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ABSTRACT

This paper deals with the problem of finding saturated designs for multi-
variate cubic regression on a cube which are nearly D-optimal. A finitc
class of designs is presented for the k dimensional cube having the property
that the sequence of the best designs in this class for each k is asymp-
totically efficient as k increases. A method for constructing good designs
in this class is discussed and the construction is carried out for L <k < 8.

These numerical results are presented in the last section of the paper.
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(1.1)

INTRODUCTION.

Let I = [-1, +1] and let Ik be the k-~fold Cartesian product of the closed
interval T. Suppose on the basis of n observations of k-variate predic-
tor variables x(m) = (xl(m), xz(m), cees xk(m))' in Ik (primes on vectors
or matrices denote transposes), where m = 1, 2, ..., N, Wwe wish to fit by

least squares a third order model

y(x(m)) =b_ + 5 ) b, x, (m) + S . §

1= 1=] J=1 bljxl(m)xj (m)

k
%= bijlxi (m)xj (m)xz(m) te .

Here the bi’ bij’ and bijz are unknown real-valued parameters that we
wish to estimate and the e are uncorrelated random variables with mean
0 and finite variance 02. The bi’ bij’ and bijz will be estimated by
their least squares estimates. The purpose of this paper is to investi-
gate how to choose the n points x(1), ..., x(n) so as to minimize, in
some sense, the covariance matrix of the least squares estimates.

Let q = (kgs). From (1.1) it is easy to check that there are q
parameters to be estimated and it is well known that in order for all the
parameters to be estimable we need at least q observations.

An exact experimental design is a collection of points (repetition
is possible) at which we shall take observations, one at each point in
the collection. Any such collection of n points can be represented by
4 probability measure £, where E(x) = j(z)/n with j(x) = number of times
the point x appears in the collection. We shall denote experimental

designs by such probability measures in what follows. The set of points

x for which £(x) # 0 is called the support of .



(1.2)

(1.3)

(1.4)

Suppose we have an exact experimental design on the n points
x(1), ..., x(n). Let & denote the corresponding probability measurc

(€ is often called the experimental design). Let

f(x) = (1, X5 Xy XyXoy XgXgs o eees X 1% X XoXgy XXX,
X 2 p'e Zx X 2x X, X
RSP L S b SRR B TS T SO
2 2 X 2 X Zx x ZX N 2
Xy s Xy Xgs wes Xy Xps eees XX X TXos e X0
3 3
Xp s e Xy )!
where x = (xl, e xk)'. f(x) is a q x 1 vector and if h is the

corresponding vector of the coefficients bi’ bij’ and bijz in (1.1),

we can rewrite (1.1) as

y(x(m)) = £ (x(m)) b + e, m=1, ..., n.
Now let X(&) be the q x n matrix whose m-th column is f(x(m)).
If E_is the least squares estimate of b, one can show ﬁ_has covar-

iance matrix

cov(é) = o (en
assuming X(&)X'(£&) is nonsingular (which will be the case in this
paper). Recall our objective is to find a design & which minimizes
cov(ﬁ) in some sense. We shall seek designs & which minimize the gen-
eralized variance, which is equivalent to minimizing de’c()((E,J)X'(ti))_l
or maximizing detX(&)X'(€). Such designs are called D-optimal designs.

It may be that the design & which maximizes detX(&)X' (%) takes a
large number ot observations which could be expensive or unrealistic

to implement in practice. To avoid this difficulty we would like to

restrict ourselves to designs which don't take too many obscrvations.



For purposes of this paper we shall restrict ourselves to designs
which take the minimum number of observations, q. Such designs are
sometimes called saturated designs. If £ is a saturated design then
X(£) is a q x q matrix and so detX(&)X' (&) = detZX(g). Our objec-
tive then can be restated as seeking the saturated design & which
maximizes detZX(E).

The solution of this problem in general is not known. The solu-
tion when k = 1 is well known (see Hoel (1958) or Guest (1958)) and the
solution when k = 2 has been found by Dubova and Federov (1972). For
k > 2 the saturated design & which maximizes detZX(E) is not known.

In this paper we present a finite class of saturated designs for each
k such that the best design in the class, although not necessarily opti-
mal, has a certain optimality property and is in general "pretty good".
The optimality property these designs have is an asymptotic one. If
&k denotes the best designs in the class presented in this paper for
dimension k and wk denotes the optimal saturated design for dimension
k, then iimw[detzx(gk)/detZX(wk)]l/q = 1. This says that the sequence
of best designs in this class for each k is asymptotically D—efficient.
This follows casily from a result in chapter 4 of Notz (1978) and so

ho proof will be given here. In essence, this means that for large X
the designs constructed by the method presented here are 'pretty good'.
We shall carry out the construction of saturated designs using the
method given in this paper up to k = 8 and we shall see that in the
cases k = 1 and k = 2 where optimal designs are known, the designs we

get aren't too bad.
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METHOD OF CONSTRUCTION.
The method of construction given here is similar to that given for
quadratic regression in Notz (1978).

Recall that for a saturated design , the columns of X(£&) arc
of the form f(x), where f(x) is given in (1.2). We are seeking to
make detzx(g) large. Suppose we subtract the first row of X(&) (a
row all of whose entries are 1) from each row whose entries are of
the form xiz. Also suppose we subtract the i + 1st row of X(&) (a
row all of whose entries are of the form xi) from all rows whosc
entries are of the Xisz’ j=1, 2, ..., k. We do this for all
i =1, ..., k and call the new matrix so formed Z(£). These row
operations do not change the value of detzx(g) so we have detZZ(g) =
det?x(£).

Let ¢c =1 + k + (g) + (2). Consider the finite set of saturated
designs E where
g (k) = {g; the support of & is x(1), ..., x(q)

where x(1), ..., x(c) have all coordinates of the form +1,
x(c + 1), ..., x(c + k) have all first coordinates 0 but all
other coordinates +1, x(c + k + 1), ..., x(c + 2k) have all
second coordinates 0 but all other coordinates +1, .
x(c + k2 -k + 1), ..., x(c + k2) have all k-th coordinates
0 but all other coordinates +1, and x(c + K% 1,
x(c + k2 + k) = x(q) have all the coordinates + 1573}
For example when k = 2 we have ¢ = 4, q = 10 and one can check that «

non-singular element of Z(z) has x(1) = (1, 1)', x(2) = (1, -1)',



)\N(—j) = (-1, 1), 5(4) = (-1, -1)', 3(_(5) = (0, 1)', £(6) = (0, -1)',

P
-~
S
i

X (1,0)', x(8) = (-1, 0)', x(9) = (3, 1//3)", x(10)
= (1//3, -1/V/3)' as its support.

For any &€ € £ (k), Z(&) takes on a particularly nice form. It has
blocks Zl(g), ZZ(E), cees Zk+2(g) running down the diagonal and all
entries below these blocks are O. zl(g) is a ¢ x ¢ matrix whose col-
umns are of the form

— 1]
(2.2) gl(§) = (1, Xis e X xlxz, e Xk—lxk’ X1X2x3’ ey Xk—ZXk—lxk) .

Zi(E) for i-=2, ..., k + 1 is a k x k matrix whose columns are of the

form
2 2 2 2 2
. . = -1), - cees X, -1}, , X, -1
(2.3) g0 = (x| -1, 0 -1, RGN I P A CE OF
. xk(x2 -1)°'.
i-1
z (&) is a k x k matrix whose columns are of the form

1

k+2
3 3 3
R 3 X = Y - - '
(2.4) gk+2(5) (x1 Xpo XpTm Xy e X xk) .
For any & € Z(k) it therefore follows that

(2.5) det“X(£) = det“Z(&) = = det”Z, (£)

1=1
since Z(&) has the blocks Zi(g) down its diagonal and all entries 0

below these blocks.

[t is not hard to see (use lemma 2.2 in chapter 3 of Notz (1978j)
that there is a design &* in Z(k) that will simultaneously maximize all
the detzzi(g). This will be the optimal design in 2(k) (although not
necessarily the optimal saturated design) and it is this design that we
desire to construct.

The construction of &* should proceed as follows. Choose the sup-

port x(1), ..., x(q) of £* so that x(1), ..., x(c) make detzzl(i) as



large as possible, so that for i = 2, ..., k + 1 that x(c + (i-2)k + 1,

.» x(c + (i-1)k) make detZZi(g) as large as possible, and so that
x(c + k2 + 1), ..., x(q) make det22k+2(g) as large as possible. Tind-
ing such a g* is a difficult combinatorial problem in general and the
author can not give a general solution. However using balanced arrays
and known +1 k x k matrices having maximal determinant one can construct
a design in Z(k) which is fairly good. We shall now examine brictly how
to do this.

To find points x(1), ..., x(c) in the support of a design ¢ in

(k) so that det2

Zl(g) is large, we use balanced arrays of strength 6
which we now define. A (-1, +1) matrix T of size m x N is called a
balanced array of strength 6, size N, m constraints, and index set

{po, Hys oees He if for every 6 x N submatrix T0 of T, every (-1, +1)
vector having exactly j entries which are +1 occurs exactly “j times

(3 =0, ., ..., 6) as a column of TO. For k > 6 we shall choose the
first c points in the support of our design £ so that they form the col-
umns of a balanced array of strength 6 of size k x q and so that Zl(g)
has a large value of the square of its determinant. For a discussion
of balanced arrays of strength 6, their construction, and formulas that
can be used to compute the value of detzzl(g) see Shirakura (1976).

For k = 5 one must use trial and error to determine the first ¢ points
in the support of £. For k < 4 all choices of the first ¢ points in
the support of £ yielding a non-singular Zl({") all give the same value

of detzzl(g) (this is easy to verify). The results of Shirakura und



trial and error are then used to find what appear to be reasonable
choices for the first c points in the support of a good design.

To determine the remaining points in the support of our design
& ¢ (k) we need to know what is the k x k (-1, +1) matrix B yielding
the maximum (or nearly maximum) value of detzB. Values of B for var-
tous values of k and related discussion can be found in Ehlich (1964 a),
Ehlich (1964 b), Yang (1966), Yang (1968), and section 17.4 and 17.6
of Raghavarao (1971), for example. Once B is known, the last q - ¢
points in the support of £ € Z(k) are chosen as follows. For i = 2,

..» k + 1 we choose the points x(c + (i-2)k + 1), ..., x(c + (i-1)k)
in the support of & so that Zi(g) = B. It is straightforward to verify
that this can be done (recall the form of Zi(g) and what form
X(c + (i-2)K + 1), ..., x(c + (i-1)k) must have so that & € E(k)).
Finally we choose the last k points in the support of £ so that
(3/§7Z)Zk+2(£) = B. Again it is straightforward to check that this can
be done.

This process yields as reasonable § € Z(k) and one gets for such
th;

2
det™X(g) = (2/3/§)Zk detzzl(g) [det B]Z('k+1)' '
We have carriea out this construction for k = 1, ..., 8 and our results

shall be presented in the next section.

NUMERICAL RESULTS.
Although we have discussed finding a design so as to make X(&)X'(&)

farge, the usual procedure is to find £ so as to make the information



matrix per unit variance M(§ large. If & is a design having n points
in its support then
(3.1) M(D = 2 X(9X' (9
For fixed n, maximizing (in some sense) M(g) and X(g)X'(g) is equivalent.
One advantage of using M(&) is that it normalizes the covariancc
matrix of our least squares estimates by the number of observations
taken and hence allows one to compare designs taking different numbecrs
of observations. Since we restricted ourselves to taking only n = g
observations the problems of maximizing detzx(a) and detM(£) are cquiv-
alent. However for purposes of standardization we shall present the
values of detM(g) rather than detzx(g) for the designs given in this
section. Since detM(g) = (é&q deth(g) it is easy to get detZX(g) from
the value of detM(g).
Using the methods outlined in section 2 we get the follosing de-

signs.

k = 1: Support is 1, -1, 0, 1A%
k = 2: Support is (i, 1)', (1, -1)', (-1, 1)', (-1, -1)', (0, ',
(0, -1)', (1, 0)', (-1, 0)', QN3, 1473), (N3, -143)".
k = 3: Support is (1, 1, 1)', (1, 1, -1)', (1, -1, 1,)', (-1, 1, 1,)"',
(1, -1, -1)', (-1, 1, -1)', (-1, -1, 1)', (-1, -1, -1)"',
(o, 1, 1)', (0, 1, -1)', (0, -1, 1), (1, 0, 1)', (1, 0, -1)',
(-1, 0, 1)', (1, 1, 0)', (1, -1, 0)', (-1, 1, O)', QN2 1/3, 1/3)",
AN 1M3, -1M3)Y, AN3, -143, 1/3)".
For k = 4, 5, 6, 7, 8 it becomes quite tedious to list all the points

in the support of our designs. We therefore just indicate how to choose



the first ¢ points in the support of our design and list the columns

of B.

k = 4: Choose as the first c¢ = 15 points in the support the fol-
lowing (+1, -1) 4 x 1 vectors. The vector consisting of all
-1's, the 4 vectors consisting of three -1's and one +1, the
6 vectors consisting of two -1's and two +1's, and the 4
vectors consisting of one -1 and three +1's. The columns of
B are (1, 1, 1, 1)', (1, 1, -1, -1)', (1, -1, 1, -1)', and

(1, -1, -1, 1)'.

k = 5: Choose as the first c¢ = 26 points the following (+1, -1)
5 x 1 vectors. The vector consisting of all +1's, the §
vectors having only one +1 coordinate, the 10 vectors having
only two +1 coordinates, and the 10 vectors having only three
+1 coordinates. The columns of B are (1, 1, 1, 1, 1)',
(r, v, -1, -1, -1)', (1, -1, 1, -1, -1)', (1, -1, -1, 1, -1)',

(1’ “1, _l: “l’ 1’)"

o
it

6: Choose as the first ¢ = 42 points the_(+l, -1) 6 x 1 vectors
that form the columns of the balanced array of strength 6,
size 42, and 6 constraints with index set {1, 0, 1, 1, 0, 1, 0}
given in Shirakura (1976). The columns of B are (1, 1, 1, 1, 1, 1)°',
(¢, 1,1, -1, -1, 1,3, (1, 1,1, -1,1, -1)', (1, -1, -1, -1, 1, 1)',

(1, -1, 1, 1, -1, -1)', (1, 1, -1, 1, -1, -1)°'.
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k = 7: Choose the first ¢ = 64 points the (+1, -1) 7 x 1 vectors
that form the columns of the balanced array of strength 6,
size 64, and 7 constraints with index set {1, 1, 1, 1, 1, 1, 1
(this is an orthogonal array) given in Shirakura (1976). ‘The
columns of B are (1, 1, 1, 1, 1, 1, 1,)', (1, 1, -1, 1, -1, -1
(¢, -1, -1, 1, 1, 1, 1), (1, -1, 1, 1, -1, -1, 1,)",
(1, 1, 1, -1, 1, -1, 1,)', (1, 1, 1, -1, -1, 1, 1,)',

(1: —1) 1; 1: l: 1, "1,)"

k = 8: Choose as the first c¢c = 93 points the (+1, -1) 8 x 1 vectors

that form the columns of the balanced array of strength 6,

1

size 64, and 8 constraints with index set {2, 2, 2, 1, 1, 2, 2}

given in Shirakura (1976). The columns of B are (1, 1, 1, 1,
(, 1, -1, -1, 1, 1, -1, -1)*, (1, -1, 1, -1, 1, -1, 1, -1)',
(t, -1, -1, 1,1, -1, -1, 1,)*', (1, 1, 1, 1, -1, -1, -1, -1)',
(, 1, -1, -1, -1, -1, 1, 1,)', (1, -1, 1, -1, -1, 1, -1, 1)',

(1, -1, -1, 1, -1, 1, 1, -1)'.

Nexi we list the values of detM(&) and the normalized value
[detM(g))/qfor the designs given above. In addition we give the known
maximum values of [detM(g)}/qover all saturated designs for k = 1
(see Hoel (1958) or Guest (1958)) and for k = 2 (see Dubova and Ped-

crov (1972)). VTor k » 3 it is not known what arc the D-optimal sat-

urated designs for cubic regression.

1,1, 1,

D,



k q
] 4
2 10
3 20
4 35
5 56
6 84
7 120
8 165

In the cases k

known, they should be

are good designs.

It

11

detM( &) [detM(E)]l/q max[detM(&:)]l/q
.315 x 107° .2193 .2675
60 x 1070 .1801 .1896
41 x 107t .1502 ' -
46 x 10727 .1538 -
.80 x 10748 .1415 .
47 x 1077t .1450 -
34 x 107°° .1515 -
.20 x 107128 .1680 -

1 and k = 2 where better saturated designs are
used. However for k > 3 it is not known what

is the author's opinion that the designs presented

1
here have values of [detM(&)]/cklose to the maximum for a saturated

design.
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