmetric Jacobian

matrix.

Referring back to the minimax condition implied by (1) of Theorenm,

(1.20) tr(C(X'X)Q]) > 2 max. ch. rt.-(C(X'X)Ql)-,'

-1

[t is clear that the choice of C = Q ~ X'X would insure that (3.20) is true

for any X'X matrix and specification of Q. Thus

(3.21) 8(b) = (I, - o h (b'(X'X)Zb) X'X)b

15 one estimator of the above form wheﬁ Q = I which satisfies the necessary
comdition for udmjssihiiify given by Berger and Srinivasan.

An estimator 6* which is admissible and minimax for all possible
full rank specifications of the design matrix when o2 is known to be

one has been given by Berger [1]. Its form is reasonably simple:

Let n be an integer such that K/2 - 1 <n < K - 2

and define u = b'(X'X) Q(X'X) b/ts, where tg 1s the smallest characteristic

root of (X'X)’IQ. Then an admissible minimax estimator is

(3.22) sx(b) = (1, - (X'X)Zntglu_lf(u) b,
n h|
where f(u) = 1 - (u/2)h/n! exp(u/2) - L Lu/2)°

i )

I=o
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Other minimax admissible estimators [4] found 1n the iterature have
been restricted to certain kinds of design matrice:. In part icalar,
a minimax admissible estimator for X'X = IK and 0 0ot assumed (o be

known is given by Strawderman [1], but the form iu complicated.

4. SUMMARY

In this paper we have tried to shed some light on the correct ion
factor (shrink) type estimators that arisc due to positing various
forms of uncertainty in the general linear statisticnl model.

Estimators which are of the'form-(I ~ H)b may be examined tor
possible improvement by taking the 'positive part' of the cstimator.
Further, when H = h(b'B b/s)C, there are rules for determining
;hether or not the estimator improves upon the usual least squuares
estimator b, i.e., is minimax. Also an estiwator i« piven which is

admissible and improves on b for any full rank specilicatfon of (he

design matrix X.
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