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Abstract

‘This paper surveys some of the literature dealing with mixtures of
distributions. The topics coyered relate to probabilistic properties,
estimation, hypotheses testing and multiple decision (selection and
ranking) procedures. The results reviewed concerning probabilistic
properties of mixture distributions include identifiability and scale
mixture. The results surveyéd on estimation theory include the method of
moments, method of maximum likelihood estimation, method of least squares,
Bayesian estimation, and the method of curve fitting. The results for
hypotheses testing provide tests for hypotheses that an observedlsample
is from a mixture of two populations with certain unknown proportions.

In the last section, we give some new results for selection and ranking

procedures for mixtures of distributions.
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0. Introduction and Summary

There is a large body of literature on mixtures of distributions
going over about the last eighty years. Since Pearéon [90] considered
the estimation of the parameters of the mixture of two normal densities
in 1894, many more papers have appeared relatingto the problem of statis-
tical inference about the‘parameters of mixturesand probabilistic properties
of mixture densities. In 1960, Teicher [128] started the study of general
considerations of identifiability of mixtures of distributions. Since then
the interest in the mathematical aspects of mixtures has received an in-
creasing amount of attention, and the approach to the statistical inference
of mixtures has also seen more development. Recently, the studics of mix-
tures and related topics in statistics and probability have developed even
more so that these can be classified as a new area. For this reason, the
present authors decided to review (survey) some of the literature dealing
with some aspects of this area which seemed important to them. The topics
covered relate to probabilistic properties, estimation, hypotheses testing,

and multiple decision (selection and ranking) procedures.

*This research was supported by the Office of Naval Research Contract
N00014-75-C-0455 at Purdue University.



The applications of mixtures of distributions can be found in many
fields such as ecology, taxonomy, fishery,biology, plant and animal breed-
ing, psychology and engineering, etc. In biology it is often desired to
measure certain characteristics in natural popuiations of some particular
species. The distribﬁtion of such characteristics may vary markedly with
an individual's age. Age is difficult to ascertain in samples from
populations. In such cases the biologist observing the population as a
whole is dealing with a mixture of distributions, the mixing in this case
is done over a parameter depending on the unobservable variate "age". In
agriculture, remotely sensed and unlabelled observations from several crops are
available and,sometimes,along with some labelled observations information
is also available about the distribution of an individual crop population. On
the basis of such information one wishes to estimate the acreage of a par-
ticular crop or all crops as proportion of the total acreage.

In statiétical applications of mixtures, the mixture of densities can .
be used to approximate some parameter(s) associated with a density, For
cxample, the coefficient of skewness of Fisher's transformation z = %-10g (%{%J
of the correlation coefficient decreases more rapidly than the excess of its
kurtosis when the sample size increases. The usual normal approximation
for its distribution can be improved by mixing it with a logistic dis-
tribqtion. The resulting mixture approximation,which can be used to estimate ~
the probabilities and the percentiles, compares favorably in both accuracy
and simplicity (see [83]).

In this paper we restrict ourselves to probabiliétic properties, esti-
mation, hypotheses testing and multiple decisions. In Section 1 we review
main results concerning probabilistic properties of mixing distributions

. including the identifiability, and scale mixture.
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In Section 2 we survey results on estimation theory which include the
method of moments, method of maximum likelihood estimation, method of
least squares, Bayesian estimation method, and method of curve fitting.
For the hypotheses testing problem we give those results which provide
tests for hypothesis that an observed sample is from a mixture of two
populations with certain unknown proportions. All these are treated in
Section 3. And finally in the last section (Section 4) we study some
selection problems of mixture populations. We use the subset selection
formulation when the sample size is small and also study the c;se of

large sample using the indifference zone approach.

\

At the end of the paper we have given a reasonably comprehensive and
useful bibliography concerning the tppics discussed in this paper and also
the topic of experimental designs. This last topic is not discussed in
this paper and hence the papers dealing with it are marked with a « in the

bibliography.

1. Probabilistic Properties }

Let G(98) be a cumulative distribution function. Let F(x,9) be a cumulative
distriubtion function in x for each 6 in the support of G. Assume F(x,0) is
Borel measurable in 6 for evefy x. Then,H.(x) défined by HG(x) = fm F(x,08)dG(8)
is a distribution function, which is called a G-mixture of F and G_is referred
to as a mixing-distribution. When G has a finite support, HG(x) is
called a finite mixture and G is referred td;as a finite mixing diétributioﬁ.
Let the domain of 8 be denoted by @ and o(@) denote a o-algebra of ® such that

each point of @ is contained in ¢(@). Let & denote a class of mixing distri-

butions on (@, 0(®)). Let& denote the class of all G-mixtures of F for all



GEY. Let M denote a mapping from & to & such that for each GE ¥,
M({G) = f F(x,0)dG(8). Then the class &is called identifiable if M is one-to-one

so that one can identify some unique mixing distribution G0 when a certain

HOEMis given.

1A. TIdentifiability of Mixtures

Some basic properties of mixturewere studied by Robbins in 1948 [102].
Teicher [128] extended and generalized this wérk. Teicher [129] initiated
the study of identifiability problem. In [129], 1qcati0n and scale parameter
mixtures are considered, i.e. when 6 is, respectively, the location and the
scale parameter of F(x,8). Sufficient conditions for the identifiability
of & when 6 is, respectively, the location and scale parameter, are given.
It is also shown by Teicher [129] that §¢1s identifiable if {F(x,8), 0 € @} is
an additively closed family, i.e. F(x,8 )*F(x,ez) = F(x,61+62), where the operation*
is the usual convolution. In {130] neceséary and sufficient conditions for
identifiability of finite mixtures are given. Important distribﬁtions such
as normal and gamma are shown to be identifiable under finite mixing. Some
'Qufficient conditions are also given for the class of binomial distributions
to be identifiable.

These results are largely extended by Yakowitz and Spragins [136]. They
consider the general case of p-dimensional distributions. Using the methods
of linear algebra, the authors obtain a necessary and sufficient condition
for'identifiability of finite mixtures. This condition is very useful since
it is easy to check. They conclude that the family of p-dimensional Gaussian
distributions, the family of Cauchy distributions, the family of non—degenerate‘
negative binomial distributions, the family of products.of n exponential dis-

tributions (for fixed integer n), and the union of the family of D-variate



Gaussians and the family of products of n exponential distributions are all
identifiable. Using a result given in [130], Mohanty [81] showed that the

finite mixture of Laguerre distributions is also identifiable. Chandra [16]

has proved some results similar to those of Teicher [130] and Yakowitz and Spragins
[136] by some other methods. Recently, Blum and Susarla T11] gave short and clear
set of equivélent conditions for identifiability. Let A = {F(x,-): x €R]}.

Let CO(@) be the Banach space of continuous functions ong which vanish at

« and let the norm be given by the sup norm. Blum and Susarla [11] showed that if
AC CO(@), then &¢'is identifiable if and only if A _génerates CO@) in the

Sup norm.

1B. Scale Mixtures

When " a mixture is defined in the form HG(x) = fOF(g)dG(e), the mixture
is called a scale mixture. This kind of mixture has special interest both
in probability theory and statistics. It is easy to see that the density
and the associated characteristic function of HG(x) can be written, respectively,
as

«© oo

ho(x) = | 3£(9d6(8), g (t) = [ g (te)dG(s).
0 0

In terms of random variables, we denote them by Z = XY (=d means equality in

d
distribution) where X, Y and Z are, respectively, associated with Fx(xj, Gy(e)
and Hz(x). It is interesting to note that the class of scale mixtures is
closed undef the operation of scale mixing, i.e. if FE S, the.cléss of scalé
mixtures, then HE&E P where H(x) = f F(quc(e) and G(e)-is_some distribution
function on (0,~). Defineﬂﬂ; = {HS: Z =dXY}. Then, we have for a > 0,
0<px 1, Fl’ er‘wx;’ P Fl(ax) + (1 - p)FZ(ax) ef{x. The condition for

the identifiability in the case of scale mixture can be put in another form in

terms of moments which is given by Keilson and Steutel [69]



~as follows. If X # 0 a.s. and E]X.le < @ for some € > 0 and if E|Z[€ < =,

then E Y€ < » ‘and there exists a one-to-one correspondence between Z and Y
(Maﬁdg). Now, if we assume X to be a normal with mean 0, we can characterize
the class of mixtures. Letgg{®) denote the class of scale mixtures (variance
mixtures) of normal distribution with mean 0. Froﬁ Bernstein's representation
theorem for completely monotone functions (see [40 p. 439]) we can conclude
that f€ &1(¢) if and only if @f(t), the characteristic function of f, is an
even function and mf(/f) is completely monotone on (0,»). We recall that h(x)
is completely monotone on (0,») if (—l)nh(n)(x) > 0 for x> 0 and n=20,1,2,..
.Accordingly, by checking the conditions, it can be-seen that the Cauchy distri-
butions, the Laplace distributions, Student's t—distribution§ and the symmetric
stable distributions are all in the class&(®). This was obtained by Kelker
[70]. Also, Logistic and double exponential distributions belong to &(¢) asr
shown by Andrews and Mallows [l1]. To characterize&Z{®) in another way,rwe
restate a result of Schoenberger [ill] as follows: f€ &(9) if and only if
there exists a function y such that ¢f(t) = w(tz) and for t' o= (tl,tz,...,tp),
¢f(§) = ¢(|E|2), a p-dimensional characteristic function for each p (p = 1,2,...
It was shown in [69] thatd&Z(®) is closed under the multiplication of densities
with suitable renorming if the product is integrable. If Z has density'fz(z)
which is symmetric about 0, then, as Andrews and Mallows [1] showed, a necessary
and sufficient condition for Z = d N/Y, where N denotes the zero mean normal
random variable, is that for all k (égakfz(/zj > 0, for z > 0. They also

found some special correspondence between Z and Y. If fZ(z) is

2

y3 exp{—k/Zyz}', ie. Ly

logistic, then GY(y) = 2 Z (—l)k—1 k 5
’ 1

has the asymptotic distribution of the well-known Kolmogorov's goodness

of fit statistic. This result is useful for Monte Carlo studies. It was



also found that if Z is double exponential, then %—Yz is exponential. Finally,

it is interesting to ask how broad is the classs &(®). For given 0 < Xp < Xy,

o az(%-< ay < aZ),let F & &(%) with F(xl) = oy and F(xz) = a,. Let

o(9; X Xy, &1, ay) = {H(x): H(xl) = 0y, H(xz) = a,, HX) € Z(®)}. Then,

Efron and Olshen [37] showed that, there exists an F* € &(o; X)s Xy G, az)

such that F*(x')= max H(x") for xfef(xl, xz) and F*(x') = min H(x") for

x" é_(xl, x2) where the maximum and the minimum are over the set H(9; xl,xz,ul,azy
If X is considered to be a gamma distribution of order a (0 < a < «),

we denote the class oflﬂixturesbyﬁﬁ&(a). Then, we note thatéﬂé(a)c:jﬂh(B) for

o < 8. When o = l,ﬁﬂb(l) is the mixture of exponential density and for

fZ e:ga%(l), fz(x) is completely monotone. ﬂﬂ&(l) plays a key role in

stochastic processes reversible in time,

2. Estimation
Let H(x) = f F(x,a)dG(a) be the mixture distribution. If G(a) is
Q

discrete, then H(x) is given by H(x) = z Oi F(x,ai). When the summation
i=0

is finite, H(x) is called finite mixture. In this section, we study the
problem of estimating G(a) based on independent observations from H(x).
However, for the most part we will discuss the case of finite mixtures.

For the case of finite mixtures, the study is then for the estimation of



Oi and @ . The methods for estimation can be classified as the method of
moments, method of maximum-likelihood estimation, the minimum square method,
Biyesian estimation method and the method of curve fitting. In this

problem, all mixture distributions are assumed to be identifiable so that -
theestimations of barameters make sense. Some important classes of con-
tinuous and discrete distributions which are identifiable have.been mentioned

in Section 1A.

2A. Method éf Moments

In 1894 K. Pearson [90] studied the dissection of asymptotic and sym-
metric frequency curves into two components of normal frequency distributions.
This may be the earliest paper that investigated the estimation of parameters
in the finite mixture case by the use of the method of moments. Let
®(x, u, 02) denote the normal cdf withrmean 1 and variance 02. The mixture
is giveq by H(x) = a ¢ (x, My of) + (1-a) @ (x, Hys og). K. Pearson [90] com-
puted the first five moments and by equating the population moments to the
sample moments he obtained a nonic (9th degree) equation. Solving for these
equations he finally obtained the estimates for a, His Ops M,
and Tye However, the solutions are not unique. He used the data of 1000
crabs from Naples to study the frequency distribution of the breadth
of forehead of crabs. Assuming the crabs were from two different species, he
considered the ratio of the forehead to the body—length as the abscissae of
the curve. Applying the method he developed, he arrived at two sets of
solutions. This lack of uniqueness of solutions bothered Pearson and he
suggested choosing the set of estimates which resulted in the closest
agreement between the sixth central moment of the sample and the correéponding

moment of the 'fitted' compound curve. Charlier in 1960 [18]
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suggested a somewhat simpler but still laborious solution of the moment
equations involving a cubic and the ratio of two other polynomialé. Burrau
in 1934 [15] computed certain functions of the moments which are expressed
in terms of the five parameters to be estimated. In the same year Stromgren
[125] computed some tables and charts to aid calculation of solutions of
some equations which are derived using some given function of moments. Again
in 1934, Pollard [92]vconsidered the dissection of a sym-
metric density into three components of normal density. Under some assump-
tion Pollard was able to reduce eight parameters to five. Since the density
is assumed symmetric, the odd moments are zero. Since fivo equations are
needed for the five unknown parameters, the first eight moments are computed.
Pearson's solution [90] are not applicable in this case. However, the dev-
elopment is analogous.
Instead of moment equations, one might expect to use iterative solutioms
of maximum likelihood equation. This has been
done, in fact, by Rao [ 98] for special case op = 0y This assumption sim-
plifies the problem considerably. However, the calculations involved are
still quite cumbersome. N
In 1967, Cohen 3] again derived the nonic equation which was first
obtained by Pearson. Cohen considerably reduced the total computational
effort otherwise requifed. Some special cases considered by Cohen are
0, =0, =0gor My =H, =¥ Some conditional maximum likelihood and con-
ditional chi-square estimates were also discussed. An example was pro-
vided to illustrate the procedure proposed for the estimates. However,

the problem of lack of uniqueness of solutions still remained. Another

solution to the example given by Cohen [23] was provided by Hawkins [55].
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In general, multiple solutions for the estimate of parameters are possible.
When multiple solutions occur, either solution would be the one of interest
and should be examined with an eventual choice of a preferred solution in
mind. And whén a clear decision cannot be made on the basis of any tests,

a larger sample should be taken if conditions so permit. Even if some tests
are possible, the confidence of conclusion of the estimates are far weakened.
Having multiple solutions for estimate is one of the shortcomings

of the method of moments.

Later Rao [99] considered the same problem for the special case of
equal variances and his results led to a simple set of equations having a
unique solution. Rao's method was later programmed for computer use by
Hasselblad.[SZ] and was found to work very well.

Gregor [47], based on the idea of Doetsch [32] as provided by Medgyessi
[78],constructed an algorithm which can be used to find the mean of each
component with the aid of a Fourier transformation of the given density
function. The method of reduction of variances was utilized to determine
the unknown variance and frequencies of the components (using the continued
fraction approximation for the error function). To test the goodness of
fit, Kolmogorov-Smirnov test statistic was used.

Day [29] considered the estimate of the proportion of mixture o by
the method of moments when each component is a multivariate normal with
common variance matrix. For the univariate case, some simulation results
showed that the estimates behave nearly as well as maximum likelihood
estimates. However, when the dimensionality of the cohponent gets larger,

the estimates appear poor.
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John [60] considered a related but different model of the problem.
It was assumed that the sample of size N was the result of mixing a

random sample of size N, from a p-variate normal population with mean

1

] and the covariance matrix $ with an independent random sample of size
N2 from another p-variate normal populatibn with mean By and covariance
matrix t. It was desired to estimate Nl; N2, Hys ¥y and t. The method of
moments. was considered for the case p = 1. It was shown that in this
case there was an unique solution for the estimates. The same method
proposed can be applied to the general case of p > 1. Asymptotic normality
of the moment estimates was also studied by John [60]. For P = 2, an ex-
ample was worked out using the proposed method.

Mendenhall and Hader {80] considered the case when the components have
the exponential distributions. Ridef [100] also considered the samc
case with less restrictions apnd derived the estimates by the method of
moments. It was shown that the estimates obtained were consistent. .Howcver,
it is not clear whether the estimates always exist. Cohen [22] considered the
cases of mixture of the Poisson distributions and a mixture of one Poisson
and one binomial. In the former case, he considered the estimates based
on the first two sample moments and the zero sample frequency. Again, he
considered the mixture of truncated Poisson distributions with missing zeré
classes. For the latter case, he used the technique of factorial moments.
As the author pointed out, in practice, the more difficult and most important
problem is to determine which components are appropriaté to fit the data.
Rider [101] also considered the case of Poisson mixture, énd computed
asymptotic variances. When the components are binomial, Blischke [7] used
the technique of factorial moments to obtain some relations among moments
and parameters. First three moments were computed to obtain three equations

so that a unique solution is possible for the the three unknown paramctcrs. liowever,
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the estimates obtained by Blischke [7] have the unpleasant feature of
assuming complex as well as indeterminate values with positive probability,
though this probability tends to zero as sample size increases to infinity.
He also showed that the moment estimates é = (ﬁl, ﬁZ’ &) are -asymptotically
normal and consistent. Blischke also considered asymptotic relative efficiency
(ARE) of the moment estimates é = (ﬁl, ﬁz, &). When the components of the
estimates é are considered jointly, a joint asymptotic relative efficiency
(JARE) of é relative to the maximum likelihood estimate €* was defined by the
square of the ratio of the areas of the ellipse of concentration of the
respective asymptotic normal distributions. It was proved that the joint
asymptotic relative efficiency is given by det(ze*)/det(zé) where DR is the
covariance matrix of é. For some special valueswof Py> p; and o, Biischke
t7] computed both ARE and JARE and it was found that neither ARE nor JARE
are monotone with respect to n. However, in the limiting case, they always
attain the value 1.

Blischke [9] considered a general case of r (r > 2) binomial components
with 2r-1 parameters to be estimated. He also applied the method of moments
to obfain the first estimate. Then, he considered another efficient estimate
based on the moment estimates. This construction_of an alternative estimate was
done at the suggestion of Le Cam [73]. By Neyman's linearization tecﬁnique BAN
estimates were also constructed. Asymptotic relative efficiency and joint
asymptotic relative efficiency of the moment estimates were discussed by Blischk;

[9]. A numerical example for comparing the method of moment and other two

alternative methods was given.
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The results for the mixture of r binomials can also be obtained for
a number of other distributions. For example, they are applicable to
mixtures on p (with known k) of negative binomial, and hence to its special
cases, the Pascal and geometric distributions. As regards other cascs,
Bliss and Fisher [10], Shenton and Wallington [114] and Katti and Gurland
[66] have discussed the negative binomial which is a compound Poisson dis-
tribution. Sprott [122] and Katti and Gurland [65] discussed the case of
the Poisson-binomial distribution which is the Poisson mixture of thc paramecter
n of binomial. The case of the Poisson-negative binomial was studied by
Katti and Gurland [64]. For the Neyman contagious distributions (see [85]),
Shenton [112] discussed efficiency of the moment estimates. And for a two
parameter beta-distribution mixture on parameter p of binomial which
is the so-called negative hypergeometfic due to Shenton [113], fhe moment cstimates
were studied by Skellam [115]. Mosimann [82] studied the mixture of multi-
nomials. Falls [38] considered a mixture distribution of two Weibull dis-
tribution each with.different scale and different shape parameter. Moment
estimates were proposed and some graphical illustration and a ﬁumerical
example were given by Falls [38]. For some other details reference should
be made to Biischke [7] and Isaenko and Urbakh [59].

Moment estimates are usually not considered very efficient except for
some cases such as the normal, binomial and Poisson distributions. Methods
more efficient such as the method of maximum likelihood are more desirable.
However, in many cases, such as for example when more uﬁknown parameters.
need to be estimated, the maximum likelihood equétions are fbﬁnd complicated
and almost intractable. Under this situation, one may still consider the

moment estimates.
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For some further studies on the efficiency of moment. estimates
reference should be made to [112], [113], [122], [7], [9}, [42], [52], M26]

and [55].

2B. Method of Maximum Likelihood

In many cases, maximum likelihood estimates are considered to be more
efficient than the moment estimates. For the problem of estimating
parameters in the distribution of mixtures,most authors treated it by the
method of moments in the early years. In 1966, Hasselblad first considered
the estimation problem-by the method of maximum likelihood. The population
from which we sample obeys a density function which is a mixture of k normal
densities. Taking the logarithm of the likelihood function and differentiating
with respect tb each of the parameters U, {mean), ci {(normal variance) and ay
(mixture proportion), i=1,2,...,k; and equating them to zero, Hasselblad
[52] obtained 3k-1 independent equétions with 3k-1 unknown parameters. By
substitution of some equal quantities in some equations into other equations,
he obtained the firstriteration scheme. A rough estimate from the truncation
method is used as an initial guess for this scheme. The gen-
eralized steepest descent method proposed by Goldstein was applied. It
can be shown that the direction traveled by the procedure at each iteration
possesses a pqsitive inner product with respect té the ‘gradient. For an
alternative treatment of the 3k-1 equations, Hasselblad [52] applied the
Newton iteration method, and finally he obtained a matrix equation of an
iteration{scheme. ‘The investigation of the variances of the estimates are
-important. Hasseiblad [52] gave the explicit formula for the second partials
of logafithms of the likelihood-function and from these, tﬁe information B
matrix and thus the variance-covariance matrix of the estimates was ap-

proximated. Some details of the asymptotic variances of the estimates of
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the means, proportions and standard deviations were also given. However,

it should be pointed out that the solutions are limited to grouped data in

which all class intervals are of equal width. And, in practice, Hasselblad's
results obtained would not be likely to show satisfactory unless some conditions

are met, for example, grouping intervals are narrow, and when

k = 2, it is desired to have sample of size 1000 or more
and when k is large, even larger sample sizes are needed. When the separation
between component means is too insufficient and to produce k distinct
sample modes, the estimates obtained are very 1ike1§ to beﬁnreliable.
For the same problem, Behboodian [6] showed that the maximum likelihood

. . 2 .
estimates for the component mean Wy and component variance o) are, in fact,

n .
respectively, a weighted sample mean my o= z wij Xj and the weighted sample
- - - . ji=1 -
variance 0? =% W,. X? - u? for i = 1, 2,...,k,where w.. are the values of
i ij 73 i : ij
. . 2 : - " - s e
W, obtained by replacing His O and a; by s oi.and o, and wij satlsfleé
wij = fi(xj)/nf(xj), i=1,2,...,k, j =1, 2,...,n. Furthermore,
A k . . 1
1 i = — j =
wij s satisfy izl a; wij n (i 1, 2,...,n) and
n . -
I w,. =1 (i=1, 2,...,k),
j=1

where fi(x) and f(x) are, respectively, the density of ith component and
the mixture distribution. Wolfe [135] obtained similar results

by considering the case of multivariate normal density fi(§, Qi)

for each component and he introduced the so-called "proﬁability of membership"

: a.f.(x,90.)
of a vector x in type i which is defined as P(i]§) = _l?%ij__i—”' where f(x)

is the mixture density. Furthermore, he showed that the MLE of &i’ ﬁi and

~

*i are given by
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R 1 M. ~ 1 no.
a. = = = P(ilx.), wn.. = » P(i|]x) X_. and
1 no._ ~] 1] ~ _ ~T T)
j=1 n oo, r=1
~ n ~ .A ~
0;5(s) = — rzl Plslx) (%) (%pmbgy),

1

whefe ”ij and xij are the j-th component of U and X5 and cij(s) is the'(i,j)th
element in ts which is the covariance of the s-th component. These results
are more general than those of Behboodian [6]. It is obvious that &ij's are the
fuﬁctions of Qbservations X5 xz,...,xn. To solve for &ij’ oné has to solve
the simultaneous functional equations which are rather complicated.

In 1969, Day [29] considered the mixture of two p-multivariate normal
populations with equal covariance matrix t. There are %pz + %p + 1 unknown
parameters which are to be estimated.. As usual, taking the logarithm and dif-
ferentiéting in turn with respect td each unknown parameter and equating to zero,
they obtained a set of equations. By introducing the quantity P(i|§j), the
probability that observation §j comes from the component i, Day was able to
express the maxihum likelihood estimates of unknown parameters in terms of
the estimates of Pﬁlgj), denoted by 561§j) which can be simply expressed
in terms of some quantities which are functions of a and the estimated
Mahalanobis distance in terms of the maximum likelihood estimates. Finally,
an iterative scheme was set up. If the initial guesses are close to the
real values satisfying the scheme, it can be shown that the sequences
generated by the iterative process converge to the solutions. However,
solutions may not be unique. For example, when p 3_3; and the Mahalanoﬁis
distance between the two components A =[(1~11 - EZ) i—l(gl—gz)']% is smail,

say less than 2 and the sample size is small, the solutions are nearly
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multiple. In this situation, one has to check up at each local maximum

to determine where the over-all maximum lies. And this is some shortcoming.
By repeating the iterative process from cnough different starting points,
all the local maxima can be found. However, the maximum likelihood
estimates are invariant under linear transformation. This property is
helpful for the simulation Study. These estimates are, of course,
asymptotically mimimum variance unbiased for A > 0. Instead of estimating
the mean and variance, it seems more interesting to estimate the generalized

distance A. The asymptotic variance of A is given By r(A)/n where {r(A)}_1 =

E{(E_lg%_fiélaz}_ When A is small, Day showed that (r(A))—1 =

3 2 4

5O (l-az)(1—2a)2 A+ 0(A6),ignoring the correlation of ¢ and A. When A
is large, (r(A))_1 is approximated by’ a(l—a)(1+20(1—a)A2)(1+a(1—a)A2)_2.
For more than 2 components, the ana16g0u5 iterative procedures were
suggested.

When the component muitivariate densities fi(§)'s are all specified,
there are k-1 proportion parameters which remain unknown and need to be
estimated. Peters and Coberly [91] gave a necessary-condition that if é
is a maximum likelihood estimate (MLE) then é satisfies a fixed point
equation g =VG(a) where G is a vector-valued function with its ith componcnt

n a.f, (%)
equal to H-~Z ?%E%TE%—-, i=1,.,.,k. In order to

to find this fixed point, some properties of é and G were found. It was

shown that G is a local contraction at o if the rank of M = (fi()}j))nxk

is k and o is a MLE and is an interior point. In fact, if é is an interior
point such that é = lim Gn(é), then 8 is a MLE. When k = 2, and B is an

interior point in its domain, Gn(B) converges to the MLE. It should be
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pointed out that the fixed point 8 satisfying B = G(B) is not unique.

A method is suggested to choose a starting point which is based on the
maximum-likelihood classifier. An example was used to show the iterations
i

needed for the accuracy of 0.5 x 1007 (i =2, 3, 4) starting from 7

different points. For the accuracy 0.5 x 10_4, the number of iterations for the

worst case did not exceed 70.

For a finite mixture of k exponential families with r unknown parameters
in each component density, there are rk + k - 1 parameters,including the k-1
unknown proportions,to be estimated. Hasselblad [53] derived a set of
equatiohs which form as successive substitutions iéeration scheme. For a practical
computation, initial estimates are necessary and three methods for these
estimates are proposed. One of these methods was guess-work depending on eithef
data, like, the mode of the sample, or other knowledge of the problem at
hand. It was found that the initial estimates were unimportant relative to the
method of obtaining estimates as long as they were in their admissible ranges. For
some special distributions such as Poisson, binomial, and exponential, exact itera-
tive procedures were given and a numerical example for each case was provided.
Asymptotic variances of the estimators of parameters were derived in the Poisson
example. For the binomial case, with k=2, the momént estimates proposed by Blischke
[9] was applied to the same data given in the example and some comparisons between
the MLE and the moment estimates were made. It was found that the MLE estimate
are superior +to the moment estimates in some sense for the small sample
study of size 100. The MLE always lies in the admissible range whenever
the initial guess is in the same range and this is no£ the case for the moment
estimates. Also the variance of the MLE is smaller than that of the moment

estimates. However, the asymptotic variance may be very large if the sub-

populations are not well separated. Therefore sample sizes of 1000 or more
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are always desirable for the MLE. It can be expected that the moment
estimates may be very bad when sample sizes are small. Day [29] has
shown that when the components are multivariate normal, the moment
estimates are essentially useless.

The joint asymptotic relative efficiency comparisons in [17] and
[126] show that the MLE are much more efficient than the moment estimates,
especially, when A = |u2 - ull/min (01, 02) < 2. Hosmer [56] used Monte
Carlo simulation to study the MLE for A < 3 with 9 # o, and with relatively
small sample size n 5_300. This is interesting because both [53] and [29]
suggested large sample size as strongly desirable, especially, when the
two components are not well-separated. Uging the iterati?e procedure
proposed in [52], Hosmer used a stopping time N = i whenever 10 < i < 1000 and
IL(Q(i+1))—L(?(i))| :_10—4 and tookl§¥?(i+l). Ctherwise, he suggested taking N=999
(with N > 10). In the preceding, L is the likelihood function, ?=(a,u1,01,u2,02),
and ?(0) is the initial estimate. There is a strong indication that the

initial guess ¢(0) does not seem to have much effect on the MLE @. With

sample size n 100, and ¢(0) = (0.3, 0, 1, 1, 1.5), for each of 10 dif-

ferent samples, § was computed using three quite different initial guesses.
In 7 of the 10 samples,the values of @ obtainéd by starting with the three
different guesses were the same and in two other samples 2 of the_3 initial
gueses concluded the same ¢. The three values of ¢ were significantly dif-

ferent in only one sample. For the true parameters ¢ = (0.3, 0, 1, Hos 1.5},

My = 1, 2, 3, simulations for the MLE obtained from 10 Samples of size 100

and for true parameters ¢ (0.3, 0, 1, 3, 1.5), simulations for MLE obtaincd
from 10 samples of size 300 indicate that the MLE may not be accurate enough
to provide useful cstimates. Hence, the poor behavior of the estimates of

the parameters for these examples considered shows that the MLE, though much
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more efficient than the moment estimates and perhaps the best method available,
may be still highly unsatisfactory for even moderate sample sizes.

The main difficulty in the problems of estimation of mixture is that
the data are mixed. When two components are not well separated, some of
the data can be from either component withbhigh probability. If the data can
be identified with the component of origin or when the data contain information
about the mixing proportion, the problem may be easier, the sample size
‘may be reduced and the estimates may still give the same information for the
unknown parameter. For this interesting conjecture, Hosmer [57] did the
study by using the Monte Carlo method. First, he classified the data into
three types. The first type data is mixed and it iscalled model 0 (MO)
sample. A sample where the component of origin of each observation is known
with certainty will be called known data. Two types of known data are pos-
sible according to whether or not thé known data contains imformation about
the mixing proportion. A sample which contains both mixed and known data
and where the known data contains no information about the mixing proportion
will be referred to as a model 1 (M1) sample, as for example, in the case
when‘20 male fish and 20 female fish are arbitrarily taken. A model 2 (M2)
sample will be referred to the case when the sample cqntains both mixed and
known data, and information about the mixing proportion is contained iﬁ the
relative number of observations from the two components in the khown data.
An example of M2 sample would be the case where 100 fish are taken and then
the fish are classified as male and female. Let n denote the sample size of
MO sample and let m denote the sample size of ML or M2 sample. Let the
proportion of m to n be denoted by r = %n The intent in considering Ml or
M2 samples is that one needs only a small amount of known data to improve

on the M0 sample. The Monte Carlo study followed the same assumptions
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given in [57] which have been mentioned above except that 0, = 2.25 instead
of g, = 1.5. In this study r was restricted to be 0.1, 0.2 and 0.3 with
each value of n and ?. For given n, MO sample was generated as a mixed
sample. The.known samples for the Ml sample were generated by starting with
the first observation generated for the mixed sample and hoting the pop-
ulation of origin of each observation successively until exactly rn/2 were
obtained from each component. These observations became the known sample
and the remaining n(1l-r1) obser?atibns the mixed sample. The known samples
for M2 sample were constructed by noting the population of origin of the
first nr observations for the mixed sample. The observations from the

first component formed one known sample and the observations from the second
component formed the other known sample. For n.= 100 and ¢ = (0.3, 0, 1, 1, 2.25),
10 samples were generated and the MO, Ml and M2 estimates were computed from
each sample. The mean, variance and mean squared error of these estimates
were tabulated. The cases for n = 100, and for Hy = 2, Hy = 3 and for

n = 300, Hy = 3, respectively, were also tabulated. From these Moﬁte Carlo
results, it is noted that for most parameters, and for various sample sizes
considered and the different values of the ratio r, the Ml and M2 estimates
tend- to have smaller variance and mean squared error than those of MO. The
variances and the mean square errors of Ml and M2 estimates tend to decrease
as r increases. When n = 100 and r = 0.1, the Ml estimates seem to have
smaller variances and mean square errors than those of M2. It is found that
the estimates obtained using both the mixed and known data were more accurate
than those computed from the samll samples. vThe conjecture that, if the
components are not well separated and if part of the mixed sample can be
correctly classified or if the mixed sample can be supplemented by a small
sample of known data, the estimates would be more accurate, was supported by

the Monte Carlo results.
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Lindgren [74] studied the problem of estimation of unknown parameters in
a finite mixture of distributions or populations. He assumed the existence
of unobservable regime variables {Xt}:=1, which select the distribution to be

00
observed for each t. Further, he assumed {Xt}t=1 is a stationary finite state

Markov chain with transition probabilities “jk = P(X = k|Xt=j) and stationary

t+l
distributions ﬂj = P(Xt = 3j).

It is noted that in case Xt's are independent, we have the classical
mixed distribution problem with independent observations. Assuming the
proportions "j (= aj) and the transition p?obabilities to be known. Lindgren
[74] found the maximum likelihood estimate of 6 = Iel,...,ek), where ei is the
parameter of the ith component of the mixture. Under the assumption that there
exists some dependence among Xt's, Lindgren has carried out some simulations
to show that the maximum likelihood estimate based on the full Markov model

is superior to the maximum likelihood estimate based on the assumption that

the regimes are independent.

As another direction for the study of statistical properties of the
estimates for the parameters in the mixture density, Tubbs and Coberly {[134]
did the study of the so-called sensitivity of the estimates for the mixing
proportions. They considered a mixture of three bivariate normal populations and
applied the Monte Carlo method. When the original data from each components of the
mixture were shifted (in location and direction), the variations of the estimates
for the mixing proportién suggested that the estimates were sensitive. Four
kinds of estimate were considered. They were MLE, moment estimate (ME)
minimum chi-square estimate, (MCE), and the classific;tion estimate (cy),
the last being simply the proportion of the sample which is classified into
the ith class by the maximum-likelihood classifier. Mean square errors for

each kind of estimate were plotted. It is interesting to note
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(based on the Monte Carlo result) that the ordering of the four estimates,
according to the degree of sensivity, would be (CE, MLE) > MCE > ME. IHow-
ever, it is also apparent that the particular type of shift deviation from
the model would result in a different ordering. Hence, if the suspected
deviation is known to be of one particular type or direction, a specialized

experiment should be done to investigate the sensitivity under that alternative.

2C. Method of Least Squares, Bayesian Approach and Some Other Methods

It is known from previous sections that samples of small size do not,
in fact, provide good solutions either for the method of moments or for the method
of maximum likelihood. Besides, the computations of estimates using cither
of these methods are cumbersome and some difficulties such aé lack of unique-
ness may occur. Therefore, it is desifed to study some otHer methods for
estimation. Most of the results described in this section are restrictéd to the

estimation of mixing distribution. 1In 1968 Choi and Bulgren [21] considered

the case of estimating the mixing distribution when the component densities
are completely specified. Let Hn(x) denote the empirical distribution as-
sociated with the observed sample x of size n. If the mixing proportion

a = (al, az,...,ak) is used they considered the integral squared errors

f (Ha(x) - Hn(xﬁden(x) where Ha(x) is tﬁe cdf of the mix-

given by Sn(g)
ture associated with a. In fact, they considered the case of finite mixture
and showed that there exists the solution §(='§n(§)) which minimizes Sn(g)

for all o in the admissible domain. This é is then used as the estimate of
the mixing proportion. It has.been shown that é converges to the true un-
known value of o with probability one if continuity conditions are assumed

for H in ei (parameter in mixand density) and a, i=1, 2,...,k). TFurther-
more, asymptotic normality is also shown for the estimate @ if non-singularity

condition holds for the matrix (E(H(x,ei)H(x, ej))), i,j =1, 2,...,k. Rate



24

of convergence of é.is shown to be 0(@sn n/vn) for all n > n, with probability
one. These asymptotic properties are very helpful for the study of the
estimates. In 1969, Choi [20] considered the case of estimating the mixing
proportion and unknown pafameters in the component densities when the functional
form of the component distribution is specified. He used the same criterion

of the integral squared errors. The same optimal asymptotic properties are
shown to hold if some other extra conditions on the first and second deriv-
atives of H(x,0) with respect to oy (i =1,2,...,k) are satisfied. It

should be noted that the parameters to be estimated in this situation are

6

given by G = (al, o .,ek) when ei's are the parameters in

» 2,...,ak, 1’ 62,..
the ith component distribution. Some Monte Carlo studies are made in [21].
Each component is assumed to be a univariate normal density with coimmon
variance 1. The number of components ranges from 2 to 5. Sample size
ranged betweenrlo and 400. Simulations were repeated 500 times and mean
sdqare errors were computed. It was found that mean square errors are
small when sample sizes are at least as large as 200 and the mean squafe
errors were not largely affecfed by the number of components. The result
of Choi [20] can be extended to the case of continuous mixing distribﬂtion
by taking a sequence of distributionsas its approximation. The criterion
of errors considered by [21] and {20] in fact can be extended to become

f (Ha(x) - Hn(x))de(x) where W(x) is some weight function. As Bartlett
and MacDonald [2] have studied, a good choice of W(x) is not easy. ‘The
special case k = 2 has been studied in [2] and for k > 3, the situation

is quite complicated. The criterion of errors considered in [21] is, in
fact, the Cramer-Von Mises type or Wolfowitz distance between two sample
functions. If this distance is defined to be the Kolmogorov type
_5§p|Ha(x) - Hn(x)|, then the solutions §(= én(x)) to minimize this distance

" have been considered by Deely and Druse [30]. This paper is related to the
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empirical Bayes approach of Robbins {[102]. They considered the problem of
estimating the general mixing distribution G(a) by choosing a sequence of
discrete distributionS{Gn(a)}, where for each n, Gn(a) depends on the sample
Xn of size n, such that Gn(a) converges weakly to G(a) with probability one.
For each n, an admissible én(a) is chosen so that the minimum of the uniform

distance between H )(x) and Hn(x) is attained. For each sample size n, a

G {a
sequence {én(a)} isnobtained tp approximate the real G(a). Under some mild
conditions, it has been shown that én(a)4G(a) at any continuity point of G
with probbility one. The existence of such @n(a) for each n is guaranteed
and its computation involves a linear programming problem. To be more
general, suppose d is any metric for the topology of weak convérgenée of
probabilities on the sample space (see Parthsarthy [89]). Let & denotc

the set of all mixing distribution functions G(a) defined on @, the parameter

space. For the topology of weak convergence , suppose & is compact and

for a sequence {gi};’ of subclasses of @ satisfies U gi = @. If ﬁn(a)
1

is so chosen such that for each n, én(a)EE_ga] and d(Han(a), Hﬁ)attains its

infimum for all Gn(“)eff?h’ then it is shown [16] that én(a) converges
weakly to G(a) with probability one if F(x,a) is continuous with respect

to a; The results in [30| can thus be obtained by taking some special
metric satisfying some conditions. Some other conditions for the weak
convergence of én(a) have also been studied in [16]. Using another apprbach,
Blum and Susarla [11] considered a partition of parameter space Q. A step
function Gn is constructed such that on each division of the partition, the
constant value is given according to some weight which are controlled by

the local maximum and minimum valﬁes of the mixture density on this division.
When the mixture density hG(-) is unknown, an estimate ﬁn(a) + é;n
(= ﬁn(-, X1 Xys--+5X)) satisfying S§P|%h(x) - hG(x)|+0 a.s. is used to

replace hG(-). If some conditions similar to continuity in both x and 6
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are satisfied by the component density f(x,0), then the weak convergence of
6n to the real mixing distribution G(x) holds almost surely. Furthermore,
when 0 is a location or scale parameter, it has been shown that

-c

2
[ha (x) - hG(x)|+O a.s. and E(ha (x) - hG(x)) = 0(n 1) wherecﬁ_= min (2¢, 1-2¢)
n n

“®.  The construction of én is possible

for some constant c satisfying EEn =n
by linear programming though not simple. One question may be raised how
the partition of @ is taken so that for practical application, the convergence
of 6n would be more reasonable. Blum and Susarla compared their results with
thoée given in [30] and [20].

[f the observations from the mixture populatién are restricted to the
positive integer value, Rolph [105] first considered Bayes estimation of
G{a). Some assumptioﬁs were made by Rolph. @ is a finite interval and
considering f(x,a) as a function of o, say, qx(u) for a fixed x,
qx(a) = i§0 ai(x)ai (In fact, continuity of g in o is sufficient). Then, the
unconditional mass function (mixture mass function) can‘be expressed as
a summation of sequence of ith moment of G(o). Properly putting some prior
distribution of the set ¢ of distributions defined on Q, consider the Bayes
estimate G which minimizes the risk associated with some loss function
L(é, G). Under some conditions, the Bayes estimate of G is just the
expectation of thevposterior distribution. The Bayes estimate G is thus
:determined by taking the distribution with (ﬁl, ﬁz,...) as its moments
where each ﬁi is the expected ith moment under the posterior distribution.

oo

Consider the loss function of the form I Yi(mi(é) - mi(G)z) where mi(G)

1
is the ith moment of G. Suppose Gt and Qt are the two boundaries where
distributions having (&1, ﬁz,...,&t_l) as their moments then, the estimate -

én is defined as the convex combination of.Et and Et' It has been shown

that the sequence {Gn} (Gn = Gn(xl, x2,...,xn))1s consistent. Relaxing
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the restriction to @ being a half-line, Meeden [79] chose the prior
distribution on the set of distribution on Q in another way. Using some
results of [105] Meeden [79] was able to show that the Bayes estimate under
his set-up was consistent. These mathematical constructions and proofs are
complete; however, the practical computation of the estimate is not so
easy and still needs more investigation.

Properties of consistency or weak convergence are important and

desirable and fundamental for our study of estimation of mixing distribution-
The above properties may not hold when sample size is small. Paying

attention to the small sample property, Boes [13] considered the pos-

sibility of some estimates to attain the Cramer-Rao bound. Restricting

to the case of finite mixture, he obtained the necessary and sufficient
conditions for the attainment of the Cramer-Rao lower bound for the variance of
the estimate of o when k = 2. A uniformly minimum variance estimator of o was
obtained which was also shown to be consistent R3]. When k > 3, some

jointly efficient estimates were obtained by Boes [L3]}. By an estimate

6 (x) = (5105), 62(5),...,6k(§))joint1y efficient for § = (0,4 0,,...,0,)

1’
(x), centered at

Dy

in some set U, we mean the ellipsoid of concentration of

6, coincides with the minimum ellipsoid of concentration. Again, by con-

k-1
sidering the risk defined by R(8,0) = I a; Var ei, where § € U = set of
1 .
all unbiased estimate of § = (61, 62,...ek) and for some constants
k-1 ..
a,, a,,...a - Then, it is obvious that R(9,8) > I a,. 111(6) where
1’ 72 k-1 DA ~

(Iij(ﬁ)) - (Iij(?))—l and Iij(?) = E HS%;-@lh)(sgg-&1h)J'and where h denotes

' k ..
the likelihood function. Denoting L(6) = & a; Ill(e), by eq»efficient
. ) ~ 1 ~ ~

estimate of 8, we mean R(@,eo) = L(8). Let Q0 - {e = (8, 6yss8 )

~

6, >0, X 0, < 1}. Boes [14] has shown that if 8* is a point in o0

[

for which L(8) attains its maximum, then the 6*-efficient estimate
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é(?*) = (51(?*), éété*),...,ék(g*)) is a minimax unbiased estimate for @

in the sense that sup R (é(g*),g) < sup R(é,g) v §€E U. This is a very
desirable result ifgsuch a minimax ungiased estimate can be found. Some
examples were given by Boes. It is interesting to mention an example to
see the simplicity of the estimate. If k = 3 and each component is uniform
in (0,2), f, =1 in (2,4) and f3 =1 in (1,3). For some

2
2 2
(any) constants a; it is seen that the minimax unbiased estimate is given

such that £, =1
_ 1 5

1—N3 1, N4—N
2

+
n °’ n

(TR

by (él, éz) = ) where Ni = number of observations
falling in (i-1, i], i = 1, 2, 3, 4.

Finally, by the approach of curve fitting, Preston [94] proposed to
fit the mixing-distribution by piece-wise polynomial arcs. Here it is
assumed that each component density is discrete. The estimations given in
[30], [109 and [79] are all step function approximations to the mixing dis-
tribution. Hence, polynomial appro*imation would be more preferable and

accurate if the approximations are appropriate. Let é(a) denote the poly-

nomial approximation of G(a). Preston [94] considered the estimate of the form

R : m r
G = 3 .. %..(a), wh
(a) 2 jZO 3,5 1J(a) where
0 Ta < B.
1
_ PEEY _ j
lij(a) = [ (o Bi)/(siﬂ Bi)] B, <o < B
1 Biog S A .

(llO(Bi) = 1). {aij} are a sequence of parameters and Bi are constants. Hence

é(a) consists of piece-wise polynomial of degree r. Denoting Lij(x) =

7 [ F(s,a)de,.(a), we have H(x) = Y ) os:L..(x). Hence, if G(a) is an esti-
ity 121 i=0 13 13 -
S<X i ]

mate of G(a), ﬁ(x) should be an estimate of H(x). Using the observed sample to

“form an empirical distribution function Hn(x) as another estimate of H(x), the

parameters {aij} to be determined are thus so chosen that H(x) is as close to Hn(x)
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as possible. Take the Kolmogorow type of criterion, D(Hn,ﬁ)Emax]Hn(x)—ﬁ(x)]. {aii}
x : ’-

are chosen that D(Hn,ﬁ) is minimized subject to the constraint that é(a) is a

distribution function. Some special cases in which G(a) is a step function, picce-
wise linear, piece-wise quadratic, have been discussed. To study the goodness

- of the estimate é(a) for G(a), a criterion K(p) = I {op(x) - qb(x)} h(x) is
X

defined. It is shown that é(a) is good from an empirical Bayes point of
view if E(K(qﬁ))(the expectation is taken with respect to the random sample on

which @(a) is based) is small. Some numerical examples are studied and D and K

are computed. However, for the practical and general purposes, a good choice of
location of Bi is not clearly established. It is also obvious that if Hn(x) is not
close to H(x), the estimate é(a) would also be unreliable. Asymptotic

properties of a(a) are not given though it may be consistent or weakly con-

vergent.

3. Testing Stétistical Hypothesis
Most papers concerning the inferences about mixture densities are
related to the estimation of parameters. In practical sit-
uation, it is desirable to know whether an observed~samp1e is from a pop-
-ulation which is a mixture of two known populations. Generally, we may
be interested in knowing whether the distribution function of one
population is a mixture of the distribution functions of the other two
populations. This kind of inference is quite different to that of
estimation. On the other hand, we may, sometimes, wish to know Qhether
the mean of a mixture population is equal to some known values. This is
the standard hypothesis testing problem. -
Thomas [132] in 1969 considered the problem whether one population is
a mixture of two other populations. Let the three populations be denoted,

respectively, by wl, Tos and Ty and the associated cdf be denoted by
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Fl(x), Fz(x) and Fs(x). Let X4 i =1,2,3 be the observation from the
populations T i=1,2,3, respectively and let Ri denote the rank of X, in the
triple (xl’XZ’XS)' Thomas [132] proposed a 0-1 valued statistic t which is

defined by

0 if (Rl,Rz,R3) is an even permutation of (1,2,3),

tRp5Ry.RS) = .
» 1 otherwise.
It has been shown that if Tg is really a mixture of ™ and Ty then -
1 . : . .
E(t) = 5 It was pointed out that, in fact, if the mixture is extended to k(k

components, then with a similar definition of t, the result holds. Suppose

(X ”X'n ), 1 =1,2,3 is a sample from T i=1,2,3. Define a

i17X%5200 000X
1

symmetrized U statistic by

1 .
(3.1) th=———  F  t(R.,R,.,R,. ), '
noonn,ng i,5,k 1i’725° 73k

where the summation is over all possible values of i, j and k and n =

min (nl, n,, n Note that R (RZj’R3k respectively is the rank of Xli

3 1i
. . s .
»(ij,XSk respectively) among the triple (xli’XZj’XSk)' Then, tn is asymptoti

éally normal. In fact, it has been shown [132] that (t; - %J/ﬁ"é ®(0,1), the
standard normal, if F1 # F2' Hence, t; can be used for the test of the null

hypothesis that F3 is a mixture of Fy and F,. However, it is to be noted that

the mixture of F, is not a necessary condition for E(t) = %n

3
Now consider the following situation of null and alternative hypotheses;

HO: FS(X) = aFl(x) + (1-a)F2(x) for all x for some 0 < o < 1. HI: F3(x) =

aFl(x) + (1—a)F2(x) has a nondegenerate solution at x = a and no other

1
finite solutions. Then, under Hl’ it can be shown that

1. .
E(t) > 7—1f, and only if, fs(a) - afl(a) - (1—a)f2(a) >0

. 1
while E(t) = E-under HO. It can also be shown that var(tﬁ) + 0 under H0 and

Hl' Hence, the two-sided test

. . 1
eject £f |t*x - =
Reject H i ] > l > € (b)
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is consistent for testing H0 against Hl for some significance level b.

, :
1 s less than or equal to ij

's less than or equal to ij and let

Let rj(l) denote the number of X

and let rj(S) be the number of X3r

Sr(i) (i =1, 2) denote the number of Xij's less than or equal to XSr’

Then the statistic t; defined by (3.1) can be expressed as

. ng . n, . n,

t* = ) z Sr(l) * o Z r.(3) - - Z or. (D).
no Mtz 23 3=1 - MM =1 )

From this and some other relations the proportion o can then be estimated

by
X ) ) 3 2
(3.2) a = (n1 z rj(S) - -2—-n1n2n3)/(n2 § Sr(l) + ny .E

r.(3) - n,n,n.).
j=1 =1 j J 123

1

Also, if § = Pr{x1 < Xz}, then 8§ = f Fl(x)sz(x) and § can be estimated

by "2
(3.3) § = 2 r.(1)/n.,n_.
j=1 Jj 12
(3.4) Let 8, = {m F,(x) F,(x) dF; (%) (i=1,2) .

Then, the probabilities 281 and 282 can, similarly, be estimated by con-

sidering these triples (Xli’ X ij) and (Xli’ X

257 ij), respectively,

1?’
where i # v, j # s.

Assume that each of the 3 samples is of size.2n. Let A be the sect
consisting of a random choice of n readings from the 3 samples and let A’
denote the set of the remaining 3n readings. Let Fin(x) denote the empirical

distribution functions associated with L (i =1,2,3) obtained from A'.

Suppose a is calculated from A and is such that

(3.5) F(a-a) = 0(n 1),
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(3.5) E@ - a) = 0(n 1)

. 2
(3.6) E(a - a)° = LA o™ %y,

Define

(3.7 © =n J GFLG) ¢ (18 Fp(0 - P, (0% dF, ()

(5.8) ©’ =n L GF (0 + (1-3) F, () - Fy (x)? dF ()

Then, it is shown by Thomas [132] that under the hypothesis that FS(X)
is a mixture of Fl(x) and Fz(x), for any € > 0,

(3.9) LimPr {|c2 - ¢'’| <€} =1

n-e

By (3.6) - (3.8), we have, ignoring the terms O(n-l)

2 2

3.10) B =243 vl a(-0)(1+20) - a(l-a) (1-20) §

N =

207 - o’ (-8, - 2667 - a(l-0)?) 8,

Now suppose FS(X) = a(x) Fl(x) + (1-a(x)) Fz(x). Thomas [132] considered

the following hypotheses

o, for all x, 0 < a <1

HO: o(x)
Hl: a(x) # constant.

Using the estimate of a given by (3.2), Thomas [132] was able to
show that

Var(rﬁz) = 0(1)
where 752 is defined by (3.8) and thus under Hl’ for any ¢ > 0

lim Pr {|D_| > ¢} = 1
n->o n

where Dn is the difference between the estimates of the two sides of (3.10).

The critical region of rejecting HO if IDnl > ¢, proposed by Thomas [132],
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is thus consistent and asymptotically unbiased. Note the treatment of tests
1s non-parametric.

l'or a parametric consideration, Johnson [ 62] studied the same problem
that an observed sample was consistent with it being from a mixture of two
symmetrical populations. Hence,.for his case, he assumed F1 and F2
are specified and both have symmetrical densities with means My and My and
common variance 02. Let Xj denote the jth observation from P Johnson [62]

considered the statistic
(3.11) a = (X - u,)/(uy - )

which can be easily shown to be unbiased for a. For some given a define

(3.12) Y, = {1 X <a
J 0 otherwise.
Let p;, = Pr{X; < a| w.} (i =1, 2).

Consider another statsitic

(3.13) a, = (Y =p,)/(py - b))

~

which can also be seen to be unbiased for a. If a and &y differ greatly,
this may be regarded as evidence that Xi are not distributed as a mixture
of the two given components. Along this approach, Johnson [62] was aEle to
show that n Var(&x - &y) was independent of the unknown «, and, therefore, the
statistic (&x - &y)[Var(&x - <§Ly)]-1/2 should have approximately a standard
normal distribution. However, this approximation is too rough and in-
accurate. For some special normal components, he used /Ht&x - &y)v-l/2
as a test statistic which is approximately standard normal for large n,
where V = n Var(&x - &y) can, in fact be, calculated. Some computations
of the test were also made for some special cases. Another tgst based on

the statistic U, = Ix. - %{ul + u2)| was proposed. It was noted that U,

1

always has the same distribution whether Xi comes from m or m,. The

number of Xi's between u. and Hy has a binomial distribution with parameters

1
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- n and ¢(Iu1 - uzl/a) - %—if m_ is really a mixture of two normal components.

3

Comparison of powers based on the two proposed tests has been made by

Johnson [62] and it is shown that the latter test is mostly more powerful. Thege
tests are all based on simple statistics of observations. The choice of

a defined by (3.12) and the distribution of the test statistics may. be

needed for some further studies.

4. Multiple Decision (Selection and Ranking) Problems for Mixtures of
Distributions

'Suppose a population m consists of k subpopulations, say, T wé,...,n

k

such that in a sample an individual observation comes from ™ with probability
ai i=1, 2,...,k). Let fi(x) denote the density function of a random ob-

servation from ™ Then the density of a random observation from w is given
k ‘

by a finite mixture f(x) = & oy fi(x). In some situations, based on sampling
1 .

from v, we are interested in selecting some nj so that the associated aj is

the largest émong all probabilities ai (i=1, 2,...,k). We call this

kind of selection problem the first kind of selection in a finite mixture.
When the density fi(x} is degenerate at a certain point with probability
mass one, this special situation becomes the problem for tﬁe selection of
the most probable event in k categories,i.e. the multinomial cell selections

problem. - On the other hand, suppose there are k populations, say, ni,

ﬂé,...,ﬂi such that the density of a random observation from ﬂi is given by
m

a finite mixture gi(x) =z o fr(x) (i=1, 2,...k), where each component

' 1

density fr(x) is fixed, may be specified orunspecified . By sampling from
each population, we are interested in selecting some nj so that the associated

, a -0y for some .

2r’° 777k

prefixed r. For convenience and without loss of generality, we may take r = 1,

parameter ajr is the largest (or smallest) among all Lo

that is in the mixture, we put the component fr(x) under main consideration

in the first place so that we may consider the selection of the largest
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(smallest) aji' We call this kind of selection the second kind of selection
in finite mixtures. When m = 2 and fl(x) and fz(x) are both degenerate with
different values, the second selection problem becomes the usual selection
of the best coin (see Gupta and Sobel [51]). It is to be noted that both
kinds of selection occur in the compound decision problems as proposed by
Robbins [103],in which mixing distributions correspond to some prior dis-
tributions. In this section we restrict ourselves to the second kind of
selection. First of all, we consider the case when the sample size is small
and then consider the large sample size situation. In this section, all

component densities will be assumed identifiable.

4A. Samll Sample Size Case
In this part we impose no restriction on the parameter space. Based on
the given samples of size n from each pdpulation we wish to select a subset
of populations which includes the one we desire most with pre-assigned probability.

This approach is called the subset selection formulation. One can refer to

Gupta [50] for more details.

a) Procedures based on discriminant points

Suppose T LOYRERFL are k populations such that the cumulative dis-

tribution function of L is a mixture of two components given by
Gi(x) = a, F(x—el) + (l-ai) F(x—ez) . i=1, 2,...,k
for some unknown a, € (0,1) with 91 < 62.

Let @ = {a = (al,az,...,ak): 0 < a; < 1}.

Let X'l’ ,Xin denote n independent observations from ni.' Ta _
i

Xiz""
select a subset of populations containing the one associated with the

largest a5, we consider the following rule R(xo) which is based on some

fixed point x

0- For a given point Xy let Ni denote the number of observations

from " that are less than or equal to Xg We define R(xO):
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Select M if and only if

N. > max N. - ¢
T Ik

for some positive integer c.

Suppose 91 and 92 are known, without loss of generality we may assume

61 = 0 and 62=A(>0).If F is specified, set Fl(xo) = F(xO—A). Then, since

the random variable Ni is a binomial random variable with parameters n and

- i . . if d if
P; s F(xo) + (1 ai) Fl(xo),1t follows that pl_i pJ i and only i

a, < o.. Since G,(x) is increasing with respect to a;s
i— : i

the probability of a correct selection (CS: correct selection means
selection of any subset which includes the population with the largest ai)
is thus minimized in the set {(a,a,...,a): 0 < a < 1} (see Desu [31]).

We thus conclude,

k-1

_ n
Theorem 1.  inf P, {CSIR(XO)} = inf I H (c + 7r; a, xO) h(r; a, xo)

a€Q < 0<a<1 r=0

i
where H(i; a, x.) z h(r; o, x.,) and

h(r; « %) = () [aF(xg) + (1-) FyCxpT [a(I=F(xp)) + (1-0) (1-F; () 177

When F is symmetric about 0, the best choice

. . _ A
of X, 1s given by Xy = 7

it is clear that it suffices to choose %o in (0,A) so that the right hand

~If F is not symmetric, by a geometrical argument,

side of Theorem 1 attains its maximum. When A is unknown, we need to ‘consider
the infimum of the right hand side of Theorem 1 for all A > 0 and then choose

some X, > 0 so that the supremum is attained.

Remark: Panchapakesan studied the case of mixture fA(x) = ago(x)+(1-a)g1(x)
on page 37 of [88]. Sufficient conditions ((1.5.4) of [88]) for gi(x) have

been given for the infimum of the probability of correct selection of his
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rule Rh' However, the sufficient conditions are not satisfied for the case

that go(x) is the standard normal density and gl(x) a non-zero mean normal

density.
m .
Corollary 1: Suppose Gi(x) = rzl s Fr(x) is o Cinite mixture of m identi-
fiable cumulative distribution functions, i =1, 2,...,k. If for any
Gi > O,_.? Bj = 1, there exists Xg such that Fl(xo) > .? Bi Fi(xo)and for
j=1 i=2

m m .

this %o riz aJr Ergo) rzz ;. Fr(xo) if and only if ajl > o, - Then, for

the selection of some populations associated with the largest ail’ we have

n . . i+c . s
inf P_{CS|R(xp)} = inf [Z (M pra-p™™ [z B p a-p"]
acn ¢ 0<p<l i=0 j=0 J

k—l]

: i = - j = ce.sm, i =1, 2,...,k. Then,
Proof: Define Gij aij/(l ail), j 2, 3, i

Gi(x) = oy Fl(x) + (l—ail) Fli(x) where

=]
It~ 3
%
1]
o

Fatd =

; S, . Fj(x) with Gij > 0,

2 M j=2 M

By given conditions, we have ajl >y if and only if pj > pi,where

P; = 9y Fl(xo) + (l—ail) Fli(xo) which is the associated parameter of the

binomial random variable Ni' The problem thus becomes the selection of the
largest P; which is discussed in Gupta and Sobel [51] and Gupta, Huang and

Huang [48]. For k = 2 the infimum takes place at p = %—and for k > 3

asymptotic results and lower bounds are obtained.

We note that when Fi(x) = F(x—ei) with 91 > 62 >...>6k the conditions

in the corollary are satisfied if ajr/(l-ajl) > air/(l—ail) for r =2, 3, ...,m.

The optimal choice of x. cannot be found explicitly unless F and ei's arc spccificdr

0

For a detailed discussion of the computation, reference should be made to Gupta

and Sobel [51} or Gupta, Huang and Huang {48].
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. . - . . 2 _ . 2
Corollary 2: If Gi(x) = ai d(x; © 01) + (1 ai) o(x; 62, 02) where

1)
®(x; 6, 02) denotes the normal cdf with mean 6 and variance 02, then

i) if 61 < 62 and 0y = 0y, the best choice of x, is given by (61 + 92)/2,

= 0 and 62 = A > 0, the best choice of x, is the real root in the

ii) if o 0

1

interval (0,A) of the equation

2 2,.2 2 2.2 2 2
(02 - cl)xo + 2g1Ax0 - olA - 201 a9, n o, - in 01) = 0,

0’

iii1) if 91 and 62 are unknown and 9 5_02, then for any x

.inf Py {CSIR(XO)} = B(k,n,c) which is the same expression as on the right hand
sidé ;f Corollary 1. -
The proof of Corollary 2 is straightforward and hence omitted.

Next, we consider the case of a mixturg of three identifiable cdf's.
Suppose

Gi(x) =0, Fl(x) + Bi_Fz(x) + Yi FS(X) where
0<vy. = I-ai - Bi’ 0 < o Bi <1, i=1, 2,...k.

We consider a rule which is based on two discriminant.points, say, X, and

Xy (x0 < xl). Let N.1 denote the number of samples from L which lie in

(xo, xl). For the selection of the largest Bi’ we propose the following

rule:

. iff
R(xO, xl). Select Lo 1

Ni > max N, - d
' i

Then, we have the following theorem:

- Theorem 2: If Fi(x) = F(x-Gi) with 91 < 62 < 63 and F is symmetric about

0, then, for xoe(el, 62) and xle(ez, 63) with Xg - 61 = 63 - xl,~

izf'pg {CSIR(xO, x])} = B(k,n,d).
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Proof: Ni is a binomial random variable with parameter [Fl(xl) - FS(XI) +
FS(XO)] - FI(XO)]ai + [FZ(Xl) - F3(x1) + FS(XO) - FZ(XO)]Bi +‘[F3(X1) - FS(XO)].
The conditions of the choices of Xq and Xy and the symmetry of F imply the

coefficient of o, vanishes and the coefficient of Bi is strictly positive.

Hence, P, < pj if, and only if, Bi < Bj. This completes the proof.

. - . 2 . 2 ) 2
Corollary 3: If Gi(x) = o, ®(x; 91, a”) + Bi d(x; 92, o7) + Y; ®(x; 93, a7)

with 61 <8, < 8- Then, the optimal choices of X and X, are those which
(x;-6,) : -(6,-x7)
maximize f 12 ¢(t;0,02)dt and minimize 20
—(es—xl) _(ez_xo)_(es_ez)

®(t;0,0%) dt with

the restriction Xy - el = 63 - X, .
*1
Proof: Proof follows from Theorem 2 and by noting that f m(t;ez,l)dt -
' X
Xy X1 9 —(62—x0) _ 0
[ e(t;e.,1dt = (f - ) @(t;0,1)dt
Xg (05x)) - (8yx) - (65-8))

b) Selection Procedures Based on Sample Means
We assume Gi(x) =a, Fl(x) + (1—ai) Fz(x) such that Fl(x) < Fz(x) for -
all x. For the subset selection of populations associated with the largest
a;, We propose
R,: Select m if and only if Yi > max X, - c-
T J
Then, we have the following.

Theorem 3: inf Pa {CS|R1} = inf f Hk—l(x+ ¢, a) dH(x,a)
o ~ 0<a<l -=

where

Hex,a) = 2() o) (1-0™7 £, B (nx) with

*
F.r(x) being the rth convolutions of F.(x).
i i



40
Proof: Since Gi(x) is an increasing family of distributions

with respect to ai, hence Pa{CSIR} attains its infimum in the set

{(¢,a,...,a): 0 < a<1l}. We also note that

_ n S n-s ’
P X, <xt=z P{ry + ¥ Z;<nm x|s=j} P{s=j}
| j=0 "1 1 -
n j s s Sl 3
n- n-
I (Doya-ap™ Fl, £, o)

j=0

where Yi and Zj are independent random observations corresponding to F1

and F2 respectively.

' 2. .. . ' '
Corollary 3: If Fi(x) = ¢(x,ei, ci) (i = 1,2) with 61 > 62 and 03 £ 055
then,

n n . . o .
inf P {CS|R;} = inf [ I ( )(“) o1t (1-qy?n-i-d 8(t(8,,6,,0,,0,,¢) ]

o - 1 0<a<l j=0 i=0
where t(8.,0,,0,,0 = [(i-5)(0,-8)) + nc](Jc ¢ m-7) ) Y2/1(145) o +
1°92°%1°%2¢ ] 1) 9, 1
(2n-i—j)c§].

4B. Results for the Case of Large Sample Size
For convenience, we define some notations first. For a prefixed integer

m, we define

m
(4.1)  <0,1>" = a0y, 50 ): ap >0, Za, =1} (m > 2)
: 1

Let Fl(x;e), Fz(x;e),...,Fm(x;e) be m identifiable cdf's. We denote

(4.2)  F(x;8) = (F(x;8), Fy(x;8),...,F (x;8))

(4.3) a, = (a,,, o

' m
. ceasO. a. <0,1>".
~1 11 s 1m)’ ~1 e ’

i2’
A finite mixture with mcomponents F(x;0) is defined to be the inner product

of certain o € <0,1>m and F(x;6) i.e.
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(4.4)  G(x;0) = a « F(x;6)

i

m
E o, Fi(x;e)

i=1
Let T TysenesMy be k populations such that L has cdf G(x;gi) for some
unknown but fixed parameter o, € <O,l>m. Let X.., X.,,...,X. ben
. : : ~i il 12 in

independent observations from T i=1, 2,...,k. Let Gin(x) denote the

associated empirical distribution. Let A denote a real-valued continuous

function on <0,1>m. Let X a) < A a) <...< A ,(a) denote the ofdered
, [1](~) < [2](~) AT [k](~)

values of A(gl), A(gz),...,k(gk).

Based on n independent observations from each population, we are in-

terested in selecting t (1 <t <k - 1) populations, say, n_ , w_ ,...m
- 1 T Tt

such that A(grl), A(grz),...,k(grt)'are the t largesta(g;)'s, namely, A[kj(g)"""

A[k-t+1](9)' We call these populations the t best.
We approach the problem using the indifference zone formulation. For

given A (>0), we define

(4.5) Q(r;4) ='{(gl, a

. m )
G es ) ‘fie <0,1>7%, A[k-t+1](9) z A[k-t](g) + A}

Also, for convenience, we define the k-Cartesian product

(4.6) 2 =<0,15" x <0,1>" x...x<o,i>m.
For specified F(x;6) and A, we consider our problem on the configuration
Q(A;4) for given A using the‘indifference zone approach.

"~ Let H(x) be some specified cdf. Let X be a sample of size n from a
population with distribution ay- F(x;8) for some o, € < 0,1>™ and 1let Gn(x)

. .. . . . m .
denote the associated empirical distribution. For a € <0,1>", we define
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.7 S@H = [ (@ F(x0) - 6 () dH(0)

for some given value of 9.

a) Continuous Case
'We assume that the parametric form of each component Fi(x;ﬁ) is con-

tinuous in x.for each 6 and also that it is continuous in 6 for each x. If
n independent qbservatiOns are drawn from a population with mixture distribution
G(x;go) for unknown % EE<0,1>m, the value én which minimizes S(a;H) seems
a good estimate for 2 in the least squares sense. It is to be noted that
én is a statistic and is a function of H(x). A goéd choice in some sense
for the weight function H(x) is not simple. Bartlett and Macdonald {2]
study some special case for m = 2. For m > 3, the situation is complicated.
A nétural and reasonéble choice of H(x) would be Gn(x) which is the associated
empirical function. This choice has been studied in [21] and [20]. For an
altérnativelﬁhoice of H(x) consider G(x;g) = a * F(x;6) which haé been studied

in [75]. For a fixed p (0 < p<1), we take

(4.8)  H(X) =p o - F(x;0) + (1-p) G (x).

: ASsociated with each ., we define, analogous to (4.7),
: w© | ,
4.9)  5i(xp) = [ (2 - F(x;0) - 6, (x))“dH(x)

where H(x) is defined by (4.8) and Gin(x) is the empirical distribution

function corresponding to Lo (i=1, 2,...,k). Define s to be such that

(4.10)  S.(G.5p) =  inf S, (asp).
_ » 1 ~1 ‘ a_€<0.,1>m 1~

The existence of di can be shown. For a fixed p (O <p <1}, we

define a selection rule'Rp as follows.
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Take n independent observations from each ™. and compute @, = ai(le,

XiZ""’Xin) which is defined by (4.10) and (4.9). Let A[l](g)-fﬂx[z](g) <
...f_k[k](g) denote the ordered values of A(gl), A(gz),...,x(gk).

Rp: Select ™ if and only if A(gi) 3—*[k-t+1](9)'

A random mechanism is used to break the ties. By a correct selection (CS)
we mean a set of t populations associated with the t largest values A(gl),

A(az),...,x(ak) is selected.

Definition 1 A selection procedure R is consistent -with respect to A if

lim lim inf pa'{cis} =1
A0 nree g €EQ(A;A) <

Definition 2 A selection procedure R is asymptotically strongly monotone

with respect to A if A{a. ) < A(uj) and for any € > 0 implies
~i -

lim sup P {n. is selected|R} - € <lim inf Pa{n. is sclected|R}
nre  aEQ(A;A) @t noe gEQ(A;A) ~
Theorenm 4 Rp is consistent and asymptotically strongly monostone with
respect to a continuous A.

Proof: (a) We show that &i - a. with probability one for each i =1, 2,...,k.

Now, by the Glivenko-Cantelli theorem, for € > 0, d N(€) such that, whenever
n> NE),
P {|[po; + F(x;0) + (1-p) G; (0] - 6; ()] <€} = P {pla; + F(x;0)

- Gin(x)|< €} =71.

Replacing an(x) by d(p a; f + (1-p) Gin(x))and follow the same argument
as given in the proof of Theorem 2 in [21] the result follows.
(b) Consistency of Rp

Since A is continuous it follows thus A(éi) -+ A(gi) with probability one.
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Now, by the Egoroff's theorem, for € > 0 and § > O there exists Ni(e,(S),

Ai and Bi such that the sample space is decomposed as Ai U Bi’ where

/k

Bi is the complement of Ai with P(Bi) > (1-6),1 and on Bi’ |)\(éi)-)‘(gi)| < §

whenever n > Ni(E,(S) uniformly in . € <0,1>m, i.e. Ni(e,é) is independent

of @ - Note that }‘(éi) depends on n. Set N = Nl(e,s) +.. 04 ,Nk(E,G) and

k
set B= N Bi' Then, P(B) > 1-€, and on B, whenever n > N,
i=1

max |X(&.) - A(a.) < § uniformly for each (a;, ,,...0, )EQ. Now, for
. -1 ~i 1 2 k
1<i<k
any P* € (0,1), and any given A > 0, choose § = %and € = 1-p*. Since on

Q(A;4p), A[k—t+1] - A[k—t] > A = ‘36, we conclude that

Pg{h(gri) > A @, i= 1 2,-1-,tlk(gri) > Mgy @3 > p*

V a€Q(r,A). Hence, we have shown that for every A > 0,

lim inf P {CS|R_} = 1. This is the consistency of R_.
nie gESZ(A;A) p p

(c) Suppose Mo, < )\(gj).

(1) 1f A(gi) <A () and A(a

2
k-t1 ~j) > A[k—t+1] (o). Then, take p* ig and

go through the arguments given in the previous part (b), we can conclude

that = inf pa{w. is selected|R } > inf pa{CSIR } 1—%— whenever
aeR(r;a) 2 ) PO en(a;a) p
n > N0 = NO(A) for some NO' On the other hand, for each n > NO’ {'ni is

sclected|Rp} C { selection is not cOrrecthp}. Hence, P(’L{ayi is selectelep} <
I—pd{CS]R } il. V a€EQ(A;A), i.e. sup P {'ni is selected|R_} ifl,; for

2 P a€Q(r;n) & P
each n > Nj. i
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{(ii) Suppose both A(gi) and X(gj) are no larger than A[k—t](g)' Then,

for €> 0 and by the arguments in (b),-there exists a subset of sample

space B and an integer NO such that P{B} > 1-%—and for n 3_N0 and on B,
max |a. - a.] < L. Let E denote the event {m, is selected|R_}. Then
1<i<k ~% ~1 3 i P

E=ENB+ENB". Hence sup Pa(E) < sup Pa{E N B} + sup Pa{E n 8%}
a o~ a - a o~

NIM

< sup P {E N B} + € since P {E N B} < P {BS} < ¥ «€Q(X;A). Noting
- o ¢ - e ~

2
a

A

. A
that, for any aEQ(A,A),Pg{E N B} = 0 since, on B a, < a[k—t+1] -3

(iii) 1f A(gi) and A(gj) are both no less than A[k—t+1](g)’ the argument

is analogous to the case of (ii). The proof is complete.

Remark 1 Let tl, t2,...,tm be positive integers such that each ti is no

- . (1)
larger than k-1. Let Q(tl, t2,...,tm) = {(gl, gz,...,gk). a[k—ti+1]
> a(i) i=1, 2 m} where a(i) denotes the j-th largest value of
[k-t, ]’ 2 o 5] ) & -
i

the i-th component of «,, a,,...,0. and we denote o= {a(l), a(z),...a(m)}.
1’ 2 ~k ~T T T T

If for each i we are desired to select the ti largest in the i-th component
simultaneously, then, using the statistics {al, &2""&k} which are defined

by (4.10), associated with the i-th component, we sclect these populations

(1) (1)
1 %

el

which have the ti largest values in the i-th component of {o
(1=1, 2,...,m). It can be shown that the simultaneous selections are also

consistent and asymptotically strongly monotone on Q(tl’ t2,...tk).

Definition 3 A selection procedure R is consistent of order 0(A(A)) (o(A(A)))

with respect to A if lim inf Pa{CS|R} =1 (lim inf P {CS|R} = 1).
A0 o€Q(A;A) A0 o€R(A;A)
n=0(A(4)) n=0(A(4))



46

Theorem 5. Rp is consistent of order O(Aa) with respect to A if A
satisfies Lipschitz condition. (- %-< 6 < 0).
Proof: We note that by the Glivenko-Cantelli theorem, suplGi(x)

X
Gin(x) + 0(1)[+0 WP1 as n+~ for each i. For any fixed i, let é(gi;p)
denote the m-1 equations for which each equation is differentiated with

" respect to aij’ j =1, 2,...m-1, where @, = (ail, ui2""’ai,m—1’1'—.2 aij).

Then, the first element of é(gi;p) for j = 1 becomes

n m .
; .0 V{3 J + 1P
j§1 Fl(xi[j]’°1){r§1 i ei )

=R

n
supl6; () - 63, () + oI )P0 g0,
X ’ J"

I A

where X, 1[ 1 are order statistics from Ty Apply the analogous

8-1/2

L[]~

arguments in [19], we have Ik(gi) - k(gi)l < 0(n ) for all but finite

n with probability 1 (0 < § < 1/2) since A satisfies Lipschitz condition. ‘Now,

take |A(§i) - X(gi)l = A and let A >~ 0. Then, as n +~ », A > 0 and we have
2
= O(AI—ZG ). This means as A + 0, the rate of divergence of n is of the
2 i
1 1-26
ordér (3) . In order that  inf P {CSIR} + 1 it suffices to take
A i a
o Q(XiA)
1
1,278
n = (Za as A » 0.

Let éi denote the arithmetic mean of r independent estimates of &i
where r is some integer. This means rn samples are drawn from each population.
And for each subgroup of n samples, we obtain an estimate &i for the population

- If n is large, A(ai) = ail’ and t = 1, we propose the following rule R;.
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R”: Select w, if a., > a., for all j # i, where a., is the first
P i ~il — ~j1 ~il

component of &i'

Theorem 5. If n is large, t 1 and A(ai) =a, the projection function,

1’

then we have

o k
inf = P {cisé} >[ o 2852 + gié-)dQ(z)

aca(r;a) ¢ —o j=2 (3]

where &(x) denotes the standard normal distribution and

o =2 [ | 6,00[1-6,(y)1dB, (x)dB, (1)

—w<x<y<m

-  where
o )

Bj(x) = Fl(x;el)Gj(x) - {w Fl(x;e )de(x)
for j =1, 2,...,k and

1 =% =0 % T /o)

Proof: It has been shown in [ 20] that éi is asymptotically normal and

hence, the first component of éi’ say &i is asymptotically normal with

1

mean @.q and variance

ol =2 _£<x<£<m G, (x) [1-G, (v)]dB, (x)dB, (y),

where

[eo]

B, (x) = F (x;8.)G, (x) - {w F1(x;8,)dG, (x).

e
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tlence, when n is large and t = 1, we have for g€Q(A;A)

p {cS|R“} =P {a, ., >0.,, j=1, 2,...,k-1ja, . = max a, }.
o I P o %K1 —'éjl. J | k1 1<j<k jl
_»p {/;(akl %1) ‘/;(“31 %51)9; . /;(ajl ] 0‘k1)}
a ok - OJ Uk ok
o.
Ze iz >7.GD - -(-J/—;-A—,J =1, 2,....k}
~ k k
(where Zl’ ZZ""Zk are iid standard normal)
o k-1 o]
= [ <1>(—k z + /;A)dtb'(z)
. o, o.
-= j=1 J J
o k-1
> f I o(8.z + /b )dé(z) (by a lemma in [49])
= . j o,.
© j=1 [3+1]

where Gj = 0[1}/6[j+1], 0[1] 5_0[2] 5"'5-0[k]' This completes the proof.

Astptotic relative efficiency of Rp with respect to RB

We assume m = 2, t = 1 and X is the projection function. In this case
we have Gi(x) =, Fl(x;e )} + (1—ai) Fz(x;ez) for i =1, 2,...,k and we
denote oy instead of @ - Suppose Fl(x;e )} and Fz(x;e ) are not specified,
however, we assume there exists some point XO’ known, such that Fl(xo;el)
# FZ(XO;GZ). Assume Fl(xo;el) > Fz(xo;ez). Then, we see that oy > aj if,
and only if Gi(xo) > Gj(xo). Hence, selecting the best is equivalent to
selecting the population associated with the largest G(xO;ai) value.

For a given i, 1 <i <k, and j, 1 < j < n, define
1 if X.. <x

ij =0
v |
J 0 otherwise
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and define

Y..
p 13-

it ~13

Gi(xg) =
j

Then, it is obvious that éi(xo) is a binomial random variable with cdf
B(n;G(x,)) -

We define a seleétion procedure RB as follows:

RB: Select the population ™ which is associated with the largest Gi(xo).
When n is large, we use the normal approximation. Let Fl(xo;el) -

Fz(xo;ez) =d > 0. Then, by the result of [121], we have asymptotically

7 )
n = cz(p*)(l—Azdg)/ZA"dg when A > 0 and p* »~ 1. Again, by the Feller's
2

yA
. . 1 -2 2 s 112
inequality, we see that ¢(z) = 1- — e . We obtain c (p*) = (1_ =) .
/ar 2 P
Let n, and n, denote, respectively, the sample sizes associated with Rp and
R, when inf P {CS} = P* is satisfied for both rules. We defiﬁe the
B
gEQ(A;A)

asymptotic relative efficiency of Rp with respect to RB by ARE(RP;RB) =

*
n, (P¥,4)

E—Tﬁ;—zj-as P* >~ 1 and A ~ 0, It follows from the previous result and thc
2 3

result in Theorem 4 we have

2(l—p*)2 A1.5+8 dg
ARE(R ;R.) = lim =0
p’ B A0 1-4% 4%
p *+1 0

However, if we take 1-P* = A > 0, we have .an alternative efficiency dcfincd by

n, (P*,4) 249%3-5 dg
n(P%,0) Lim 72 -0

ARE” (R ;RB) = lim
P 640 1-A% dy

A0
A=1-p*

This shows that Rp is good compared to RB.
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b) Discrete case

In this case, we denote F .,Fm as discrete distributions such

1’ F2"'
that the outcomes from each distribution with cdf Fi’ for some i, can be
classified into s(> 2) states. Let the probability that an outcome from

Fi belongs to state £ denoted by Pig- We assume F_, F

1 2 - .,Fm are all

specified and p;, are all given.
For a, EE<0,1>m we define a mixture distribution Gi by Gi = ey Fl(x) +
a., F,(x) +...+a., F (x). Then, G.(x) is also a discrete distribution such
iz 27 im m i

that the probability of an outcome belonging to state j is given by

gij =0 p1j o, p2j AERRRL T pmj for j =1, 2,...,s.

We assume that there exists a lower bound gy such that gij > g, > 0 for all

0
i=1,2,...,k, j=1,2,...,s. Letn samples be drawn from ™ and let nj
denote the number of outcomes which belong to state j. For any a =

(al, az,...,am) we define the Matusita distance (see [ 76]) as follows.

n.
/e - /n y231/2

1
a. p... S.(a) is thus a function on <0,1>m.
;b ij i= :

Il &~10

(4.11) S,(0) = {
j

i~ 3

where g =
- 1

Let &i denote a value in <0,1>m such that Si(éi) attains its infimum.

For given n and A, to select the t best with respect to A, we propose the

following selection procedure.

R: Select m_ ,7_ ,...,w if, and only if
T I Tt -

A(& ), A(& ),...,A(& ) are the t largest values of
~r1 E ~r2 ~rt

x(&l), x(&z),...,x(&k), which are defined by (4.11).

We use a random mechanism in case of ties.
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Theorem 6. The selection procedure R is consistent and asymptotically

strongly monotone with respect to A if A is continuous.

Proof: It has been shown in [76] that for our case &i > o with probability
one in the usual sense of convergence of a sequence of vectors. Therefore,
A(éi) > A(gi) WP1l. Applying the analogous arguements given in the proofs

of Theorem 4 we can conclude the same results. This completes the proof.
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