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1. INTRODUCTION
Consider the functional equation
o1 (xty) + ¢, (x-y) = ap(x)gy(y) + ...+ o, (x)8 (¥), {T.1)
where ¢1’¢2’ai’Bi’ i=1,...,n are functions given on a commutative: group
G, taking values in a field F of characteristic zero.
Clearly, if f(x) = 97 (x)=0,(x)5 g(x) = $1(x). + ¢,(x), then
fx+y)-f(x-y) = _Z] [a;(x) + ai(Fx)]Bi(y) = _Z] hj(x)kj(y) (1.2)
) 1= . J= h

and

=

9{xty) + glx-y) = T [a.(x) + 0 (-x)I8.(y) = T uilxvily), (1.3)
i=1 i=1 .

where the functions hi’kj’ j=T1,...,m and UgsVy, 1= T,...,p are linearly
independent. Therefore it suffices to consider thé‘case-when 01 = ¢, OF
o1 = -4, in (1.1). Note that Tinear indépehdente'dfihj anﬂ”ui 1mpﬂi§§
kj(—y) = -kj(y), j= 1,...,m'and'vi(-y) ='vi(y) i=T1,....p. 7 |

The equation (1.T) can be viewed as a-genera1ization.of'D'A]embeff”s
~ (cosine) functional equation | ' _ V

o(xty) + 4(x-y) = 260x)aly), | (.

which has been much studied (cf [T p. 1767, [2], [4], (53, 67, [9]).. If‘
also arises in statistical applications (see [10]).

In Section 3 we obtain the general form of the solutions. f and g of

equations (1.2) and (1.3). These solutions. are expressed as linear



combinations of matrix elements of inequivalent finite dimensional repre-
sentations of the group G and also of terms involving homomorphisms of ¢
into a vector snace 3" over the field g and homomorhisms of ( into additive
matrix group over 3 . While the former terms are well known in the theory
. of functional equations; the latter terms seem to be new. Section 2 contains
some preliminary results about polynomials on Abelian groups. The discuSSion
of the main result is given in Section 4, where sufficient conditions for a
~solution to be a matrix element of a finite dimensional representation are
-derived

The author is grateful to Professor R. C.Penney for his interest in this

work.
2. POLYNOMIALS OVER COMMUTATIVE -GROUPS

Let + be a finite dimensional vector space over the field 3. (In
this paper .2 will be the vector space 3n of éll nxn matrices over the
field J, or the vector space 3" of dimension non JF ). If ¢y is an . -valued
function defined on the Abelian group G, then L(x), x€( s the translation |
operator, L(x)w(-) = y(-+x). Thus L is a regular representation of { which
acts in the linear space spanned by the translates of the function y. The
funétion v is called a polynomial if for some n (L(x)-I)n*]n(y) = 0 for
all x,y é}g . The smallest number n for which this identi.y holds is called |
the degree of the polynomial.

Thus a pplynomial of dégree one satisfies the identity

| _w(x+y)+w(x-y) 29(x).

If ZQ = (; this condition implies that p(x) = x(x) + ¢, where cex,

X € Hom (G, .0 ), i.e. x{x+y) = x(x) + x(y) for all X,y €q.



A polynomial'¢ is said to be homogeneous, if

(LO)-1)"(+) = nte(x).

The following elementary results [6] will be used in Section 3.

1°. If ¢ is a homogeneous polynomial of degree n, then for all integer j

¢UX)'-J ¢(x),xeg

2°. If y is a polynomIal of degree n, then q:(k),= ( L(x)-I)nw(y)_does

not depend on y and is an homogeneous polynomial of degree nin x.

3° If p-1s a polynomial of degree n, then (L(x])‘1)°°'(L(Xj)f1)¢(X).js a

pejynomiallin x of degree n-J.
4°, If y js a polynomial of degree n, then

| W) = o (x) + ...+ g (x),
where cpj(x)'is a homogeneous polynomial of degree‘j, J =
One has

¢ (x) = or (L(x) D"(-)

and for J= n—i,...,O,

95 () = 31 (L= (F( )= ()b yq ().

5°, If ¢is‘a hdmogeneOus polynomial of degree n, “then ¢ (x) = x(x,,.

eeasn.

.,>‘<)

where x(xi,...,x ) is a symmetric funct1on of Xys.- ,x" and for f1xed

Xza..-gxn: X('9x29--°sxn)e Hom (Q’ i)'

If v is a polynomial of even degree and 2 g = G then in all formulas -

above L(x)-I can be replaced by L{(x/2)-L(- x/2)

. .
If ke 3" and ke 3 nwhere F" is the dua] space then

always denote the value of the llnear funct1onal k on the element h.

this convention equation (1.2), for instance, can be rewritten

f(X+y)-f(X-y) = <h(x),k(y)>,

<h,k> will

With

(2.1)



where h(x) € 3™, and k(y) ¢ 3™ Also A will denote the transpose of -

a linéar transformation A.
3. THE MAIN RESULT

A structure theorem for the solutions of the functional equations
(1.2) and (1.3) is obtained in this Section.

Theorem 1. Assume that G is a commutétiveigrbup such that 2¢ = (.
A_fphction f taking values in an algebraicélly closed fiéld-ﬁ of character-
istic zero is a solution of the equation (1.2) with linearly independent
'fuﬁctidns hj,kj. J=1,...,mif, and only if, there exist nonnegative

integers Mysooeslpsmy + el mp = M such that

f(x) = <S(x)fyie (x) > + <T(x)Q e (x),q (x)>

- | v
+ 22 [<Fo(x)f,2. >+ <F.(-x)d .2 >] +c. (3.1)
*m- m]-] m]'] .
P 1 k k
Here ¢ € Hom (G, I ), S(x) = | H (x,x)/(2k+1)!, T(x)= kZ H™ (x,x)/(2k+2)1,
' ' : k=0 =0

: : ' m
- where for each y €G H(-,y)€ Hom(G, Jm] )» Hix,y) = Hy,x), H '(x,y) = 0

Ht(x,y)¢(x) for all x,y;

if m 3:1. Hz(x.y) = H(x,x) H(y.y), Ht(x,x)c‘(Y)

Fs T = 2,...,R are pairwise inequivalent matrix representations of the

group ( of degree m.s all eigenvalues of Fr ¢ ~e equal and different from

- *m m.
one; Qr are invertible linear operators from ¥ " to 3 r’ v
HOxx)Q = QHE(x.x)s F (). = QFE(x)s r = 2,....0; Fez 1 2 e "
ER A I R A r rrtth ER N r-° i

m ‘
fr’dre F ,r=2,...,R, fr + dr ZQrzr, r=2,...,R, ce¥F. Also the vec

" -
tors C(X)f] + S(x)Q]¢ (x), x€( span & 1 and the vectors St(x)¢ (x) span



*m m

m,-1
*m1 ] r

F , C(x) = X H (x x)/(2k)!; the spaces & r

and & ", r =2,...,R
are spanned by the vectors [F (x)- F (- X)]l » X€G and by the vectors
Fr(x)fr-Fr(-x)dr xE(;,correspond1neg. The representation (3.1) is unique up
to equivalence for matrices H(x,x) and Fr(x)? r2,...,R.

We do not phove the next Theorem 2 since its.proof is analogous to that
of Theorem 1. | |

Theorem 2. 'Under assumptions of Theorem 1 a function g is q'sqlutioh
of the equation (1.3) with lineariy independent functions ussvp o= 1,0.0,p
if, and only if, there exist nonnegat1ve 1ntegers p], -+sPp> Py + ... F PR = p,
such that

9(x) =<Ch)%9pa]>4<sh)ﬂk)@]>

+ Z[<F(xm »ay, >+ <F.(- Hb,a>]+c
r=2
Here C(x), S(x), F (x), Q and Q have the same meaning as 1n Theorem 1 w1th
*m

r. b = ro
m. replaced by P VE Hom(G, & ) b > 9, €3, gr, r ZQrar? quZ} )

. ,
r=2,...,R, ceF. The vectors C (x)a], geg- span 3 ‘], and the vectors

‘ P p. ¥ o .
C(x)a] + S{x)yp(x), x€G, span 3']; the spaces & ' and 3 Fr=o, ,R are

spanned by the vectors F (x)g + F ( x)b and by the vectors, [F (x)+F (- x)]ar
correspondingly. The matrix funct1ons H(x,x) and F (x) r= 2,.;.,8 are -
defined uniquely up to equ1va]ence,

Proof of the Theoremnl. The functiona]Féqgation,(l;é) réwritten in;_
the from (2.1) implies that for all x,y,z '

fxty+z)-f(x-y-2z) = <h(x), kly+z)>"
and
f(x+y-2)-f(#fy+2) = <h(x), k(y-z)>.

Combining these formulas one obtains



<h(x), k(y+2)-k(¥-2)> flxty+2)-f(x+y-2) + f(x-y+2)-f(x-y-2)

i

<h(x+y) + h(x-y), k(z)>.
Since the functions kj(z), J=1,...,m are linearly independent there
" exist zje(; such that the vectors k(zj)E:}*m‘j =1,...,m are linearly in-
dependent. If thevlinear operator A(y) in 3fm is defined by the formula

k(y+zj)-k(y-zj) = 2A(y)k(zj) i=Tl,....m,

then for all x,y
h(xty) + h(x-y) = 2%(y)h(x). | (3.2)
We also deduée |
| <h(x), k(y+2)-k(y-2)> = <h(x), 2A(y)k(z)>,
ﬂvﬁhat because of linear independence of hj(x), J=1,...,m implies that
T 7 k(y+z)-k(y-z) = 2A(y)k(z). | (3.3)
Since k(-2) = -k(z) it is clear that A(-y) = Aly) for all y. Also
 2A()AGK(2) = AGK)[k(y+2)-k(y-2)] |

[K(xby+2)-K(x-y-2)~k(x4y-2) + k(x-y+z)1/2

[A(x+y) + Alx-y) k(z).

Thus the matrices A(x) satisfy D'Alembert's functional equation

Alxty) + A(x-y) = 2A(x)A(y). - (3.4)
An immediate consequence of (3.4) is that al matrices A(x) commute.
It is known (see [11 p. 16]) that the. whole space afm can be represented
. as a direct sum of invariant subspaces W., with respect to all A(x), for
r = ],...,Rf The irreducib]e A(x)lwr are equivalent, while for r # s the:
irreducibie parts of A(x)lwr.aﬁd A(x)lwS are not equivalent. Since the
fieid Fis algebraically closed Shur's 1emma shoWs that all irreducible
‘parts of A(x)lwr, r=1,...,R, are one-dimeﬁéiona] operators. Thus all
matrices A(t) have the form A(x) = T']B(x)T; where B(x) is a quasi-diagonal

matrix with blocks'B](x),...,BR(x) on the principal diagonal, and Br(x) is



a lTower triangular matrix of dimension m, = dim wr, r=1,...,R with the
same diagonal elements b(r)(x), b(r)(x) # b(s)(x), r #s. Clearly
mo=my oL+ Mp and all matrices Br(x), r=1,...,R commute.

Returning to (3.2) and (3.3) we see that if Tk(y) = 2(y), Ttw(x) = h{x),

then
2 (y+2)-2(y-2) = 28(y)n(2)
and
wixty) + w(x-y) = 28%(y)u(x).
Moreover
<h(x),k(y)> = <w(x),2(y)>.
‘Let 2(y) = z‘] V) &...8 sp(y) with zrez*mr_, and w(x) = wy(x)@...@w.(x) J'

: m
with W, €3 T or = 1,...,R, be partitions of 2(y) and w(x) into direct sums

correSpondihg to that of the matrix B(x). Then

_ v “
wlx), aly)> = T < (x), ¢.(y)>

r=1
Also
2, (x+y) +‘zr(X-y) = 28, (y)2.(x), | - (3.5)
and
Wy (x+y). + w (x-y) = ZB:(y)wr(X); | ~ (3.8)

Note that if f,(x) = [f(x) + f(-x)1/2, then
f(xty)-£1(x-y) = <d(x), w(y)>,
where d(x) = [w(x)-w(-x)]/2. It follows that
d(x), (y)> = <dly), 2(x)>.
Therefore there exists an invertible linear operator Q from S}m‘to 3*“
such that Qt"=fQ and fof all xeq -

d(x) = Qe(x).



It is easy to see that QB(x) = Bt(x)Q, and because of Shur's lemma.
_ , . ) ot
Q=0 ... ® Qp where Q. is of dimension m_, and QrBr(x)— Br(x)Qr,
r=1,...,R. Also,
w (). (-x)172 = Qe (x) v =1,...,R.

It follows from (3.4)

Bo(xty) + B.(x-y) = 28 (x)B_(y) r=1,....R (3.7)

so that in particular
0y # b0 ey) = gy,
A11 solutions of this D'Alembert’s functiona]_equafion.are known to
be of the form (cf. [5])
60 (x) = [p(x) + 4 (-x)172,

where Xp is a multiplicative homomorphism_of G into & :
Xp(xty) = x () (y).

.If xk is not 1dent1ca11y one there exists x 0€G such that x (2x0) # 1
and the matrix B (XO) I =1[B (2x0) I1/2 is nonsingular. Moreover one can

find a nonsingular Tower triangular matrix G. such that Gf = Bf(xo)—I.

Indeed

Br(xg)-T = Ll (xg)~x,(-xg)) /20201 + 2]

_ ' m
-where Pr is a nilpotent matrix, Prr =0,

Thus one can put

m -1

r i+l ;
G. = [(xr(xo)-xr(-xo))/Z][I +P /2 + iZz (- 1) 21(?: -1)! Pr] ’

o e i R
Clearly Gr commutes with all matrices Br(x) and QrGr = GrQr'



Now Tet

[op)

—

>

~—
I

- 6 [8,(x)(6,-B, (xg)) + B (xixp)]

-1
Br(x)-Gr [Br(x)Br(xo)-Br(x+x0)].

It is easy to check (cf. [5]) that
G.(xty)} = 6 (x)G.(y),
and
0.6, (x) = 65(x),..

Evidently Gr(x) and Gs(x) are inequivalent for r # s and
6.0x) + G.(-x) = 28, (x)-6] [2B,(x)B,.(x))-B, (x+x)-B, (-x#xy)] = 28 (%)

It is a]so clear that G (x) is a Tower tr1angu1ar matrix w1th a]]
diagonal elements (and hence eigenvalues) equal to Xr(x)
It follows from (3.5)
te(xty) + 2 (y-x) = 28 (x)e,.(y),
50 that
2{x-y) = B.(y)e.(x)-B (x}2 (y).

Using again (3.5)7we see that

2B (x)[2,(x+y) + 2 (x-y)] = 2B _(y)2.(2x)

I}

2B, (y)[B.(x-y)e.(x+y) + B (x+y)2 (x-y)]. =
Now one deduces from (3.7)

B.(y)B,.(x-y)

[8,(x) + B (x-2y)1/2,

and

B,.(y)B (xty) = [B.(x) + B (x+2y)]/2.
Thus

[B.(x)-B.(x-2y) ]2 (x+y) = -[B (x)-B (x+2y)]e (x-y).
It is easy to check that '

B, (x)-8,(x-2y) = [8,(y)-6,(-) 1[G, (x-y)-5, (-x#y)1/2,



10

and
B, (x) + B(x+2y) = [6.(y)-6, (-y)[G, (x+y)=G_(~x-y)1/2.
Let K. = {x: Xr(2x) =1}. If xeiKr the matrix Gr(x)fGr(-x) is nonsingular.
Thus if y ¢ K. [6.(x+y)-G.(-x-y)Je (x-y) = L6, (x-y)-6,(-x+y) 12 (x+y). It
follows that the relations x+ytKr_ and x-yéKr imply
-1 -1
(6, (x+y)-6,(-x-y)1" ¢ (x+y) = [6 (x-y)-G, (-x+y)] T2 (x-y).
In other words for Z¢K,
2.(2) = [6.(2)-6.(-2)1x,, _ (3.8)
with some vector %, 1f z has the form z = x+y with y{Kr and x-y{';Kr or
Z = x+2y, x, y¢Kr. We prove now that every element z{zKr has this form.
; If there exists XOEKr such that xr(xo) # 1 we put z = (z+x0)-x0.
Clearly z + xO¢Kr and x0/2¢Kr. If for a.lrl x €K _ one has xr(x) = 1, then
we show that z = x+y with x,y¢Kr. Indeed in this case it suffices to take
X =y =1z/2.
Thus (3.8) holds for all z¢Kr. We prove now that (3.8) is valid for

all ze( . Let zEKr, x¢Kr, then x + z¢Kr and x-ziKr. . Therefore

zr(z+x) + zr(z-x) [Gr(x+z)QGr(-x-z) + Gr(—z-x)fGr(x-z)]zr

28, (x)[G,(2)-6,.(-2)]z, .

From this relation and (3.5) it follows that (3.8) holds if there
_exists x¢Kr such that fhe matrix Br(x) is no.singular. The latter condi-
tion is met if 2x¢Kr. If 2xeKr for all keg , then because of the con-
dition 2¢ = G it follows xEKr for all x. Thus Xr(x) =1 for all x contrary
to our assumption. Thus (3.8) is true for all z¢ . |

From the relation (3.6) it follows

() + w(-y) = By (0) = [67(y) + GE(-y)Iw (0),
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and _
W (xry)-w (-x-y) + w (x-y)-w (y-x) = 2B:(y)[wr(x)-wr(-X)]-
Thus if dr(x) = [wr(X)—wr(—x)]/Z, then dr(-x) = —dr(X) and
d.(xty) +d (x-y) = d (x+y)-d (y-x) = ZB:(y)dr(x)-
The 1atter equation 1s‘of fhe formv(3.5) S0 fhat the'fesult just obtained

shows that for some vector ar
| | oot t -
dr(x) = [Gr(x)'Gr('x)]dr'

We also know that dr(x) = Qrgr(x), i.e. d =Q i

or ror’
Thus | :
W (x) = T (x) +w (-x)1/2 + d_(x)
= 7 6500 + 6E-x)w (0) + Tef(x)-6E(-x)1d, .
Therefore | |

W (X052, (9)> = GO -6H(-x)d,, 6, (y)-6, (=) e, >

m *m
- - r . r =
with some vectors fr’dr €3’ and L. €3 7, fr + dr ZQrzr.
Now we have to consider the more difficult situation when some Xpo

say xp» is identically equal to one. In this case_B1(x) = I + N(x), where

2 (eay) + 2 (x=y)-22, () = 2N(y)eg () (3.9)
and - | |
N(x+y) + N(x-y)-2N(x) = 2N(y) + 2N(x)N(y).
The latter identity can be rewritten ' | |
[L(y/2)-L(-y/2)1N(x) = 2N + N(x)].

Easy induction shows that for k = 1,2,...
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[L{y/2)-L(-y/2)1% N (x) = 2550 + nex)T.
Thus in particular

[L(y/2)-L(-y/2)1%4"2N(x) = 29-TN9-T(y),

- which implies

[1-L(y) 1%V IN(x) = o,
i.e. N(x) is a polynomial of degree 2q-2. Because of the result mentioned
in Section 2
N(x) = qu_z(x) + ... +'N2(x),

where for k = 1,...,q-1 _
' ' 2k : '

[L{y/2)-L(-y/2) 17Ny, (x) = (2k) 1N, (y),
i.e. N, (x) is a homogeneous polynomial of degree 2k, Ny (nx) = n2kN2k(x).

These polynomials are defined by the formulas

Npqu2(x) = (aaigyr [L(x/2)-L(-x/2)1%9"2N(-),
and for k = g-2,...,1

M) = yr [LK2)-LEx/2) TP INC )My (o) gy ()]

We prove at first that
(]"I j
Ny (x) = § d. [2N(x)]Y/(25)1
2k =k jk

where the coefficients djk can be found in the following way. If D is the
~ Tower triangu]ar matrix formed by djk k < j, then D = p-! "here the elements =
_pjk of P have the form |
2k . .
_ v 2k igs 2j
Pik --TEEST'iZO 1) G-k

(Clearly Py = 0 if k> §).

" Indeed -

_ o .
Npg-2(%) = I?a%ﬁjj'[L(X/Z)—L(-x/Z)]Zq'Zn(.) = L%gé%%%T—_"’
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so that dq_] q-i = 1.
Also,
[L(x/2)-L(-x/2)1%*N, . (0) = 2zk 2Ky (1) N, ((k-i)x)
' 2j sbo TV N2 mTIX
2k . . :
2k . 2
= L GEDTE-0 ;00

Thus

Nap(x) = 1pyr [LOK/2)-LE-x72) 12K IN(0) -y _p(0)-. ..My ()]

f‘[ZN(x)] ((2k)!-‘=g+]pjszj(x) - | nglo)

J

and it follows by induction that

d

J
T Y dpy . Jok
jk s=ks 91 K
d..
JJ
But these identities mean

o
1]

-D(P-I) + I or DP = I.
We prove now that

. 2. _ e
[L(y/2)-L(-y/2)] NZk('x) __Z[Nzk(” + J§<:k NZJ(y)NZ(k-J)(X)] .

Indeed
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2Ly P T (2)

2k .
(Lyr2)-Li-yr2))® G0y i-m)
i= _ -

2k .
L COED 0G0y (24-k00)
i=0

k=1 ok i | |
= 7 | i)(-‘) 2N((i—k)y)[2](Z+(i-k)X)+2](Z-(i-k)X)]_
. i=0 v

kel 2k, i e
= I (5)(-1) ANCG-K)yINCG-K)x)eq (2)
i=0 . '

k-1 .
+ I GG ()
]:
% ok, i o
= L GO TNy Nk (2)
i= . _

Ak 2Ky v Ly
+ L GENANG-Ky)e (2).
1= .

-Therefore

.[L(y/Z)-L‘-y/?)]2[2N(x)]k = 2(2k)!jzipj+ikN2j(y)Nzi(x)+2(2k)!§b5kN25(y)

and

UYL (-y/2) Py ()

g1 | 2. 2N  )
jzk-djk[L(y/Z)-L(-y/Z\] _LT?§§%1‘

q-1 o q-1
ijk 9k ngi pn+ij"2n(_3')N21‘(")+2j§k djk§ PiiN2i(y)

A izk_NZi(Y)NZ(k-i)(Y) ¥ Ngk(Y)]j

‘Using (3.10) repeatedly we can now establish the fo]lowing formula
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2k K '
L(y/2)-L(-y/2)T°*N,, (+) = 2 Ny. {y)...N..
LI g ) = 2T g 00

[2N2(y)]k, _ (3.11)

which gives the basic result:

1 RN X))
N2k()’) = W ['F(Y/Z)‘;L(*Y/Z)J ' NZk'('.) = _(—Z’?Y'_ .

Note that there exists a functionnM(xﬁy)gqn,Qx;g,wjxh values in ﬁq such
that | “

(1) 2N2(x) = M(x,x){' _

(1) M(xy#xp,y) = Mlxpsy) + Mlxyy),

(111) M(x.y) = M(y,x),

(iv) gMix,x) = M5 (x,x)0ys

(v)  MI(x.x)

i) M2(x,y)

i

0,

M{X X IM(y,y) .

The Tast formula follows from (3,]1)ffquk-=12. ;Nqﬁ-weuneturn to the equétion‘-
(3.9) which can be rewritten in the foilqwing-fdrm |
[L{y/2)-L(-y/2)] 2; (x) = 2N(y)2,(x).
It is easy to check that for k = 1,2,... '
[L(y72)-L(-y/2)3% a1 (x) = [N T ().
fhus : ‘v:
[L(y/2)+ﬁf~yf2)32q£{(X)== 0,
and 11(x) is a polynomial of degree 2g-1.
Analogously to previous chnsiderations _
B (x) = g g 0) + o+ 1K)

~ where ¢ 2k+](x) is an homogeneous .polynomial of degnee.Zkfy,

2k+]

€ 2k+] (nx) =n (F'Zk‘_,_.]‘(x')-
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Note that if 2x = 2y then ¢ 2k+](x) = ¢,2k+](y), k =0,1,...,q-1.
Thus the function 2(x) = 22,(x/2) is defined. '
Similarly to (3.10) we prove .

q-1 .
T oy (X) = _Zk cjk[(2j+1)!]'][ZN(x)]Jz(x), (3.12)

where the lower triangular matrix C formed by the coefficients Cjk’ k < j

has the form C = V™'. Here V is the matrix with elements
» 2k , _
Sp— 2ky 1y 2j+1
Vik = (menyr L (1) G-k/2)

C]ear]y-vjk = O.if k > 3J.
Also
[L(y/2)-L(-y/2)J°L2N(x) P a(x)

25 .. )
= 2Aly2)-Ley21 TG g (G2)
. 1=

I T N S .
=2 _ZO () (-1) TN ((i-3+1/2)y) 2, ((i-3+1/2)x)
'|=

2j . . .
= 4 'ZO (Z-i‘])(‘-l)1 Xk Nzn(Y)(F 2k+](X)(i—j+]/2)2n+2k+] s
i= n:
so that
[L()’/Z)-L('_Y/Z)]Z(F 2k+](X) =2 Jgk cjk'v_n_ﬁj nzi Nzn(,_y)q7 2141 (X)

I

2 Ny (ki)W 2549 (x)
Using this identity repeatedly one obtains

[(L(y/2)-L(-y/2)1%g g (x) = 2 Lo Mo )y (Wagy ()
: ‘ S LRI P R k k+1

[N, ()1, (x)
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and
(L2t 021" g g (0 = 20T ). (3.13)
Therefore
[aN,(x)1¢ -
o) T memyre (), k= 0,1, -0,
ahd '

a=1 [aN,(x)1¥

2](X)7= kZO T 6 (K-
The relation (3.13) for k = 1 implies that

Mixy)ep (¥) = Mly,y)eq (x).

- Now we are able to give the formula for the function w](x).

Since d](x) =-[w](x)4w](-x)] satisfies equation (3.9) with N replaced by

nt,

' v q:1 LMt X, ]k
CIORI Bl g (x)
Here S Hom (G, 3. since d](x) = lel(x) we deduce
(%) = Qg (x).

Also

wp(x) +wy(=x) = 21 + N5(x) wy (0),

so that

o g-1 pt k q-1 r,t k
o) =2 Woeal ¢ sz I ol qe (x).

The desired formula for the function f is obtained from the identity
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<h(x/2),kkx/2)>

f(x)-f(0) =
m]—l [ t( )]k m]—] ;
_ M (x/2,x/2 M 2,x/2
"L (k3T o Lo §;€+T§{‘l ¢ (x)>
M M (x/2,x/2) 1 1! M (x/2,x/2)
M2 N ¢= 3 Tl LA COP Lo T (x>
R t t
+ 22 < Gr(x/Z)fr-Gr(-x/Z)dr,[Gr(x/Z)-Gr(-x/Z)]2r>
r:
m1§l t K m-1 k' : 7
- kgo L%?éé%§%l—'f1;q\(x)> e kZO £¥?éé§§%l_'01“'(X);“f(x)}
R
+‘r-§2 [<fr,Gr(x)er > + < dr,Gr(—x)2r> + <fr—dr,2r>] .

The formula (3.1) follows with H(x,x) = Mt(x,x) and Fr(x) = G:(x).
‘We prove now that every function f of the form (3.1) satisfies the
equatfon (1.3). Note that for k > 1

Hk(X+y,x+y)-Hk(x—y,X-y)

=2 7 (G T [2H(x,y) 1K
j:k-1 odd
=2 7 Yt 1T 2y i3 i-) 2k
itk-1 odd,jei 19T i o
S 1 GG N T Ty (3.14)
1+i< :

The last identity follows from the formula

Ky i okei 2k
) (;)(:)2 = (5. 1),
i:k-iodd 1 J ~2p-1
2j+k-i=2p-1

which is easily obtained by comparison of coefficients of a2pb2k'2p in

2

expansions (a2+b2+2ab)k-(a2+b -2ab)k and (a+b)2k-(a—b)2k.
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Also,

k : 3 - _.
H (ety xay) + HGeyoxey) = 20 1 (Rt xnkT(y,y).
i<k

Using this formula, (3.14) and properties of the function H one obtains

- " H (x,x) m];]ka(x,x) N T]Q] [Ht( 1
f(x+y)—f(x—y)»— 2 < kzo —?ﬁijT—-f] + kzo r@ﬁ;TTT-(x), iZO —1??{T§T——f;(Y) >
R va eetroy ety oy | (3.1
+ ZZ <F OO -FL-x)d LR (y)-F -y ) e > (3.15)
= _

Thus (1.2) holds and the statements of the Theorem 1 about vectors St(x)qﬁx),
COx)fy + S(x)Qq ¢ (x), F(x)f.-F (-x)d and -[.F"E(X)-»Fﬁ(-X)]zr, X€G,
r=2,...,R follow from the assumed linear independence offfuhctidns
'_hj,kj, j =T1,...,m. The uniqueness up to equivalence of the matrices:in-
formula (3.1) is a corollary of the uniqueness of the decomposition of
the space 3" into direct sum of subspéces invariantlwith respéct torcommut-
ing matrices A(x) from (3.4). | . |
Remark 1. If G is a topological group and f‘(or g) is assumed to'be»a‘bon—
tinuous function, then the condition 2¢ = G of the Theorem 1 (or 2) éan be
replaced by the following one: the subgroupIZQ is dense in (. Inéidental1y,
‘thfs condition means that the dual group does not have e]ements of . order
twq. |
Remark 2. Theorems 1 and 2 are true if F is not algebraically clqsed'ffeld.
In tﬁis case all hombmorphisms from ¢ into co%responding vectOrVSPaces over
J should be rep]éced by homomorphisms frem ¢ into vector spacés ovér'a finite
extension of the field F . Of course if JF is the field of reals, this ex-
ténsfon coincides with the field of complex numbers. |

| For instanée; any solution of the classical D'Alembert's equation
(1.4) has the form [x(x)+x(-x)1/2 where yx is a muTtip]icgtive hbmomorphism

into a simple extension of the initial field & .
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Remark 3. The general form of a solution of (1.1) easily follows from

Theorems 1 and 2.
4. DISCUSSION

If f is a solution of the fuctional equation (1.2) let V = V(f) denote

the vector space spanned by the translates of f. Then (1.2) means that
' m
[Ly)-L(-y)1f =} us (y)v.,
- j=1 J

.where f denotes the cyclic vector of the répresenﬁatioh L (which corresponds
to the function f as an element of V) and Vise-oVy are'some vectors from
V. This fact implies that the linear subspéce V_ofV spanned by the vec-
tors [L(x)-L(-x)]f, x€ G is of dimension m.

| Under this interpretation the operatof A(x) introduced in the proof
of Theorem 1 is just the restriction of_fL(x)+L(-x)] onto V. The func-
tioné] equatign (3.4) is an immediate corollary of this fact.

Thus every solution f of (1.2) has the form

|

( f(x) = <L{x)f,a>. (4.1)

Here L is a Eyc]ic representation of the group ¢ in thé'space V with a
cyclic-vector f, and the space V_ spanned by the vactors [L(*)—L(—x)]f,

x € ( has dimension m. The element A of the dual space V* is a cyclic vec-
tor for the conjugate representation L*, L*(- ) = Lt(-x). (Indeed we de-
fine A in the following wayf <h, 8> = h(0) for all h from V. Then

<h, L*(x)a > ="h(-x) and the vectors L*(x) x € G must span the who]e-space
V*.)} Clearly the representation L under these conditions is defined unique-
ly up to eqhivalence. A natural question is if the representation L is
finite dimensional. Bounds for the dimension of L in terms of m are also

of interest. The same question can be formulated for the functional equation

(1.3).
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It was proven in [8] that for both equations the space V is finite
dimensional if G is a éompact group. In the noncompact Atelian case the
situation for the equations (1.2) and (1.3) is different. Here is an example
of a solution to (1.3) with infinite dimensional representation L.

Let G be an infinite dimensional Hilbert space, g(x) = ||xl|2. Then

g(xty) + glx-y) = 20 x112 + [yl1%) |
so that (1.3) holds, and the dimension of the subspace V, spanned by'the
vectors [L(x)+L(-x)]g, x € G is two.
However |
_ g(x+y)-glx=y) = 4 < x,y > » |
qnd the space V_ is infinite dimenéiongf—one. .Therefqre V'= V(g) is an
infinité dimensional space as wei]. _ |
Note that in this example the homomorphism ¢ of Theorem 2 is zero.
Also note that if g is an odd function, g(-x) =v-§(x), and g satisfies.
(1.3), then » |
g(x+y)-g(x-y) = g(x+y) + gy-x) =<uly), v(x) >
so that g also satisfies (1.2). Thus both spaces V, and V_ have dimension
p; and the dimension of V does not excged 2p. Of course the same rehark
refers to equation (1.2). _ | _ |
Now Tet f be a solution of (1.2). Then f has the form (3.1), and

f(x+y)+f(x-y) =-2<C(y)f1,5t(X)<p(X)>

2<H(x,y)T(x)Qj ¢ (x), Tt(y)cp(y)>+2<T(\X)Q]c,c(x-), ¢ly)>

r=2

+
. ‘ R ’ t t
+ 2T(0)0 e (). o) >+ ] <F (X 4F, (-x)d LIFE(x)+E ()]s

(4.2)

‘The proof of (4.2) is analogous to.that of the identity (3.15).
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Note that the second term in (4.1) has the form

HOGYIT ¢ (), T Y@ (y)> = <HGX)TX)G ¢ (y) ST () g (y) >

m

1

1’JZ'| O‘]J(X)(f1 (Y)nJ(Y),

where aij(x) are elements of the matrix H(x,x)T(x)Q1 and qi(y) and ”j(y)
are toordinates of the functions «(y) and Tt(y)¢(y).
Therefore the dimension -of the space V, does not exceed
h]-f m$ + 2+ E m. = mf +m+ 2.
’ r=2 .
Thus
dim V(f) ;_mf +2m + 2 5_m2 +2m + 2,
and the next'resulﬁ follows.
Theorem 3. Every solution f of the equation (1.2) has the form (4.1) with
a finite dimensional representation L, dim L 5_m2 +m + 2. The representa-
tion L is défined uniquely up to equivalence.
Theorem 4. Every solution g of the equation (1.3) has the form (4.1)
with a finfte dimensional representation L under one of the two following
conditions: |
(1) g(=x) = -g(x),  x€g,
(i1) dim Hom (G, 3") = p <= for n=1,2,..
Under condition (j) dim L < 2p; under condition (ii) dim L j_p(pp+2).
‘The proof of Theorem 4 under condition (ii) follows from the following
fofmu1a_va1id for any so]ution of (1.3)
 glety)-glx-y) = 2<Hy)S (00,5 (v )ag 245 (y)uly) ,CHx)ay >
R

"L

t t
r_2<[Fr(X)gr-Fr(—X)br,EFr(y)-Fr(-y)]ar> .



23

This identity 1mp11es, that the dimension of the subspace V_ is less or

equal to p]ppj + Z P. = P+ Pqgo by

Therefore ‘ '
dim V(g) < p + pylo, +1) < plo +2),
" p

and Theorem 2 follows.

Assume now that G is a topological group and cdhtinuoﬂs sdlutions
of equations (1.2) and (1.3) are considered. The ¢ (x) =0 for a]] X be—
longing to a compact subgroup of G . Therefore the first term in the formula
(3.1) vanishes if G 1is a compact group.

"If the.group G does not contain nontrivial compact groups, then any
~ matrix homomorphism F(x) has the form F(x) = exp{H(x)} where He Hom (q 3 )
(cf. [3 p. 393] for one dimensional result.) In this case, the power
series for, say, [F(x)+F(-x)}/2 bears some resemb]ance to the funct1qn C(x)

and explains the structure of the latter.
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