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0. Introduction

Asymptotic theory of maximum likelihood type robuét estimators or the
so called M-estimators for the linear model has been studied by Huber
(1972) and more recently by Yohai and Maronna (1979) under the assumption
that the errors are independent and identically distributéd. Huber (1972)
says that '"the assumption of independenge is a serious restriction; the
assumption that the errors are identically distributed simplifies notations
and calculations but could easily be relaxed". Our aim in this paper is
to extend the results of Yohai and Maronna (1979) on consistency and
asumptotic normality of M-estimators of regression coefficients when the
errors form a stationary ¢-mixing process. As:cam be-expected, the re-
sults are not as sharp as they are in the independent case. Our results
include the case when the number p of the parameters increases with the
number n of observations.

Asymptotic properties of M-estimators for location parameter fam-
ilies were studied by Deniau, Oppenheim and Viano (1977) for mixing pro-
cesses and asymptotic theory of M-estimators for Markow processes is

investigated in Prakasa Rao (1972) generalizing the work of Huber (1967).

1. Preliminaries

Let'{Un,nip} be a real-valued stationary process defined on a prob-

ability space (Q,B,P). Detiote the c-algebra generated by Ui,kfjfm by

BE. Let
) k o0
¢(n) = sup[ess sup{P(BIBO)—P(B)}.BE.B k+n]'
{Un, n>1} is said to be ¢-mixing with-mixing coefficient ¢(n) if ¢(n) +0

as nr-e,



Lemma 1.1, Suppose f is Bz-measurable, g is B?—measurable and

E]f]2< « and E|g]2< =, Then

1 - L e
|Efg-Ef Egl<2¢® (|j-1]) E®|£]% ER|g|?.

Lemma 1.2. Suppose the random variables fi are Bé—measurable for

lfjfﬁ and Elfil2<n for 1<i<n. then

n "
IVaTi§1 i VVar.f |
1 n
$ 0209 £ Var f
3 i=1

o 1 )
In particular, if M2  ¢®(j)< =, then
j=l

n n
Var(z_,£;)<(4M+1)}_ Var £;.

Lemma 1.3. Suppose'{Un,nz}} is a stationary process ¢-mixing

with mixing coefficient ¢(.) satisfying
% 3
29T (3) <.
j=1

Let x(.) be a real valued measurable function such that E|x(U1)|2é ©

for some §>0. Further suppose that E[X(Ul)]=0 and4xCHi]‘is»nonﬂdegenerate.

Then
1 n L S
— % _ x(U,)——"N(0,1)
/hgd=l )

2 2 N .
where o7'= E[X(Ul)] + 2§=1 E[X(Ul)X(Un)]'



For proofs of Lemmas 1.1-1.3, we refer the reader to Iosifescu and

Theodorescu (1969) (cf. Ibragimov (1962)).

Lemma 1.4. Let {Un,nzi} be a stationary ¢-mixing procesSes\with'miking

coefficient ¢(.) satisfying

8

1
$T()< .
=1

e M

Lef f be a real valued measurable function such that 0<E[f(Ul)]2< o,

Define
%= Var[£(U.)]+2 T Cov[£(U,),£(U.)].
1 j=2 1 1

Further suppose that‘{Bin,lfifp,nz}} is a double sequence of real num-

bers such that

1 _L
Sup n21%in—n 2deo (1) .

1<i<n
Then
n L 5
¥ [£(U,)-E(f(U;))]B, ———— N(0,0").
i?l 1 1 in jl
Proof: - In view of Lemma 1.3, it is sufficient to prove that
p I £(U.)~E(£ (U, Y]—E— 0
= - - ) . ; -+ oo,
R =L [£(U;)-E(£(U;))]8; -n r HEU)-EEU as m



But E(Rn)=0 and

LI S 3 3
Var (Rn)f_2i=z _=§ ¢ tli-i Var®(£(U,)) Var (f(Uj)).

<2 Var (£(U.)) supIB -—l—-lz % % ¢%(li-'l)
— 1 n VYA 1=1'j=1 J
1<i<n
- 2v,1 1 n
=2 Var (f(U —_— - _
r ( (1)1{13111%1 nIBin — |“Hz E jzl 0i-j )}
But
lim 1 0 Bols -
. = 1 I ¢™{|i- <
since b ¢%(j)<w. Furthermore . su n]B -;—-|2=o(1) by hypothesis
j=1 1§}gp in /5 )
. ) %
‘Hence Var (Rn)+0 as n»= , Since E(Rn)=0, we obtain that Rﬂ————+ 0 as n o,
2. Asymptotic Theory
Let us consider the general linear model
(2.0) Xn = xne + Hn

where Xn is a given nxp-matrix, 6 is the unknown p-dimensional vector,

Hn= (ul,..,un) is the error vector withf{ui,izi} forming a stationary



process which is ¢-mixing with mixing coefficient @Ku) and Xn=(Y1n,..,Ynn)
is the vector of observations. Let ¥£n€§p be the ith.row of Xn where

p possibly dependent on n.

Let X(.) be a non-decreasing function and consider the equation

(2.1)

Heovs

=1 XY 0-Xin®Xin=0-

Any solution én satisfying (2.1) is called an M-estimator of e.'(cf. Huber

(1972)). Assume that

1

(A0) I  ¢F(m)<e,
n
and

(A1) Xﬁ Xn is non-singular for large n (§ay)nzp0.
Hereafter we assume that n>n,. Let Mn be any pxp matrix such that

M*M =X X . Let
n o n n°n

(2.2) 6*=M 0,8*=M 8_ and 2. =(M") 1X. .
n n nn vlin n vin

Then é; is a solution of

n
(2.3) T x(Y. -Z7 8)Z

. . =0.
i=1 in ¥in ““A4n

Since we are interested in the asymptotic behaviour of the M-estimator
én or equivalently 5;, we assume that 6*=0 without loss of generality.

In this case, we can write (2.3) in the form.

(2.4) xW.-27 6)Z. =0.

=1 i ~vin in

Hetm 3

In addition to assumption.  (Al), let us suppose that the following con-

ditions are satisfied.

(A2) x{.) is non-decreasing and there ekist b>0, ¢>0 and d>0 such that



x_(u_+_?%i(u_)_ > d if |u|<c and |z|< b

where q=F(c)-F(-c)>0. Here F(.) is the distribution of uy -
2
(A3) B¢ (u))=v< =, Ep(x(u))=0.

n
Note that I
i=1

12 :
w%inl = p and. Z =1 Zin &in = 1

where [%I is the Euclidean norm of ¢ and I is an identity matrix of order

PXp.

Lemma 2.1. For any il’iZ""iz in 1 ton,

% S 2
1>(|§=.1 X(ui:)%jn[ik) < 4Mpv/k“.

]
Proof | N h ¥ Z. )=0 and
Proof - ote that E(§=l X (U, J)%Jn) an
2
Var (Z x .
(3_1 (X3 i, )Zin)
<(4M+1) Z Var [x (u. j] &Jn %Jn (by Lemma 1.2)
2
= (4M+1)v Z ]Z l
j=1
< (4M+1)vp

and the result follows by Chebyshev's inequality.

Let ,
D@—%ﬂwnwnﬁm|m]”gkﬂ

and Do(e)=E D{e) where IA denotes the indicator function of set A.



For any matrix A, define ||A||2=trace(A’A). With these notations .
the following lemmas can be proved. The proofs of these are the same

as those in Yohai and Maronna (1979) as the independence of'{ui,iz}}

is not used in proving these lemmas. We omit the details.

Lemma 2.2. For any >0,

P(| |DC€)—DO(e) | ]3”6)5_ rze:zp/(S2

where r2=d2q(1—q).

Lemma 2.3. Let K0 be chosen so that
X (=0} 5-K <0<K j<x€2)

Let J, be a subset of 1 to n with €ardinality m. Let >0 and define

T={£mﬁfjtjlf},lfj§p}.
Then, for any §>0, there exists L=L{n,8,m) which does not depend on
n. such that _
P(sup . u.-Lt )t.+K |t.|]>0)<S.
(s ;D jole e, olt;1120)=
ter? '
As a consequence of Lemmas 2.1-2.3, we obtain the following theorem

as in Yohai and Maronna (1979):
Theorem 2.1. Assume (A0)-(A3). Then,.for any fixed p,

(2.5)‘ le*—e*l=0p(1)-

If p=p_ depends on n, and I%m P, max. l%in]2=0’ then

Lo

2.6 6* -6*|=0 .
(2.6) In_l,pcpn)



In particular, if p is fixed and the smallest eigen valuev}\n of Xﬁ Xn

tends to infinity as n> «, then én £ 59 as n —=.,

Theorem 2.2. In addition to assumptions (A0)-(A3), further suppose
that the following conditions hold:

(B1) X(.) is three times differentiable with a bounded third derivative

i.e., |x"''(x)|<c< = for all x,
(B2) EF]X'(u)| and EF]X"(u)|2 are finite,

(B3) E_ X'"(w) =0,

F 3
/28

. 2
(B4) %1m P, - 0 where €= T%%ﬁﬁ |%inl

and

Pn

(B5) . there exists %HER with ]%n|=1 such that

s§pférn'% in " %nl——a+0 as n —> o,
Then
N PP L 2
(2.7) g, (Op-0")—N(0,27)
o 2
where o= (Bp[x* ) ]+28  Bplx(up)x(a) 1)/ Gpxt (ap) -

Prob.: Assume that 6*=0 without loss of generality. Then é; is a

solution of

n
u, -z! 7. =
(2.8) £=1 x( i7%in e)'%in

By-Taylor's expansion,

_n A A%k T .
(2.9) 0= §=1 ><('ui %in en)'%in Rn



A1 oA
- —w WU A%is Akt *
Wy WyWz 8747 0% Wy 8%z wy
where
0 n
€100 wy= ¥ xCupZigs
(2-11) w =(E Xl) Izl: OL'Z 7 1 é*
2 F i=1mnmin%in n’
2.12 T 10y
@12 g 00 g s
n
|| Z !
(2.15) Wy=p_x''(;) gz IZ; 2t

n
=L X'''(u,+n,
i

Since |%nl=l and fEE<nIMFE A

7! 9*)(2' *)
invin n’ "Win n mnmln

Z. —-a_ |—0, it follows that
Ain An

1%8<n [/n n Zin% $n% [0 as n> o
and hence
u IB -——4 = o(1)
i E<n ﬁ;
where Bln_%in%n Hence, by Lemma 1.4, we obtain that
L 2
2 (u;) 8; ———N(0,0°)
where
(2.15) —E[X w,)1+2, b Elx WyIxCu;)]-

1=2

10



11

Therefore

L 2,
(2.16) w,——N(0,073.
Note that

n
(2.17) wp=(Bx g

£ Z. 2! )e¥.
=1vin vin’ n
and

Z. Z!
=1'\’1n'\‘1n

g

is identity matrix of order PnXPn' Observe that*E(E3)=O and -

(2.20) anlw3|2=Pngzlﬁlwsz|2

Pn n
= X! 3!
pn%:lvar%ﬁ!,__x “1)%&in"1ne)

2
|

n : 2
<(@MsDp, T Var Dx ) V(g ) 14,

(by Lemma 1.2)
<(M+D)p Var(x' @ )e T (g'Z; )
1=]
iplpnen

n
for some constant C.>0 since I (%ﬁ%in)2=1: The last term tends to zero

1
i=1
as o by (B4). On the other hand ||w4||2= trace (W,W3) and E(X''(u;))=0.

Hence



12

)2z, |4

2 2 2
poEl W, ]| < (aMe1)p Var (x' (ul)) ki) 12y

'\'n'\-'ln

by arguments analogous to those given above and the last term is bounded

by

2.2
(2.21) ¢2pn€n

n
for some constant C2>O since % l(a %.n)2=1. But pnen+0 by (B4). Clearly

) 2
lw5|_<_cz‘- cg'ne;;) |6x] |z, I

where ¢ is given by (Bl) and hence

A* n ’IA*Z
(2.22) ]w5|59|en|en; (Z! 6%

=C|6*l3€
n' n

1

Jp 78| 3ep 2 ¢

n

3/2
-an enop(l)

by theorem 2.1. The last term tends to zero by hypothesis.
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