THE SOLUTION OF THE FUNCTIONAL EQUATION OF D'ALEMBERT'S TYPE FOR COMMUTATIVE GROUPS*

by

A. L. Rukhin Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #79-23

October 1979

*This work was supported in part by National Science Foundation grant MCS 77-19640 and in part by National Science Foundation grant MCS - 7802300.

D'ALEMBERT'S FUNCTIONAL EQUATION FOR COMMUTATIVE GROUPS

by

A. L. Rukhin¹

ABSTRACT

A functional equation of the form $\phi_1(x+y) + \phi_2(x-y) = \sum\limits_{i=1}^{n} \alpha_i(x)\beta_i(y)$, where functions $\phi_1,\phi_2,\alpha_i,\beta_i$, $0=1,\ldots,n$ are defined on a commutative group, is solved. We also obtain conditions for the solutions of this equation to be matrix elements of a finite dimensional representation of the group.

AMS(MOS) subject classifications (1970). Primary 39B50; Secondary 20K99, 43A99.

This work was supported in part by National Science Foundation grant MCS 77 - 19640 and in part by National Science Foundation grant MCS - 7802300.

1. INTRODUCTION

Consider the functional equation

$$\phi_1(x+y) + \phi_1(x-y) = \alpha_1(x)\beta_1(y) + ... + \alpha_n(x)\beta_n(y),$$
 (1.1)

where $\phi_1,\phi_2,\alpha_i,\beta_i$, $i=1,\ldots,n$ are functions given on a commutative group ζ , taking values in a field F of characteristic zero.

Clearly, if
$$f(x) = \phi_1(x) - \phi_2(x)$$
, $g(x) = \phi_1(x) + \phi_2(x)$, then

$$f(x+y)-f(x-y) = \sum_{i=1}^{n} [\alpha_{i}(x) + \alpha_{i}(-x)]\beta_{i}(y) = \sum_{j=1}^{m} h_{j}(x)k_{j}(y)$$
 (1.2)

and

$$g(x+y) + g(x-y) = \sum_{i=1}^{n} [\alpha_i(x) + \alpha_i(-x)] \beta_i(y) = \sum_{i=1}^{p} u_i(x) v_i(y),$$
 (1.3)

where the functions h_i , k_j , $j=1,\ldots,m$ and u_i , v_i , $i=1,\ldots,p$ are linearly independent. Therefore it suffices to consider the case when $\phi_1=\phi_2$ or $\phi_1=-\phi_2$ in (1.1). Note that linear independence of h_j and u_i implies $k_j(-y)=-k_j(y)$, $j=1,\ldots,m$ and $v_i(-y)=v_i(y)$ $i=1,\ldots,p$.

The equation (1.1) can be viewed as a generalization of D'Alembert's (cosine) functional equation

$$\phi(x+y) + \phi(x-y) = 2\phi(x)\phi(y),$$
 (1.4)

which has been much studied (cf [1 p. 176], [2], [4], [5], [6], [9]). It also arises in statistical applications (see [10]).

In Section 3 we obtain the general form of the solutions f and g of equations (1.2) and (1.3). These solutions are expressed as linear

combinations of matrix elements of inequivalent finite dimensional representations of the group \mathcal{G} and also of terms involving homomorphisms of \mathcal{G} into a vector space \mathcal{F}^n over the field \mathcal{F} and homomorphisms of \mathcal{G} into additive matrix group over \mathcal{F} . While the former terms are well known in the theory of functional equations, the latter terms seem to be new. Section 2 contains some preliminary results about polynomials on Abelian groups. The discussion of the main result is given in Section 4, where sufficient conditions for a solution to be a matrix element of a finite dimensional representation are derived.

The author is grateful to Professor R.C.Penney for his interest in this work.

2. POLYNOMIALS OVER COMMUTATIVE GROUPS

Let $\not\equiv$ be a finite dimensional vector space over the field \Im . (In this paper $\not\equiv$ will be the vector space \Im_n of all n×n matrices over the field \Im , or the vector space \Im^n of dimension n on \Im). If ψ is an $\not\equiv$ -valued function defined on the Abelian group \mathbb{Q} , then $\mathbb{L}(x)$, $x \in \mathbb{Q}$ is the translation operator, $\mathbb{L}(x)\psi(\cdot) = \psi(\cdot + x)$. Thus \mathbb{L} is a regular representation of \mathbb{Q} which acts in the linear space spanned by the translates of the function ψ . The function ψ is called a polynomial if for some n $(\mathbb{L}(x)-\mathbb{I})^{n+1}\psi(y) \equiv 0$ for all $x,y \in \mathbb{Q}$. The smallest number n for which this identity holds is called the degree of the polynomial.

Thus a polynomial of degree one satisfies the identity

$$\psi(x+y) + \psi(x-y) = 2\psi(x).$$

If $2\zeta = \zeta$ this condition implies that $\psi(x) = \chi(x) + c$, where $c \in \mathcal{L}$, $\chi \in \text{Hom } (\zeta, \mathcal{L})$, i.e. $\chi(x+y) = \chi(x) + \chi(y)$ for all $x,y \in \zeta$.

A polynomial ϕ is said to be homogeneous, if

$$(L(x)-I)^{n}\psi(\cdot) = n!\psi(x).$$

The following elementary results [6] will be used in Section 3.

- 1°. If φ is a homogeneous polynomial of degree n, then for all integer j $\varphi(jx) = j^n \varphi(x), x \in \zeta.$
- 2°. If ψ is a polynomial of degree n, then $\varphi(x) = (L(x)-I)^n \psi(y)$ does not depend on y and is an homogeneous polynomial of degree n in x.
- 3°. If ψ is a polynomial of degree n, then $(L(x_j)-I)...(L(x_j)-I)\psi(x)$ is a polynomial in x of degree n-j.
- 4° . If ψ is a polynomial of degree n, then

$$\psi(x) = \varphi_n(x) + \ldots + \varphi_0(x),$$

where $\phi_{\mathbf{j}}(\mathbf{x})$ is a homogeneous polynomial of degree $\mathbf{j},\ \mathbf{j}=0,1,\ldots,n$. One has

$$\varphi_{n}(x) = \frac{1}{n!} (L(x)-I)^{n} \psi(\cdot)$$

and for $j = n-1, \ldots, 0$,

$$\varphi_{j}(x) = \frac{1}{j!} (L(x)-I)^{n} (f(\cdot)-\psi_{n}(\cdot)-\dots-\psi_{j+1}(\cdot)).$$

5°. If φ is a homogeneous polynomial of degree n, then φ (x) = χ (x,...,x) where χ (x₁,...,x_n) is a symmetric function of x₁,...,x_n and for fixed x₂,...,x_n, χ (·,x₂,...,x_n) \in Hom (G, £).

If ψ is a polynomial of even degree and 2 ζ = ζ then in all formulas above L(x)-I can be replaced by L(x/2)-L(-x/2).

If $k \in \mathfrak{F}^n$ and $k \in \mathfrak{F}^{*n}$ where \mathfrak{F}^{*n} is the dual space, then <h,k> will always denote the value of the linear functional k on the element h. With this convention equation (1.2), for instance, can be rewritten

$$f(x+y)-f(x-y) = \langle h(x), k(y) \rangle,$$
 (2.1)

where $h(x) \in \mathfrak{F}^m$, and $k(y) \in \mathfrak{F}^{*m}$. Also A^t will denote the transpose of a linear transformation A.

3. THE MAIN RESULT

A structure theorem for the solutions of the functional equations (1.2) and (1.3) is obtained in this Section.

Theorem 1. Assume that G is a commutative group such that 2G = G. A function f taking values in an algebraically closed field 3 of characteristic zero is a solution of the equation (1.2) with linearly independent functions h_j, k_j , $j = 1, \ldots, m$ if, and only if, there exist nonnegative integers $m_1, \ldots, m_R, m_1 + \ldots + m_R = m$ such that

$$f(x) = \langle S(x)f_{1}, \varphi(x) \rangle + \langle T(x)Q_{1}\varphi(x), \varphi(x) \rangle$$

$$+ \sum_{r=2}^{R} \left[\langle F_{r}(x)f_{r}, \ell_{r} \rangle + \langle F_{r}(-x)d_{r}, \ell_{r} \rangle \right] + c. \qquad (3.1)$$

Here $\varphi \in \text{Hom } (\zeta, \mathfrak{F}^{m_1})$, $S(x) = \sum\limits_{k=0}^{m_1-1} H^k(x,x)/(2k+1)!$, $T(x) = \sum\limits_{k=0}^{m_1-1} H^k(x,x)/(2k+2)!$, where for each $y \in \mathcal{G}$ $H(\cdot,y) \in \text{Hom}(\mathcal{G}, \mathfrak{F}_{m_1})$, H(x,y) = H(y,x), $H^1(x,y) = 0$ if $m_1 \geq 1$, $H^2(x,y) = H(x,x)$ H(y,y), $H^1(x,x) = H^1(x,y)$, for all x,y; F_r , $r = 2, \ldots, R$ are pairwise inequivalent matrix representations of the group ζ of degree m_r , all eigenvalues of $F_r \in \text{equal}$ and different from one; Q_r are invertible linear operators from \mathfrak{F}^{m_1} to \mathfrak{F}^{m_2} , $H(x,x)Q_1 = Q_1H^1(x,x)$, $F_r(x)Q_r = Q_rF_r^1(x)$, $r = 2, \ldots, R$; $f_1 \in \mathfrak{F}^{m_1}$ $\ell_r \in \mathfrak{F}^{m_2}$, $\ell_r \in \mathfrak{F}^{m_1}$, $\ell_r \in \mathfrak{F}^{m_2}$, and the vectors \mathfrak{F}^{m_2} , $\ell_r \in \mathfrak{F}^{m_2}$, and $\ell_r \in \mathfrak{F}^{m_2}$, $\ell_$

We do not prove the next Theorem 2 since its proof is analogous to that of Theorem 1.

Theorem 2. Under assumptions of Theorem 1 a function g is a solution of the equation (1.3) with linearly independent functions $u_i, v_1 = 1, ..., p$ if, and only if, there exist nonnegative integers $p_1, ..., p_R, p_1 + ... + p_R = p$, such that

$$g(x) = \langle C(x)Q_{1}g_{1}, a_{1} \rangle + \langle S(x)\psi(x), a_{1} \rangle$$

$$+ \sum_{r=2}^{R} [\langle F_{r}(x)g_{r}, a_{r} \rangle + \langle F_{r}(-x)b_{r}, a_{r} \rangle] + c.$$

Here C(x), S(x), $F_r(x)$, Q_r and Q_r have the same meaning as in Theorem 1 with m_r replaced by p_r , $\psi \in Hom(G, \mathcal{F}^1)$ br, $g_r \in \mathcal{F}^n$, $g_r - b_r = 2Q_r a_r$, $a_r \in \mathcal{F}^n$, $r = 2, \ldots, R$, $c \in \mathcal{F}$. The vectors $C^t(x)a_1$, $x \in G$ span \mathcal{F}^n , and the vectors $C(x)a_1 + S(x)\psi(x)$, $x \in G$, span \mathcal{F}^n ; the spaces \mathcal{F}^n and \mathcal{F}^n $r = 2, \ldots, R$ are spanned by the vectors $F_r(x)g_r + F_r(-x)b_r$ and by the vectors, $[F_r^t(x) + F_r^t(-x)]a_r$ correspondingly. The matrix functions H(x,x) and $F_r(x)$ $r = 2, \ldots, R$ are defined uniquely up to equivalence.

Proof of the Theorem 1. The functional equation (1.2) rewritten in the from (2.1) implies that for all x,y,z

$$f(x+y+z)-f(x-y-z) = \langle h(x), k(y+z) \rangle$$

and

$$f(x+y-z)-f(x-y+z) = .$$

Combining these formulas one obtains

$$= f(x+y+z)-f(x+y-z) + f(x-y+z)-f(x-y-z)$$

= $.$

Since the functions $k_j(z)$, $j=1,\ldots,m$ are linearly independent there exist $z_j \in \mathcal{G}$ such that the vectors $k(z_j) \in \mathcal{F}^{*m}$ $j=1,\ldots,m$ are linearly independent. If the linear operator A(y) in \mathcal{F}^{*m} is defined by the formula $k(y+z_j)-k(y-z_j)=2A(y)k(z_j) \qquad j=1,\ldots,m \ ,$

then for all x,y

$$h(x+y) + h(x-y) = 2A^{t}(y)h(x).$$
 (3.2)

We also deduce

$$< h(x), k(y+z)-k(y-z)> = < h(x), 2A(y)k(z)>,$$

what because of linear independence of $h_j(x)$, j = 1,...,m implies that $k(y+z)-k(y-z) = 2A(y)k(z). \tag{3.3}$

Since k(-z) = -k(z) it is clear that A(-y) = A(y) for all y. Also 2A(x)A(y)k(z) = A(x)[k(y+z)-k(y-z)]= [k(x+y+z)-k(x-y-z)-k(x+y-z) + k(x-y+z)]/2 = [A(x+y) + A(x-y)]k(z).

Thus the matrices A(x) satisfy D'Alembert's functional equation

$$A(x+y) + A(x-y) = 2A(x)A(y).$$
 (3.4)

An immediate consequence of (3.4) is that all matrices A(x) commute. It is known (see [1] p. 16]) that the whole space \mathfrak{F}^{m} can be represented as a direct sum of invariant subspaces W_r , with respect to all A(x), for $r=1,\ldots,R$. The irreducible $A(x)|W_r$ are equivalent, while for $r\neq s$ the irreducible parts of $A(x)|W_r$ and $A(x)|W_s$ are not equivalent. Since the field \mathfrak{F} is algebraically closed Shur's lemma shows that all irreducible parts of $A(x)|W_r$, $r=1,\ldots,R$, are one-dimensional operators. Thus all matrices A(t) have the form $A(x)=T^{-1}B(x)T$, where B(x) is a quasi-diagonal matrix with blocks $B_1(x),\ldots,B_R(x)$ on the principal diagonal, and $B_r(x)$ is

a lower triangular matrix of dimension $m_r = \dim W_r$, r = 1, ..., R with the same diagonal elements $b^{(r)}(x)$, $b^{(r)}(x) \neq b^{(s)}(x)$, $r \neq s$. Clearly $m = m_1 + ... + m_R$ and all matrices $B_r(x)$, r = 1, ..., R commute.

Returning to (3.2) and (3.3) we see that if $Tk(y) = \ell(y)$, $T^{t}w(x) = h(x)$, then

$$\ell(y+z)-\ell(y-z) = 2B(y)\ell(z)$$

and

$$w(x+y) + w(x-y) = 2B^{t}(y)w(x).$$

Moreover

$$\langle h(x), k(y) \rangle = \langle w(x), \ell(y) \rangle.$$

Let $\ell(y) = \ell_1(y) \oplus \ldots \oplus \ell_R(y)$ with $\ell_r \in \mathcal{F}^{m_r}$, and $w(x) = w_1(x) \oplus \ldots \oplus w_r(x)$ with $w_r \in \mathcal{F}^{m_r}$, $r = 1, \ldots, R$, be partitions of $\ell(y)$ and w(x) into direct sums corresponding to that of the matrix B(x). Then

$$< w(x), \ell(y) > = \sum_{r=1}^{k} < w_r(x), \ell_r(y) > .$$

Also

$$\ell_{r}(x+y) + \ell_{r}(x-y) = 2B_{r}(y)\ell_{r}(x), \qquad (3.5)$$

and

$$w_r(x+y) + w_r(x-y) = 2B_r^t(y)w_r(x)$$
. (3.6)

Note that if $f_1(x) = [f(x) + f(-x)]/2$, then

$$f_1(x+y)-f_1(x-y) = \langle d(x), \ell(y) \rangle$$

where d(x) = [w(x)-w(-x)]/2. It follows that

$$\langle d(x), \ell(y) \rangle = \langle d(y), \ell(x) \rangle.$$

Therefore there exists an invertible linear operator Q from \mathfrak{F}^{m} to \mathfrak{F}^{m} such that $Q^{t}=Q$ and for all $x\in Q$

$$d(x) = Qe(x)$$
.

It is easy to see that $QB(x) = B^t(x)Q$, and because of Shur's lemma $Q = Q_1 \oplus \ldots \oplus Q_R$ where Q_r is of dimension m_r , and $Q_rB_r(x) = B_r^t(x)Q_r$, $r = 1, \ldots, R$. Also,

$$[w_r(x)-w_r(-x)]/2 = Q_r \ell_r(x)$$
 $r = 1,...,R$.

It follows from (3.4)

$$B_r(x+y) + B_r(x-y) = 2B_r(x)B_r(y)$$
 $r = 1,...,R$ (3.7)

so that in particular

$$b^{(r)}(x+y) + b^{(r)}(x-y) = 2b^{(r)}(x)b^{(r)}(y)$$

All solutions of this D'Alembert's functional equation are known to be of the form (cf. [5])

$$b^{(r)}(x) = [\chi_r(x) + \chi_r(-x)]/2,$$

where \boldsymbol{x}_{r} is a multiplicative homomorphism of \boldsymbol{G} into $\boldsymbol{\Im}$:

$$\chi_{\mathbf{r}}(\mathbf{x}+\mathbf{y}) = \chi_{\mathbf{r}}(\mathbf{x})\chi_{\mathbf{r}}(\mathbf{y}).$$

If x_r is not identically one there exists $x_0 \in \mathcal{G}$ such that $x_r(2x_0) \neq 1$ and the matrix $B_r^2(x_0)-I = [B_r(2x_0)-I]/2$ is nonsingular. Moreover one can find a nonsingular lower triangular matrix G_r such that $G_r^2 = B_r^2(x_0)-I$. Indeed

$$B_r^2(x_0)-I = [(x_r(x_0)-x_r(-x_0))/2]^2[I + P_r]$$

where P_r is a nilpotent matrix, $P_r^{m_r} = 0$.

Thus one can put

$$G_{r} = [(\chi_{r}(x_{0}) - \chi_{r}(-x_{0}))/2][I + P_{r}/2 + \sum_{i=2}^{m_{r}-1} \frac{(-1)^{i+1}(2i-1)!!}{2^{i} \cdot i!} P_{r}^{i}]$$

Clearly G_r commutes with all matrices $B_r(x)$ and $Q_rG_r = G_r^tQ_r$.

Now let

$$G_{r}(x) = G_{r}^{-1}[B_{r}(x)(G_{r}-B_{r}(x_{0})) + B_{r}(x+x_{0})]$$

$$= B_{r}(x)-G_{r}^{-1}[B_{r}(x)B_{r}(x_{0})-B_{r}(x+x_{0})].$$

It is easy to check (cf. [5]) that

$$G_r(x+y) = G_r(x)G_r(y)$$
,

and

$$Q_r G_r(x) = G_r^t(x)Q_r$$
.

Evidently $G_r(x)$ and $G_s(x)$ are inequivalent for $r \neq s$ and

$$G_r(x) + G_r(-x) = 2B_r(x) - G_r^{-1}[2B_r(x)B_r(x_0) - B_r(x+x_0) - B_r(-x+x_0)] = 2B_r(x)$$

It is also clear that $G_r(x)$ is a lower triangular matrix with all diagonal elements (and hence eigenvalues) equal to $\chi_r(x)$.

It follows from (3.5)

$$\ell_r(x+y) + \ell_r(y-x) = 2B_r(x)\ell_r(y),$$

so that

$$\ell_r(x-y) = B_r(y)\ell_r(x)-B_r(x)\ell_r(y)$$
.

Using again (3.5) we see that

$$2B_{r}(x)[\ell_{r}(x+y) + \ell_{r}(x-y)] = 2B_{r}(y)\ell_{r}(2x)$$

=
$$2B_r(y)[B_r(x-y)\ell_r(x+y) + B_r(x+y)\ell_r(x-y)]$$
.

Now one deduces from (3.7)

$$B_r(y)B_r(x-y) = [B_r(x) + B_r(x-2y)]/2,$$

and

$$B_r(y)B_r(x+y) = [B_r(x) + B_r(x+2y)]/2.$$

Thus

$$[B_{r}(x)-B_{r}(x-2y)]\ell_{r}(x+y) = -[B_{r}(x)-B_{r}(x+2y)]\ell_{r}(x-y).$$

It is easy to check that

$$B_r(x)-B_r(x-2y) = [G_r(y)-G_r(-y)][G_r(x-y)-G_r(-x+y)]/2,$$

and

$$-B_{r}(x) + B_{r}(x+2y) = [G_{r}(y)-G_{r}(-y)][G_{r}(x+y)-G_{r}(-x-y)]/2.$$

Let $K_r = \{x: \chi_r(2x) = 1\}$. If $x \notin K_r$ the matrix $G_r(x) - G_r(-x)$ is nonsingular. Thus if $y \notin K_r = [G_r(x+y) - G_r(-x-y)] \ell_r(x-y) = [G_r(x-y) - G_r(-x+y)] \ell_r(x+y)$. It follows that the relations $x+y \notin K_r$ and $x-y \notin K_r$ imply

$$[G_{r}(x+y)-G_{r}(-x-y)]^{-1}\ell_{r}(x+y) = [G_{r}(x-y)-G_{r}(-x+y)]^{-1}\ell_{r}(x-y).$$

In other words for $z \notin K_r$

$$\ell_r(z) = [G_r(z) - G_r(-z)] \ell_r$$
 (3.8)

with some vector ℓ_r if z has the form z = x+y with $y \notin K_r$ and $x-y \notin K_r$ or z = x+2y, x, $y \notin K_r$. We prove now that every element $z \notin K_r$ has this form.

If there exists $x_0 \in K_r$ such that $\chi_r(x_0) \neq 1$ we put $z = (z+x_0)-x_0$. Clearly $z + x_0 \notin K_r$ and $x_0/2 \notin K_r$. If for all $x \in K_r$ one has $\chi_r(x) = 1$, then we show that z = x+y with $x,y \notin K_r$. Indeed in this case it suffices to take x = y = z/2.

Thus (3.8) holds for all $z \notin K_r$. We prove now that (3.8) is valid for all $z \in \mathcal{G}$. Let $z \in K_r$, $x \notin K_r$, then $x + z \notin K_r$ and $x - z \notin K_r$. Therefore

$$\ell_r(z+x) + \ell_r(z-x) = [G_r(x+z) - G_r(-x-z) + G_r(-z-x) - G_r(x-z)]\ell_r$$

=
$$2B_r(x)[G_r(z)-G_r(-z)]\ell_r$$
.

From this relation and (3.5) it follows that (3.8) holds if there exists $x \notin K_r$ such that the matrix $B_r(x)$ is no singular. The latter condition is met if $2x \notin K_r$. If $2x \in K_r$ for all $x \in \mathcal{G}$, then because of the condition $2\mathcal{G} = \mathcal{G}$ it follows $x \in K_r$ for all $x \in \mathcal{G}$. Thus $\chi_r(x) = 1$ for all $x \in \mathcal{G}$ to our assumption. Thus (3.8) is true for all $z \in \mathcal{G}$.

From the relation (3.6) it follows

$$w_r(y) + w_r(-y) = 2B_r^t(y)w_r(0) = [G_r^t(y) + G_r^t(-y)]w_r(0),$$

and

$$w_r(x+y)-w_r(-x-y) + w_r(x-y)-w_r(y-x) = 2B_r^t(y)[w_r(x)-w_r(-x)].$$

Thus if $d_r(x) = [w_r(x) - w_r(-x)]/2$, then $d_r(-x) = -d_r(x)$ and

$$d_r(x+y) + d_r(x-y) = d_r(x+y) - d_r(y-x) = 2B_r^t(y)d_r(x).$$

The latter equation is of the form (3.5) so that the result just obtained shows that for some vector $\tilde{\mathbf{d}}_r$

$$d_{r}(x) = [G_{r}^{t}(x)-G_{r}^{t}(-x)]\tilde{d}_{r}.$$

We also know that $d_r(x) = Q_r \ell_r(x)$, i.e. $\tilde{d}_r = Q_r \ell_r$.

Thus

$$w_{r}(x) = [w_{r}(x) + w_{r}(-x)]/2 + d_{r}(x)$$

$$= \frac{1}{2} [G_{r}^{t}(x) + G_{r}^{t}(-x)]w_{r}(0) + [G_{r}^{t}(x) - G_{r}^{t}(-x)]\tilde{d}_{r}.$$

There fore

$$< w_r(x), \ell_r(y) > = < G_r^t(x) f_r - G_r^t(-x) d_r, [G_r(y) - G_r(-y)] \ell_r > 0$$

with some vectors $f_r, d_r \in \mathcal{F}^r$ and $\ell_r \in \mathcal{F}^r$, $f_r + d_r = 2Q_r\ell_r$.

Now we have to consider the more difficult situation when some χ_r , say χ_1 , is identically equal to one. In this case $B_1(x) = I + N(x)$, where $N^q(x) = 0$, $q = m_1$.

Thus

$$\ell_1(x+y) + \ell_1(x-y) - 2\ell_1(x) = 2N(y)\ell_1(x)$$
 (3.9)

and

$$N(x+y) + N(x-y)-2N(x) = 2N(y) + 2N(x)N(y)$$
.

The latter identity can be rewritten

$$[L(y/2)-L(-y/2)]^2N(x) = 2N(y)[I + N(x)].$$

Easy induction shows that for k = 1, 2, ...

$$[L(y/2)-L(-y/2)]^{2k}N(x) = 2^kN^k(y)[I + N(x)].$$

Thus in particular

$$[L(y/2)-L(-y/2)]^{2q-2}N(x) = 2^{q-1}N^{q-1}(y),$$

which implies

$$[I-L(y)]^{2q-1}N(x) = 0,$$

i.e. N(x) is a polynomial of degree 2q-2. Because of the result mentioned in Section 2

$$N(x) = N_{2q-2}(x) + ... + N_2(x),$$

where for $k = 1, \ldots, q-1$

$$[L(y/2)-L(-y/2)]^{2k}N_{2k}(x) = (2k)!N_{2k}(y),$$

i.e. $N_{2k}(x)$ is a homogeneous polynomial of degree 2k, $N_{2k}(nx) = n^{2k}N_{2k}(x)$. These polynomials are defined by the formulas

$$N_{2q-2}(x) = \frac{1}{(2q-2)!} [L(x/2)-L(-x/2)]^{2q-2}N(\cdot),$$

and for k = q-2, ..., 1

$$N_{2k}(x) = \frac{1}{(2k)!} \left[L(x/2) - L(-x/2) \right]^{2k} \left[N(\cdot) - N_{2q-2}(\cdot) - \dots - N_{2k+2}(\cdot) \right].$$

We prove at first that

$$N_{2k}(x) = \sum_{j=k}^{q-1} d_{jk}[2N(x)]^{j}/(2j)!$$

where the coefficients d_{jk} can be found in the following way. If D is the lower triangular matrix formed by d_{jk} $k \leq j$, then D = P^l here the elements P_{jk} of P have the form

$$p_{jk} = \frac{1}{(2k)!} \sum_{i=0}^{2k} {2k \choose i} (-1)^{i} (i-k)^{2j}.$$

(Clearly $p_{ik} = 0$ if k > j).

Indeed

$$N_{2q-2}(x) = \frac{1}{(2q-2)!} \left[L(x/2) - L(-x/2) \right]^{2q-2} N(\cdot) = \frac{[2N(x)]^{q-1}}{(2q-2)!} ,$$

so that $d_{q-1} = 1$.

Also,

$$[L(x/2)-L(-x/2)]^{2k}N_{2j}(0) = \sum_{i=0}^{2k} {2k \choose i} (-1)^{i}N_{2j}((k-i)x)$$

$$= \sum_{i=0}^{2k} {2k \choose i} (-1)^{i} (i-k)^{2j}N_{2j}(x)$$

$$= (2k)!p_{ik}N_{2i}(x).$$

Thus

$$N_{2k}(x) = \frac{1}{(2k)!} \left[L(x/2) - L(-x/2) \right]^{2k} \left[N(0) - N_{2q-2}(0) - \dots - N_{2k+2}(0) \right]$$

$$= \left[2N(x) \right]^{k} / (2k)! - \sum_{j=k+1}^{q-1} p_{jk} N_{2j}(x)$$
(3.10)

and it follows by induction that

$$d_{jk} = -\sum_{i=k+1}^{j} d_{ji} p_{ik}, \quad j > k$$

$$d_{jj} = 1.$$

But these identities mean D = -D(P-I) + I or DP = I.

We prove now that

$$[L(y/2)-L(-y/2)]^2 N_{2k}(x) = 2[N_{2k}(y) + \sum_{j < k} N_{2j}(y)N_{2(k-j)}(x)].$$

Indeed

$$[L(y/2)-L(-y/2)]^{2}[2N(x)]^{k}\ell_{1}(z)$$

$$= \left[L(y/2) - L(-y/2)\right]^{2} \sum_{i=0}^{2k} {2k \choose i} (-1)^{i} \ell_{1}(z + (i-k)x)$$

$$= \sum_{i=0}^{2k} {2k \choose i} (-1)^{i} 2N((i-k)y) \ell_{1}(z + (i-k)x)$$

$$= \sum_{i=0}^{k-1} {2k \choose i} (-1)^{i} 2N((i-k)y) \left[\ell_{1}(z + (i-k)x) + \ell_{1}(z - (i-k)x)\right]$$

$$= \sum_{i=0}^{k-1} {2k \choose i} (-1)^{i} 4N((i-k)y) N((i-k)x) \ell_{1}(z)$$

$$+ \sum_{i=0}^{k-1} {2k \choose i} (-1)^{i} 2N((i-k)y) \ell_{1}(z)$$

$$= \sum_{i=0}^{2k} {2k \choose i} (-1)^{i} 2N((i-k)y) N((i-k)x) \ell_{1}(z)$$

$$+ \sum_{i=0}^{2k} {2k \choose i} (-1)^{i} 2N((i-k)y) \ell_{1}(z).$$

There fore

$$\begin{aligned} & \left[L(y/2) - L(-y/2) \right]^2 \left[2N(x) \right]^k = 2(2k)! \sum_{j,i} p_{j+ik} N_{2j}(y) N_{2i}(x) + 2(2k)! \sum_{j} p_{jk} N_{2j}(y) \\ & \text{and} \end{aligned}$$

$$& \left[L(y/2) - L(-y/2) \right]^2 N_{2k}(x) = \sum_{j=k}^{q-1} d_{jk} \left[L(y/2) - L(-y/2) \right]^2 \frac{\left[2N(x) \right]^j}{(2j)!}$$

$$& = 2 \sum_{j=k}^{q-1} d_{jk} \sum_{n=j} p_{n+ij} N_{2n}(y) N_{2j}(x) + 2 \sum_{j=k}^{q-1} d_{jk} \sum_{j} p_{ij} N_{2j}(y) \end{aligned}$$

=
$$2[\sum_{i < k} N_{2i}(y)N_{2(k-i)}(y) + N_{2k}(y)].$$

Using (3.10) repeatedly we can now establish the following formula

$$[L(y/2)-L(-y/2)]^{2k}N_{2k}(\cdot) = 2^{k} \sum_{j_{1}+\dots+j_{k}=k} N_{2j_{1}}(y)\dots N_{2j_{k}}(y)$$
$$= [2N_{2}(y)]^{k}, \qquad (3.11)$$

which gives the basic result:

$$N_{2k}(y) = \frac{1}{(2k)!} [L(y/2) - L(-y/2)]^{2k} N_{2k}(\cdot) = \frac{[2N_2(y)]^k}{(2k)!}$$

Note that there exists a function M(x,y) on Gx G with values in G such that

(i)
$$2N_2(x) = M(x,x)$$
,

(ii)
$$M(x_1+x_2,y) = M(x_1,y) + M(x_2,y),$$

(iii)
$$M(x,y) = M(y,x)$$
,

(iv)
$$Q_1M(x,x) = M^t(x,x)Q_1$$
,

$$(v) \qquad M^{q}(x,x) = 0,$$

(vi)
$$M^2(x,y) = M(x,x)M(y,y)$$
.

The last formula follows from (3.11) for k = 2. Now we return to the equation (3.9) which can be rewritten in the following form

$$[L(y/2)-L(-y/2)] \ell_1(x) = 2N(y)\ell_1(x).$$

It is easy to check that for k = 1, 2, ...

$$[L(y/2)-L(-y/2)]^{2k} \epsilon_1(x) = [2N(y)]^k \epsilon_1(x).$$

Thus

$$[L(y/2)-L(-y/2)]^{2q} x_1(x) = 0,$$

and $\ell_1(x)$ is a polynomial of degree 2q-1.

Analogously to previous considerations

$$\ell_1(x) = \varphi_{2q-1}(x) + ... + \varphi_1(x)$$
,

where $\phi_{2k+1}(x)$ is an homogeneous polynomial of degree 2k+1, $\phi_{2k+1}(nx) = n^{2k+1}\phi_{2k+1}(x).$

Note that if 2x=2y then $\varphi_{2k+1}(x)=\varphi_{2k+1}(y)$, $k=0,1,\ldots,q-1$. Thus the function $\ell(x)=2\ell_1(x/2)$ is defined.

Similarly to (3.10) we prove

$$c_{2k+1}(x) = \sum_{j=k}^{q-1} c_{jk}[(2j+1)!]^{-1}[2N(x)]^{j} \ell(x), \qquad (3.12)$$

where the lower triangular matrix C formed by the coefficients c_{jk} , $k \leq j$ has the form C = V⁻¹. Here V is the matrix with elements

$$v_{jk} = \frac{2}{(2k+1)!} \sum_{j=0}^{2k} {2k \choose j} (-1)^{j} (i-k+1/2)^{2j+1}$$
.

Clearly $v_{ik} = 0$ if k > j.

Also

$$[L(y/2)-L(-y/2)]^{2}[2N(x)]^{j}_{\ell}(x)$$

$$= 2[L(y/2)-L(-y/2)]^{2} \sum_{i=0}^{2j} {2j \choose i} (-1)^{i}_{\ell}((i-j)x+x/2)$$

$$= 2 \sum_{i=0}^{2j} {2j \choose i} (-1)^{i} 2N((i-j+1/2)y) \ell_{1}((i-j+1/2)x)$$

$$=4\sum_{i=0}^{2j}{\binom{2j}{i}(-1)^i}\sum_{n,k}N_{2n}(y)\varphi_{2k+1}(x)(i-j+1/2)^{2n+2k+1},$$

so that

$$[L(y/2)-L(-y/2)]^{2}_{\varphi_{2k+1}}(x) = 2 \sum_{j \geq k} c_{jk} v_{n+ij} \sum_{n,i} N_{2n}(y)_{\varphi_{2i+1}}(x)$$
$$= 2 \sum_{j \leq k} N_{2(k-i)}(y)_{\varphi_{2i+1}}(x).$$

Using this identity repeatedly one obtains

$$[L(y/2)-L(-y/2)]^{2k} \varphi_{2k+1}(x) = 2^{k} \sum_{i_{1}+\ldots+i_{k}+i_{k+1}=k} N_{2i_{1}}(y) \ldots N_{2i_{k}}(y) \varphi_{2i_{k+1}+i_{1}}(x)$$

$$= [2N_{2}(y)]^{k} \varphi_{1}(x) ,$$

and

$$[L(y/2)-L(-y/2)]^{2k+1}\varphi_{2k+1}(x) = [2N_2(y)]^k\varphi_1(y). \tag{3.13}$$

Therefore

$$\varphi_{2k+1}(x) = \frac{[2N_2(x)]^k}{(2k+1)!} \varphi_1(x), \quad k = 0,1,...,q-1,$$

and

$$\ell_1(x) = \sum_{k=0}^{q-1} \frac{[2N_2(x)]^k}{(2k+1)!} \varphi_1(x).$$

The relation (3.13) for k = 1 implies that

$$M(x,y)_{\varphi_{1}}(y) = M(y,y)_{\varphi_{1}}(x).$$

Now we are able to give the formula for the function $w_1(x)$.

Since $d_1(x) = [w_1(x)-w_1(-x)]$ satisfies equation (3.9) with N replaced by N^t ,

$$d_{1}(x) = \sum_{k=0}^{q-1} \frac{[M^{t}(x,x)]^{k}}{(2k+1)!} \psi_{1}(x) .$$

Here $\psi_1 \in \text{Hom } (Q, \mathcal{F}^q)$. Since $d_1(x) = Q_1 \ell_1(x)$ we deduce

$$\psi_{1}(x) = Q_{1} \varphi_{1}(x).$$

Also

$$w_1(x) + w_1(-x) = 2(I + N^{t}(x))w_1(0),$$

so that

$$w_{1}(x) = 2 \sum_{k=0}^{q-1} \frac{[M^{t}(x,x)]^{k}}{(2k)!} f_{1} + 2 \sum_{k=0}^{q-1} \frac{[M^{t}(x,x)]^{k}}{(2k+1)!} Q_{1} \varphi (x).$$

The desired formula for the function f is obtained from the identity

$$f(x)-f(0) = \langle h(x/2), k(x/2) \rangle$$

$$= \langle \sum_{k=0}^{m_1-1} \frac{[M^t(x/2, x/2)]^k}{(2k)!} f_1, \sum_{i=0}^{m_1-1} \frac{M^i(x/2, x/2)}{(2i+1)!} \varphi(x) \rangle$$

$$+ \frac{1}{2} \langle \sum_{k=0}^{m_1-1} \frac{[M^t(x/2, x/2)]^k}{(2k+1)!} Q_1 \varphi(x), \sum_{i=0}^{m_1-1} \frac{M^i(x/2, x/2)}{(2i+1)!} \varphi(x) \rangle$$

$$+ \sum_{r=2}^{R} \langle G_r^t(x/2) f_r - G_r^t(-x/2) d_r, [G_r(x/2) - G_r(-x/2)] \ell_r \rangle$$

$$= \langle \sum_{k=0}^{m_1-1} \frac{[M^t(x, x)]^k}{(2k+1)!} f_1, \varphi(x) \rangle + \langle \sum_{k=0}^{m_1-1} \frac{[M^t(x, x)]^k}{(2k+2)!} Q_1 \varphi(x), \varphi(x) \rangle$$

$$+ \sum_{r=2}^{R} [\langle f_r, G_r(x) \ell_r \rangle + \langle d_r, G_r(-x) \ell_r \rangle + \langle f_r - d_r, \ell_r \rangle].$$

The formula (3.1) follows with $H(x,x) = M^{t}(x,x)$ and $F_{r}(x) = G_{r}^{t}(x)$.

We prove now that every function f of the form (3.1) satisfies the equation (1.3). Note that for $k \ge 1$

$$H^{k}(x+y,x+y)-H^{k}(x-y,x-y)$$

$$= 2 \sum_{i:k-i \text{ odd}} {k \choose i} [H(x,x)+H(y,y)]^{i} [2H(x,y)]^{k-i}$$

$$= 2 \sum_{i:k-i \text{ odd}, j \le i} {k \choose i} [H(x,x)]^{j+(k-i-1)/2} [H(y,y)]^{i-j+(k-i-1)/2} 2^{k-i} H(x,y)$$

$$= 2 \sum_{i+1 \le k} {2k \choose 2i+1} [H(x,x)]^{i} [H(y,y)]^{k-1-i} H(x,y) . \qquad (3.14)$$

The last identity follows from the formula

$$\sum_{\substack{i:k-i \text{ odd} \\ 2j+k-i=2p-1}} {\binom{k}{i}} {\binom{i}{j}} 2^{k-i} = {\binom{2k}{2p-1}},$$

which is easily obtained by comparison of coefficients of $a^{2p}b^{2k-2p}$ in expansions $(a^2+b^2+2ab)^k-(a^2+b^2-2ab)^k$ and $(a+b)^{2k}-(a-b)^{2k}$.

Also,

$$H^{k}(x+y,x+y) + H^{k}(x-y,x-y) = 2 \sum_{i \le k} {2k \choose 2i} H^{i}(x,x) H^{k-i}(y,y).$$

Using this formula, (3.14) and properties of the function H one obtains

$$f(x+y)-f(x-y) = 2 < \sum_{k=0}^{m_1-1} \frac{H^k(x,x)}{(2k)!} f_1 + \sum_{k=0}^{m_1-1} \frac{H^k(x,x)}{(2k+1)!} (x), \sum_{i=0}^{m_1-1} \frac{[H^t(y,y)]^i}{(2i+1)!} (y) >$$

$$+ \sum_{r=2}^{R} < F_r(x) f_r - F_r(-x) d_r, [F_r^t(y) - F_r^t(-y)] \ell_r > .$$
(3.15)

Thus (1.2) holds and the statements of the Theorem 1 about vectors $S^t(x)\varphi(x)$, $C(x)f_1 + S(x)Q_1\varphi(x)$, $F_r(x)f_r - F_r(-x)d_r$ and $[F_r^t(x) - F_r^t(-x)]\ell_r$, $x \in \mathcal{G}$, $r = 2, \ldots, R$ follow from the assumed linear independence of functions h_j, k_j , $j = 1, \ldots, m$. The uniqueness up to equivalence of the matrices in formula (3.1) is a corollary of the uniqueness of the decomposition of the space \mathfrak{F}^m into direct sum of subspaces invariant with respect to commuting matrices A(x) from (3.4).

Remark 1. If G is a topological group and f (or g) is assumed to be a continuous function, then the condition 2G = G of the Theorem 1 (or 2) can be replaced by the following one: the subgroup 2G is dense in G. Incidentally, this condition means that the dual group does not have elements of order two.

Remark 2. Theorems 1 and 2 are true if \Im is not algebraically closed field. In this case all homomorphisms from \Im into corresponding vector spaces over \Im should be replaced by homomorphisms from \Im into vector spaces over a finite extension of the field \Im . Of course if \Im is the field of reals, this extension coincides with the field of complex numbers.

For instance, any solution of the classical D'Alembert's equation (1.4) has the form $[\chi(x)+\chi(-x)]/2$ where χ is a multiplicative homomorphism into a simple extension of the initial field \Im .

Remark 3. The general form of a solution of (1.1) easily follows from Theorems 1 and 2.

DISCUSSION

If f is a solution of the fuctional equation (1.2) let V = V(f) denote the vector space spanned by the translates of f. Then (1.2) means that

$$[L(y)-L(-y)]f = \sum_{i=1}^{m} u_i (y)v_j,$$

where f denotes the cyclic vector of the representation L (which corresponds to the function f as an element of V) and v_1, \ldots, v_m are some vectors from V. This fact implies that the linear subspace V_ of V spanned by the vectors [L(x)-L(-x)]f, $x \in G$ is of dimension m.

Under this interpretation the operator A(x) introduced in the proof of Theorem 1 is just the restriction of [L(x)+L(-x)] onto V. The functional equation (3.4) is an immediate corollary of this fact.

Thus every solution f of (1.2) has the form

$$f(x) = \langle L(x)f, \Delta \rangle. \tag{4.1}$$

Here L is a cyclic representation of the group G in the space V with a cyclic vector G, and the space G spanned by the vectors G by the vectors G and the space G spanned by the vectors G by G and the space G spanned by the vectors G by G is a cyclic vector for the conjugate representation G. L*(G) = G by G is a cyclic vector for the conjugate representation G by G for all G from G. Indeed we define G in the following way: G in the following way: G by G for all G from G. Then G in the following way: G and the vectors G must span the whole space G by G clearly the representation G under these conditions is defined uniquely up to equivalence. A natural question is if the representation G is finite dimensional. Bounds for the dimension of G in terms of G are also of interest. The same question can be formulated for the functional equation G (1.3).

It was proven in [8] that for both equations the space V is finite dimensional if G is a compact group. In the noncompact Atelian case the situation for the equations (1.2) and (1.3) is different. Here is an example of a solution to (1.3) with infinite dimensional representation L.

Let G be an infinite dimensional Hilbert space, $g(x) = ||x||^2$. Then

$$g(x+y) + g(x-y) = 2(||x||^2 + ||y||^2)$$
,

so that (1.3) holds, and the dimension of the subspace V_+ spanned by the vectors [L(x)+L(-x)]g, $x \in G$ is two.

However

$$g(x+y)-g(x-y) = 4 < x,y > ,$$

and the space $V_{\underline{}}$ is infinite dimensional one. Therefore V = V(g) is an infinite dimensional space as well.

Note that in this example the homomorphism ψ of Theorem 2 is zero. Also note that if g is an odd function, g(-x) = -g(x), and g satisfies (1.3), then

$$g(x+y)-g(x-y) = g(x+y) + g(y-x) = \langle u(y), v(x) \rangle$$

so that g also satisfies (1.2). Thus both spaces V_{+} and V_{-} have dimension p, and the dimension of V does not exceed 2p. Of course the same remark refers to equation (1.2).

Now let f be a solution of (1.2). Then f has the form (3.1), and $f(x+y)+f(x-y) = 2 < C(y)f_1, S^t(x) + C(x) > 0$

+
$$2 < H(x,y) T(x) Q_{1} \varphi(x)$$
, $T^{t}(y) \varphi(y) > + 2 < T(x) Q_{1} \varphi(x)$, $\varphi(y) > + 2 < T(x) Q_{1} \varphi(x)$

+
$$2 < T(y)Q_1 \circ (y)$$
, $\circ (y) > + \sum_{r=2}^{R} < F_r(x)f_r + F_r(-x)d_r$, $[F_r^t(x) + F_r^t(-x)] \circ r^{>}$.

(4.2)

The proof of (4.2) is analogous to that of the identity (3.15).

Note that the second term in (4.1) has the form

$$=$$

$$= \sum_{i,j=1}^{m_{j}} \alpha_{ij}(x)\varphi_{i}(y)\eta_{j}(y),$$

where $\alpha_{ij}(x)$ are elements of the matrix $H(x,x)T(x)Q_1$ and $\phi_i(y)$ and $\eta_j(y)$ are coordinates of the functions $\phi(y)$ and $T^t(y)\phi(y)$.

Therefore the dimension of the space \mathbf{V}_{+} does not exceed

$$m_1 + m_1^2 + 2 + \sum_{r=2}^{R} m_r = m_1^2 + m + 2.$$

Thus

$$\dim V(f) < m_1^2 + 2m + 2 \le m^2 + 2m + 2$$
,

and the next result follows.

Theorem 3. Every solution f of the equation (1.2) has the form (4.1) with a finite dimensional representation L, dim L \leq m² + m + 2. The representation L is defined uniquely up to equivalence.

Theorem 4. Every solution g of the equation (1.3) has the form (4.1) with a finite dimensional representation L under one of the two following conditions:

(i)
$$g(-x) = -g(x), x \in G$$
,

(ii) dim Hom (G,
$$\mathfrak{F}^n$$
) = $\rho_n < \infty$ for $n = 1, 2, ...$

Under condition (i) dim L \leq 2p; under condition (ii) dim L \leq p(ρ_{ρ} +2).

The proof of Theorem 4 under condition (ii) follows from the following formula valid for any solution of (1.3)

$$g(x+y)-g(x-y) = 2 < H(x,y)S(x)Q_1a_1,S^t(y)a_1 > + 2 < S(y)\psi(y),C^t(x)a_1 > + \sum_{r=2}^{R} < [F_r(x)g_r - F_r(-x)b_r,[F_r^t(y) - F_r^t(-y)]a_r > .$$

This identity implies, that the dimension of the subspace V_ is less or equal to $p_1^{\rho}p_1^{} + p_1^{} + \sum_{r=2}^R p_r^{} = p + p_1^{}p_1^{}$.

Therefore

dim
$$V(g) \le p + p_1(\rho_{p_1}+1) \le p(\rho_p+2),$$

and Theorem 2 follows.

Assume now that G is a topological group and continuous solutions of equations (1.2) and (1.3) are considered. The $\phi(x) = 0$ for all x belonging to a compact subgroup of G. Therefore the first term in the formula (3.1) vanishes if G is a compact group.

If the group Q does not contain nontrivial compact groups, then any matrix homomorphism F(x) has the form $F(x) = \exp\{H(x)\}$ where $H \in \text{Hom }(Q, \mathcal{F}_n)$. (cf. [3 p. 393] for one dimensional result.) In this case, the power series for, say, [F(x)+F(-x)]/2 bears some resemblance to the function C(x) and explains the structure of the latter.

REFERENCES

- [1] J. Aczel, Lectures on functional equations and their applications. Academic Press, New York, 1966.
- [2] I. Corovei, The cosine functional equation for nilpotent groups, Aequationes Math. 15 (1977) 99-106.
- [3] E. Hewitt and K.A.Ross, Abstract Harmonic Analysis, Vol. 1, Berlin-Götingen-Heidelberg, Springer-Verlag, 1963.
- [4] M. Hosszu, Some remarks on the cosine functional equation, Publ. Math. Debrecen 16 (1969), 23-98.
- [5] Pl. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69-74.
- [6] G. van der Lijn, La definition fonctionelle des polynômes dans les groupes abéliens, Fund. Math. 33 (1945), 42-50.
- [7] T.A.O'Connor, A solution of D'Alembert's functional equation on a locally compact Abelian group, Aequationes Math. 15 (1977) 235-238.
- [8] R.C.Penney and A. L. Rukhin, D'Alembert's functional equation on groups, Proc. Amer. Math. Soc. 77 (1979), 73-80.
- [9] L. Rejto, B-algebra valued solution of the cosine equation, Studia Sci. Math. Hung. 7 (1972), 331-336.
- [10] A.L.Rukhin, The families with a universal Bayesian estimator of the transformation parameter, Symposia Mathematica, Istituto Nationale di Alta Mathematica, Vol. 21, (1977), 19-26.
- [11] D.A.Suprunenko and R.I.Tyshkevich, Commutative Matrices, Academic Press, New York, London, 1968.